Araştırma Makalesi
BibTex RIS Kaynak Göster

İzositrat dehidrojenaz 1 ve izositrat dehidrojenaz 2 genlerinin gen ekspresyon değişiklikleri karsinojenezi ve hayatta kalma olasılığını etkiler

Yıl 2024, , 370 - 378, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1353355

Öz

İzositrat dehidrojenaz (IDH), hücre metabolizmasının düzenlenmesinde önemli bir metabolik enzimdir. IDH geni, IDH1, IDH2 ve IDH3 olmak üzere üç protein izoformunu kodlar ve izoformların ekspresyon seviyesi, insan kanser türlerinde değişiklik gösterir. IDH'nin gen ekspresyon seviyesinin incelenmesi, kanser metabolizması alanında kullanılacak yeni bir hedef bulmaya yardımcı olabilecek terapötik bir avantajdır. Bu çalışmanın amacı, biyoinformatik araçlar kullanarak on yaygın insan kanserinde IDH1 ve IDH2 izoformlarının gen ekspresyon seviyesini araştırmaktır. Ek olarak, IDH1 ve IDH2’nin gen ekspresyon seviyesindeki değişikliklerin karsinogenez ve hayatta kalma olasılığı üzerindeki etkisi TCGA veri tabanında depolanan halka açık veriler üzerinde incelenmiştir. Elde edilen sonuçlar, IDH izoformlarının ekspresyonunun dokuya özgü farklılıklar ve heterojen özellik sergilediğini gösterdi. IDH1 ekspresyonu özofagus ve akciğer skuamöz hücreli karsinom ile akciğer ve mide adenokarsinomu tümörlerinde arttı. Mesane ürotelyal, meme ürotelyal ve akciğer skuamöz hücreli karsinomu ve kolon ve akciğer adenokarsinomu, IDH2 ekspresyonunda önemli bir artış sergiledi. IDH izoformlarının ekspresyonu ile çeşitli kanser türlerinin ilerlemesi arasında doğrudan bir ilişki olduğu bulundu. Yüksek IDH1 ekspresyonu, özofagus karsinomu, akciğer ve mide adenokarsinomunda hayatta kalma olasılığının azalmasına yol açtı. Yüksek IDH2 ekspresyon seviyesi, mesane ürotelyal, meme ürotelyal ve akciğer skuamöz hücreli karsinom ve kolon adenokarsinomunda hayatta kalma olasılığının azalmasına yol açtı. Sonuç olarak, tüm veriler IDH1'in özofagus karsinomu, akciğer ve mide adenokarsinomu için ve IDH2'nin mesane ürotelyal, meme ürotelyal ve akciğer skuamöz hücreli karsinom ve kolon adenokarsinomu için bir biyobelirteç olabileceğini gösterdi.

Kaynakça

  • Al-Amodi, H. S. A. B., Nabih, E. S., Kamel, H. F. M., El Sayed, M. A., & Dwedar, I. A. M. (2018). Wild-type isocitrate dehydrogenase 1 over-expression is related to cancer stem cells survival in lung adenocarcinoma. Cancer Investigation, 36(3), 185-189. https://doi.org/10.1080/07357907.2018.1445262
  • Aljohani, A. I., Toss, M. S., Kurozumi, S., Joseph, C., Aleskandarany, M. A., Miligy, I. M., Ansari, R. E., Mongan, N. P., Ellis, I. O., Green, A. R., & Rakha, E. A. (2020). The prognostic significance of wild-type isocitrate dehydrogenase 2 (IDH2) in breast cancer. Breast Cancer Research and Treatment, 179, 79-90. https://doi.org/10.1007/s10549-019-05459-7
  • Anderson, N. M., Mucka, P., Kern, J. G., & Feng, H. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein & Cell, 9(2), 216-237. https://doi.org/10.1007/s13238-017-0451-1
  • Atalay, E. B., & Kayali, H. A. (2022). The elevated D-2-hydroxyglutarate level found as a characteristic metabolic change of colon cancer in both in vitro and in vivo models. Biochemical and Biophysical Research Communications, 627, 191-199. https://doi.org/10.1016/j.bbrc.2022.08.019
  • Atalay, E. B., Senturk, S., & Kayali, H. A. (2023). Wild-type IDH1 Knockout Leads to G0/G1 Arrest, Impairs Cancer Cell Proliferation, Altering Glycolysis, and the TCA Cycle in Colon Cancer. Biochemical Genetics, 1-17. https://doi.org/10.1007/s10528-022-10325-1
  • Barnes, L. D., Kuehn, G. D., & Atkinson, D. E. (1971). Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties. Biochemistry, 10(21), 3939-3944. https://doi.org/10.1021/bi00797a022
  • Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V., & Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 19(8), 649-658. https://doi.org/10.1016/j.neo.2017.05.002
  • Chen, X., Xu, W., Wang, C., Liu, F., Guan, S., Sun, Y., Wang, X., An, D., Wen, Z., Chen, P., & Cheng, Y. (2017). The clinical significance of isocitrate dehydrogenase 2 in esophageal squamous cell carcinoma. American Journal of Cancer Research, 7(3), 700.
  • Chhikara, B. S., & Parang, K. (2023). Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 10(1), 451-451. https://pubs.thesciencein.org/cbl
  • D'Adamo Jr, A. F., & Haft, D. E. (1965). An alternate pathway of α-ketoglutarate catabolism in the isolated, perfused rat liver: I. Studies with dl-glutamate-2-and-5-14C. Journal of Biological Chemistry, 240(2), 613-617. https://doi.org/10.1016/S0021-9258(17)45218-5
  • Dalziel, K. (1980). Isocitrate dehydrogenase and related oxidative decarboxylases. FEBS letters, 117, K45-K55. https://doi.org/10.1016/0014-5793(80)80569-2
  • Du, J., Yanagida, A., Knight, K., Engel, A. L., Vo, A. H., Jankowski, C., Sadilek, M., Tran, V. T. B. Manson, M. A. Ramakrishnan, A. Hurley, J. B., & Chao, J. R. (2016). Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proceedings of the National Academy of Sciences, 113(51), 14710-14715. https://doi.org/10.1073/pnas.1604572113
  • Eniafe, J., & Jiang, S. (2021). The functional roles of TCA cycle metabolites in cancer. Oncogene, 40(19), 3351-3363. https://doi.org/10.1038/s41388-020-01639-8
  • Gabriel, J. L., Zervos, P. R., & Plaut, G. W. (1986). Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metabolism, 35(7), 661-667. https://doi.org/10.1016/0026-0495(86)90175-7
  • Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discovery, 12(1), 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059
  • He, Q., Chen, J., Xie, Z., & Chen, Z. (2022). Wild-Type Isocitrate Dehydrogenase-Dependent Oxidative Decarboxylation and Reductive Carboxylation in Cancer and Their Clinical Significance. Cancers, 14(23), 5779. https://doi.org/10.3390/cancers14235779
  • Jiang, L., Shestov, A. A., Swain, P., Yang, C., Parker, S. J., Wang, Q. A., Terada, L. S., Adams, N. D., McCabe, M. T., Pietrak, B., Schmidt, S., Metallo, C. M., Dranka, B. P., Schwartz, B., & DeBerardinis, R. J. (2016). Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 532(7598), 255-258. https://doi.org/10.1038/nature17393
  • Koh, H. J., Lee, S. M., Son, B. G., Lee, S. H., Ryoo, Z. Y., Chang, K. T., Park, J. W., Park, D. C., Song, B. J., Veech, R. L., Song, H., & Huh, T. L. (2004). Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. Journal of Biological Chemistry, 279(38), 39968-39974. https://doi.org/10.1074/jbc.M402260200
  • Kong, M. J., Han, S. J., Kim, J. I., Park, J. W., & Park, K. M. (2018). Mitochondrial NADP+-dependent isocitrate dehydrogenase deficiency increases cisplatin-induced oxidative damage in the kidney tubule cells. Cell Death & Disease, 9(5), 488. https://doi.org/10.1038/s41419-018-0537-6
  • Koseki, J., Colvin, H., Fukusumi, T., Nishida, N., Konno, M., Kawamoto, K., Tsunekuni, K., Matsui, H., Doki, Y., Mori, M., & Ishii, H. (2015). Mathematical analysis predicts imbalanced IDH1/2 expression associates with 2-HG-inactivating β-oxygenation pathway in colorectal cancer. International Journal of Oncology, 46(3), 1181-1191. https://doi.org/10.3892/ijo.2015.2833
  • Li, H., Li, J. J., Lu, W., Yang, J., Xia, Y., & Huang, P. (2023). Targeting Mitochondrial IDH2 Enhances Antitumor Activity of Cisplatin in Lung Cancer via ROS-Mediated Mechanism. Biomedicines, 11(2), 475. https://doi.org/10.3390/biomedicines11020475
  • Li, J., He, Y., Tan, Z., Lu, J., Li, L., Song, X., Shi, F., Xie, L., You, S., Luo, X., Li, N., Li, Y., Liu, X., Tang, M., Weng, X., Yi, W., Fan, J., Zhou, J., Qiang, G., Qiu, S., Wu, W., Bode, A. M., & Cao, Y. (2018). Wild-type IDH2 promotes the Warburg effect and tumor growth through HIF1α in lung cancer. Theranostics, 8(15), 4050. https://doi.org/10.7150/thno.21524
  • Martínez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nature communications, 11(1), 102. https://doi.org/10.1038/s41467-019-13668-3
  • Matilainen, O., Quirós, P. M., & Auwerx, J. (2017). Mitochondria and epigenetics–crosstalk in homeostasis and stress. Trends in Cell Biology, 27(6), 453-463. https://doi.org/10.1016/j.tcb.2017.02.004
  • Minard, K. I., & McAlister-Henn, L. (1999). Dependence of peroxisomal β-oxidation on cytosolic sources of NADPH. Journal of Biological Chemistry, 274(6), 3402-3406. https://doi.org/10.1074/jbc.274.6.3402
  • Nadhan, R., Kashyap, S., Ha, J. H., Jayaraman, M., Song, Y. S., Isidoro, C., & Dhanasekaran, D. N. (2023). Targeting oncometabolites in peritoneal cancers: preclinical ınsights and therapeutic strategies. Metabolites, 13(5), 618. https://doi.org/10.3390/metabo13050618
  • Peng, M., Yang, D., Hou, Y., Liu, S., Zhao, M., Qin, Y., Chen, R., Teng, Y., & Liu, M. (2019). Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death & Disease, 10(3), 228. https://doi.org/10.1038/s41419-019-1475-7
  • Pollard, P. J., & Ratcliffe, P. J. (2009). Puzzling patterns of predisposition. Science, 324(5924), 192-194. https://doi.org/10.1126/science.1173362
  • Ramachandran, N., & Colman, R. F. (1980). Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. Journal of Biological Chemistry, 255(18), 8859-8864. https://doi.org/10.1016/S0021-9258(18)43581-8
  • Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17-48. https://doi.org/10.3322/caac.21763
  • Špačková, J., Gotvaldová, K., Dvořák, A., Urbančoková, A., Pospíšilová, K., Větvička, D., Leguina-Ruzzi, A., Tesařová, P., Vítek, L., Ježek, P., & Smolková, K. (2021). Biochemical background in mitochondria affects 2HG production by IDH2 and ADHFE1 in breast carcinoma. Cancers, 13(7), 1709. https://doi.org/10.3390/cancers13071709
  • Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556-W560. https://doi.org/10.1093/nar/gkz430
  • Wise, D. R., Ward, P. S., Shay, J. E., Cross, J. R., Gruber, J. J., Sachdeva, U. M., Platt, J. M., DeMatteo, R. G., Simon, M. C., & Thompson, C. B. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences, 108(49), 19611-19616. https://doi.org/10.1073/pnas.1117773108
  • Zarei, M., Hajihassani, O., Hue, J. J., Graor, H. J., Rothermel, L. D., & Winter, J. M. (2023). Targeting wild-type IDH1 enhances chemosensitivity in pancreatic cancer. BioRxiv, 2023-03. https://doi.org/10.1101/2023.03.29.534596

Gene expression changes of isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 affect carcinogenesis and survival probability

Yıl 2024, , 370 - 378, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1353355

Öz

Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the regulation of cellular metabolism. IDH gene encodes three protein isoforms, IDH1, IDH2, and IDH3, and the expression level of isoforms is altered in human cancer types. Examining the gene expression level of IDH is a therapeutic advantage that could help find a new target to use in cancer metabolism. The present study aimed to explore the gene expression level of IDH1 and IDH2 isoforms in the ten common human cancers using bioinformatic tools. In addition, the effect of gene expression changes on IDH1 and IDH2 on carcinogenesis and survival probability was examined in publicly available data deposited in the TCGA database. The results showed that the expression of IDH isoforms showed tissue-specific differences. IDH1 expression increased in esophageal and lung squamous cell carcinoma and lung and stomach adenocarcinoma tumors. Bladder urothelial, breast urothelial, and lung squamous cell carcinoma, colon, and lung adenocarcinoma displayed a significant upregulation of IDH2 expression. There was a direct relationship between the expression of IDH isoforms and the progression of various cancer types. High IDH1 expression led to decreased survival probability in esophageal carcinoma, lung, and stomach adenocarcinoma. Elevated IDH2 expression level led to decreased survival probability in bladder urothelial, breast urothelial, and lung squamous cell carcinoma and colon adenocarcinoma. In conclusion, all data showed that IDH1 could be a biomarker for esophageal carcinoma, lung and stomach adenocarcinoma, and IDH2 for bladder urothelial, breast urothelial, and lung squamous cell carcinoma, and colon adenocarcinoma.

Kaynakça

  • Al-Amodi, H. S. A. B., Nabih, E. S., Kamel, H. F. M., El Sayed, M. A., & Dwedar, I. A. M. (2018). Wild-type isocitrate dehydrogenase 1 over-expression is related to cancer stem cells survival in lung adenocarcinoma. Cancer Investigation, 36(3), 185-189. https://doi.org/10.1080/07357907.2018.1445262
  • Aljohani, A. I., Toss, M. S., Kurozumi, S., Joseph, C., Aleskandarany, M. A., Miligy, I. M., Ansari, R. E., Mongan, N. P., Ellis, I. O., Green, A. R., & Rakha, E. A. (2020). The prognostic significance of wild-type isocitrate dehydrogenase 2 (IDH2) in breast cancer. Breast Cancer Research and Treatment, 179, 79-90. https://doi.org/10.1007/s10549-019-05459-7
  • Anderson, N. M., Mucka, P., Kern, J. G., & Feng, H. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein & Cell, 9(2), 216-237. https://doi.org/10.1007/s13238-017-0451-1
  • Atalay, E. B., & Kayali, H. A. (2022). The elevated D-2-hydroxyglutarate level found as a characteristic metabolic change of colon cancer in both in vitro and in vivo models. Biochemical and Biophysical Research Communications, 627, 191-199. https://doi.org/10.1016/j.bbrc.2022.08.019
  • Atalay, E. B., Senturk, S., & Kayali, H. A. (2023). Wild-type IDH1 Knockout Leads to G0/G1 Arrest, Impairs Cancer Cell Proliferation, Altering Glycolysis, and the TCA Cycle in Colon Cancer. Biochemical Genetics, 1-17. https://doi.org/10.1007/s10528-022-10325-1
  • Barnes, L. D., Kuehn, G. D., & Atkinson, D. E. (1971). Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties. Biochemistry, 10(21), 3939-3944. https://doi.org/10.1021/bi00797a022
  • Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V., & Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 19(8), 649-658. https://doi.org/10.1016/j.neo.2017.05.002
  • Chen, X., Xu, W., Wang, C., Liu, F., Guan, S., Sun, Y., Wang, X., An, D., Wen, Z., Chen, P., & Cheng, Y. (2017). The clinical significance of isocitrate dehydrogenase 2 in esophageal squamous cell carcinoma. American Journal of Cancer Research, 7(3), 700.
  • Chhikara, B. S., & Parang, K. (2023). Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 10(1), 451-451. https://pubs.thesciencein.org/cbl
  • D'Adamo Jr, A. F., & Haft, D. E. (1965). An alternate pathway of α-ketoglutarate catabolism in the isolated, perfused rat liver: I. Studies with dl-glutamate-2-and-5-14C. Journal of Biological Chemistry, 240(2), 613-617. https://doi.org/10.1016/S0021-9258(17)45218-5
  • Dalziel, K. (1980). Isocitrate dehydrogenase and related oxidative decarboxylases. FEBS letters, 117, K45-K55. https://doi.org/10.1016/0014-5793(80)80569-2
  • Du, J., Yanagida, A., Knight, K., Engel, A. L., Vo, A. H., Jankowski, C., Sadilek, M., Tran, V. T. B. Manson, M. A. Ramakrishnan, A. Hurley, J. B., & Chao, J. R. (2016). Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proceedings of the National Academy of Sciences, 113(51), 14710-14715. https://doi.org/10.1073/pnas.1604572113
  • Eniafe, J., & Jiang, S. (2021). The functional roles of TCA cycle metabolites in cancer. Oncogene, 40(19), 3351-3363. https://doi.org/10.1038/s41388-020-01639-8
  • Gabriel, J. L., Zervos, P. R., & Plaut, G. W. (1986). Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metabolism, 35(7), 661-667. https://doi.org/10.1016/0026-0495(86)90175-7
  • Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discovery, 12(1), 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059
  • He, Q., Chen, J., Xie, Z., & Chen, Z. (2022). Wild-Type Isocitrate Dehydrogenase-Dependent Oxidative Decarboxylation and Reductive Carboxylation in Cancer and Their Clinical Significance. Cancers, 14(23), 5779. https://doi.org/10.3390/cancers14235779
  • Jiang, L., Shestov, A. A., Swain, P., Yang, C., Parker, S. J., Wang, Q. A., Terada, L. S., Adams, N. D., McCabe, M. T., Pietrak, B., Schmidt, S., Metallo, C. M., Dranka, B. P., Schwartz, B., & DeBerardinis, R. J. (2016). Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 532(7598), 255-258. https://doi.org/10.1038/nature17393
  • Koh, H. J., Lee, S. M., Son, B. G., Lee, S. H., Ryoo, Z. Y., Chang, K. T., Park, J. W., Park, D. C., Song, B. J., Veech, R. L., Song, H., & Huh, T. L. (2004). Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. Journal of Biological Chemistry, 279(38), 39968-39974. https://doi.org/10.1074/jbc.M402260200
  • Kong, M. J., Han, S. J., Kim, J. I., Park, J. W., & Park, K. M. (2018). Mitochondrial NADP+-dependent isocitrate dehydrogenase deficiency increases cisplatin-induced oxidative damage in the kidney tubule cells. Cell Death & Disease, 9(5), 488. https://doi.org/10.1038/s41419-018-0537-6
  • Koseki, J., Colvin, H., Fukusumi, T., Nishida, N., Konno, M., Kawamoto, K., Tsunekuni, K., Matsui, H., Doki, Y., Mori, M., & Ishii, H. (2015). Mathematical analysis predicts imbalanced IDH1/2 expression associates with 2-HG-inactivating β-oxygenation pathway in colorectal cancer. International Journal of Oncology, 46(3), 1181-1191. https://doi.org/10.3892/ijo.2015.2833
  • Li, H., Li, J. J., Lu, W., Yang, J., Xia, Y., & Huang, P. (2023). Targeting Mitochondrial IDH2 Enhances Antitumor Activity of Cisplatin in Lung Cancer via ROS-Mediated Mechanism. Biomedicines, 11(2), 475. https://doi.org/10.3390/biomedicines11020475
  • Li, J., He, Y., Tan, Z., Lu, J., Li, L., Song, X., Shi, F., Xie, L., You, S., Luo, X., Li, N., Li, Y., Liu, X., Tang, M., Weng, X., Yi, W., Fan, J., Zhou, J., Qiang, G., Qiu, S., Wu, W., Bode, A. M., & Cao, Y. (2018). Wild-type IDH2 promotes the Warburg effect and tumor growth through HIF1α in lung cancer. Theranostics, 8(15), 4050. https://doi.org/10.7150/thno.21524
  • Martínez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nature communications, 11(1), 102. https://doi.org/10.1038/s41467-019-13668-3
  • Matilainen, O., Quirós, P. M., & Auwerx, J. (2017). Mitochondria and epigenetics–crosstalk in homeostasis and stress. Trends in Cell Biology, 27(6), 453-463. https://doi.org/10.1016/j.tcb.2017.02.004
  • Minard, K. I., & McAlister-Henn, L. (1999). Dependence of peroxisomal β-oxidation on cytosolic sources of NADPH. Journal of Biological Chemistry, 274(6), 3402-3406. https://doi.org/10.1074/jbc.274.6.3402
  • Nadhan, R., Kashyap, S., Ha, J. H., Jayaraman, M., Song, Y. S., Isidoro, C., & Dhanasekaran, D. N. (2023). Targeting oncometabolites in peritoneal cancers: preclinical ınsights and therapeutic strategies. Metabolites, 13(5), 618. https://doi.org/10.3390/metabo13050618
  • Peng, M., Yang, D., Hou, Y., Liu, S., Zhao, M., Qin, Y., Chen, R., Teng, Y., & Liu, M. (2019). Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death & Disease, 10(3), 228. https://doi.org/10.1038/s41419-019-1475-7
  • Pollard, P. J., & Ratcliffe, P. J. (2009). Puzzling patterns of predisposition. Science, 324(5924), 192-194. https://doi.org/10.1126/science.1173362
  • Ramachandran, N., & Colman, R. F. (1980). Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. Journal of Biological Chemistry, 255(18), 8859-8864. https://doi.org/10.1016/S0021-9258(18)43581-8
  • Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17-48. https://doi.org/10.3322/caac.21763
  • Špačková, J., Gotvaldová, K., Dvořák, A., Urbančoková, A., Pospíšilová, K., Větvička, D., Leguina-Ruzzi, A., Tesařová, P., Vítek, L., Ježek, P., & Smolková, K. (2021). Biochemical background in mitochondria affects 2HG production by IDH2 and ADHFE1 in breast carcinoma. Cancers, 13(7), 1709. https://doi.org/10.3390/cancers13071709
  • Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556-W560. https://doi.org/10.1093/nar/gkz430
  • Wise, D. R., Ward, P. S., Shay, J. E., Cross, J. R., Gruber, J. J., Sachdeva, U. M., Platt, J. M., DeMatteo, R. G., Simon, M. C., & Thompson, C. B. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences, 108(49), 19611-19616. https://doi.org/10.1073/pnas.1117773108
  • Zarei, M., Hajihassani, O., Hue, J. J., Graor, H. J., Rothermel, L. D., & Winter, J. M. (2023). Targeting wild-type IDH1 enhances chemosensitivity in pancreatic cancer. BioRxiv, 2023-03. https://doi.org/10.1101/2023.03.29.534596
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İstatistiksel ve Nicel Genetik, Kanser Biyolojisi
Bölüm Makaleler
Yazarlar

Esra Bulut Atalay 0000-0002-1615-0535

Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 31 Ağustos 2023
Kabul Tarihi 3 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bulut Atalay, E. (2024). Gene expression changes of isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 affect carcinogenesis and survival probability. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 370-378. https://doi.org/10.17714/gumusfenbil.1353355