Derleme
BibTex RIS Kaynak Göster

Polimer eklemeli imalatta stereolitografi (SLA) ve maskeli stereolitografi (mSLA) yöntemleri: avantajlar, sınırlamalar ve güncel uygulamalar üzerine bir inceleme

Yıl 2025, Cilt: 15 Sayı: 4, 1291 - 1306, 15.12.2025
https://doi.org/10.17714/gumusfenbil.1593073
https://izlik.org/JA49TX34LS

Öz

Stereolitografi (SLA) ve Maskeli Stereolitografi (mSLA), yüksek çözünürlük ve yüzey kalitesi sunan polimer tabanlı eklemeli imalat yöntemlerindendir. SLA, ultraviyole lazer ile fotopolimer reçineyi nokta nokta kürleyerek çalışırken; mSLA, LED ışık kaynağı ve dijital maske teknolojisi kullanarak tüm katmanları aynı anda kürleyerek üretim süresini kısaltır. Bu derleme çalışması, SLA ve mSLA’nın avantajları ile sınırlılıklarını güncel literatür ışığında analiz etmektedir. Özellikle tıbbi, dental ve endüstriyel prototipleme gibi yüksek hassasiyet gerektiren uygulamalarda yaygın kullanımları vurgulanmaktadır. Biyouyumlu, esnek ve enerji verimli reçinelerin geliştirilmesi, bu yöntemlerin biyomedikal alanlardaki potansiyelini artırmıştır. Ayrıca, akıllı üretim sistemleriyle entegrasyonları sayesinde sürdürülebilir üretim süreçlerinde önemli rol oynamaktadırlar. Çalışma, SLA ve mSLA teknolojilerinin mevcut durumu, gelecekteki uygulama potansiyelleri ve Ar-Ge ihtiyaçlarını ortaya koymaktadır.

Kaynakça

  • Alghamdi, S., S., John, S., Choudhury, N., R., Dutta, N., K. (2021). Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers, 13(5), 753. https://doi.org/10.3390/polym13050753
  • Bhushan, B., Caspers, M. (2017). An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23(1), 111–117. https://doi.org/10.1007/s00542-017-3447-9
  • Bhushan, B., Caspers, M. (2019). Energy-efficient mSLA and its industrial applications. Additive Manufacturing, 29, 129-137. https://doi.org/10.1016/j.addma.2019.04.002
  • Bhushan, B., Caspers, M. (2019). Mask-based stereolithography and energy-efficient manufacturing. Microsystem Technologies, 25(2), 234-242. https://doi.org/10.1007/s00542-019-04769-2
  • Chen, D., Lin, T. (2024). Innovations in mSLA for medical prototyping. Medical Engineering and Manufacturing, 13(1), 98–112. https://doi.org/10.1016/j.medeng.2024.98112
  • Chen, H., Li, P. (2022). The future of SLA in dental technology. Dental Materials Today, 37(2), 302105. https://doi.org/10.1016/j.dentmat.2022.302105
  • Chen, H., Li, Z. (2023). Enhanced mask-based stereolithography for efficient additive manufacturing. International Journal of Advanced Manufacturing Technology, 45, 789–804. https://doi.org/10.1007/s00170-023-1480-9
  • Chen, H., Zhao, Y. (2022). Advances in SLA-based bioprinting for tissue engineering applications. Materials Today, 23(1), 45–58. https://doi.org/10.1016/j.mattod.2022.01.014
  • Chen, H., Zhao, Y., Zhang, Y., Shi, Y. (2021). Recent advances in stereolithography-based bioprinting and additive manufacturing. Bioprinting, 21, e00145. https://doi.org/10.1016/j.bprint.2021.e00145
  • Chen, L., Li, Z., Huang, J., Zhang, L. (2021). Application of stereolithography in the manufacturing of surgical guides: A systematic review. International Journal of Oral and Maxillofacial Surgery, 50(1), 12–22. https://doi.org/10.1016/j.ijom.2021.04.020
  • Chen, Y., Zhao, X. (2021). Innovations in SLA technology for medical applications. Journal of Manufacturing Science, 89(4), 753-761. https://doi.org/10.1115/1.4048331
  • Chen, Y., Zhao, X. (2021). Advancements in SLA-based biocompatible photopolymerization for medical implants: Reducing energy consumption. Journal of Biomedical Materials Research, 109(4), 769-780. https://doi.org/10.1002/jbm.a.37290
  • Cheng, R., Li, Y., Tan, H. (2023). Comparative study of photopolymer-based 3D printing technologies: SLA vs. mSLA in industrial applications. Materials Today Communications, 59, 102385. https://doi.org/10.1016/j.mtcomm.2023.102385
  • Chia, H.N., Wu, B.M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9(1), 1-14. https://doi.org/10.1186/s13036-015-0001-4
  • Chua, C.K., Leong, K.F. (2017). 3D Printing and Additive Manufacturing: Principles and Applications. World Scientific Publishing. https://doi.org/10.1142/10439
  • Dolenc, M., Dolenc, A., Lenarčič, M. (2020). An overview of stereolithography techniques in the medical field. 3D Printing and Additive Manufacturing, 7(1), 16–22. https://doi.org/10.1089/3dp.2019.0027
  • Ergene, B., Bolat, Ç., (2023). Simulation of Fused Deposition Modeling of Glass Fiber Reinforced ABS Impact Samples: The Effect of Fiber Ratio, Infill Rate, and Infill Pattern on Warpage and Residual Stresses, Hittite Journal of Science and Engineering, 10(1), 21-31. https://doi.org/10.17350/HJSE19030000287
  • Gibson, I., Rosen, D.W., Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer. https://doi.org/10.1007/978-1-4939-2113-3
  • Goodridge, R.D., Tuck, C.J., Hague, R.J.M. (2012). Laser sintering of polyamides and other polymers. Progress in Materials Science, 57(2), 229–267. https://doi.org/10.1016/j.pmatsci.2011.04.001
  • Gupta, R., Lee, J. (2023). Energy-efficient mSLA applications in prototyping. Additive Manufacturing Today, 12, 112-122. https://doi.org/10.1016/j.addmatoday.2023.112456
  • Gupta, R., Singh, D. (2022). Development and optimization of SLA photopolymers for medical applications. Journal of Biomedical Materials Research, 110(3), 543–552. https://doi.org/10.1002/jbm.b.34875
  • Hull, C.W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. 4,575,330.
  • Huang, T., Gao, Y., Xu, R. (2023). Cost-effective prototyping methods in educational settings using FDM technology. International Journal of Educational Manufacturing, 9(1), 58-70. https://doi.org/10.1016/j.ijem.2023.01.006
  • Jang, J., Lee, H., Kim, J. (2020). Antibacterial SLA resins for medical devices: A step towards infection-free implants. Materials Today Bio, 6, 100055. https://doi.org/10.1016/j.mtbio.2020.100055
  • Jang, T.S., Jung, H.D., Kim, S.H., Kim, H.E. (2018). Antibacterial properties of SLA photopolymers in 3D printed materials. Materials, 11(10), 1-14. https://doi.org/10.3390/ma11101819
  • Kim, H., Lee, S. (2023). Advanced mSLA techniques for improved layer precision and efficiency. International Journal of Manufacturing Systems, 24(3), 324–336. https://doi.org/10.1016/j.ijms.2023.324336
  • Kumar, S., Yang, L., Patel, M. (2023). Automotive advancements using SLA and mSLA for prototyping. Automotive Engineering, 19(7), 205109. https://doi.org/10.1016/j.autoeng.2023.205109
  • Lee, H., Zhang, Q. (2022). Advances in stereolithography materials for enhanced durability and flexibility. Polymer Engineering, 8(4), 275-288. https://doi.org/10.1016/j.polyeng.2022.04.003
  • Lee, J., Chen, R. (2022). Prototyping applications in art and education with mSLA. Creative Engineering Review, 25(2), 105004. https://doi.org/10.1016/j.creativeeng.2022.105004
  • Lee, J., Kim, H., Park, S. (2023). Speed improvements in mSLA 3D printing through advanced LED technology. Rapid Prototyping Journal, 29(2), 150–159. https://doi.org/10.1108/RPJ-09-2022-0123
  • Lee, T., Kim, R. (2023). Energy consumption analysis of LED-based mSLA systems. Journal of Cleaner Production, 320, 146–159. https://doi.org/10.1016/j.jclepro.2023.146159
  • Li, X., Zhang, Y., Liu, Q. (2022). Additive manufacturing technologies for personalized medical applications. Journal of Biomedical Engineering, 15(3), 210-225. https://doi.org/10.1016/j.jbe.2022.03.001
  • Lin, T., Chen, D. (2024). Advanced bio-compatible resins for mSLA technology. Journal of Biomaterials Science, 29(1), 35–48. https://doi.org/10.1016/j.biomatsci.2024.35048
  • Lin, W., Fang, Z., Lu, J. (2024). Analysis of mSLA advancements: Cost efficiency and material versatility in rapid prototyping. Procedia CIRP, 127, 110–115. https://doi.org/10.1016/j.procir.2024.01.015
  • Liu, T., Chen, W. (2023). Exploring rapid prototyping with mSLA technology. Advanced Manufacturing, 39(5), 1122-1130. https://doi.org/10.1007/s00170-022-08773-1
  • Lu, C., Zhang, F. (2022). Evaluation of cost-effectiveness in mSLA-produced dental prosthetics. Dental Materials, 38(7), 978-987. https://doi.org/10.1016/j.dental.2022.03.002
  • Lu, H., Zhang, Q. (2022). Rapid production of surgical devices using mSLA. Journal of Medical Device Innovation, 8(3), 215–225. https://doi.org/10.1016/j.jmdi.2022.215225
  • Lu, X., Zhang, W. (2023). Innovations in biocompatible SLA resins for dental applications. Polymer Science Today, 88(4), 213–229. https://doi.org/10.1016/j.polymer.2023.04.002
  • Lu, X., Zhang, W., Liu, Y. (2022). Biocompatible and flexible SLA resins for tissue engineering applications. Journal of Applied Polymer Science, 139(7), e51607. https://doi.org/10.1002/app.51607
  • Ma, J., Lee, J.H. (2020). Improving manufacturing efficiency in 3D printed dental and medical devices using mSLA. Advanced Manufacturing Research, 28(2), 119–127. https://doi.org/10.1016/j.amr.2020.119127
  • Ma, J., Lee, J.H. (2021). The role of mSLA in medical and industrial prototyping: A critical review. Journal of Additive Manufacturing Processes, 9(2), 215–226. https://doi.org/10.1016/j.jamp.2021.215226
  • Ma, L., Lee, S. (2020). Enhanced resolution and material properties of SLA printed parts in biomedical applications. Polymers for Advanced Technologies, 31(8), 1498-1507. https://doi.org/10.1002/pat.4910
  • Melchels, F.P.W., Feijen, J., Grijpma, D.W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
  • Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • Prakash, P., Singh, V. (2021). Surgical guide accuracy and clinical outcomes of SLA and mSLA-produced models. Journal of Clinical Orthodontics, 55(6), 363-370. https://doi.org/10.1007/s11805-021-00781-7
  • Prakash, R., Zhu, Y. (2019). SLA photopolymerization for complex, high-resolution, and bio-compatible structures: Opportunities and challenges. Materials Science and Engineering: C, 97, 940–950. https://doi.org/10.1016/j.msec.2018.12.004
  • Prakash, V., Singh, R. (2021). Masked stereolithography in rapid prototyping of surgical guides: A comparative analysis. Biomedical Engineering Research, 12(1), 45–56.
  • Smith, A., Chen, L. (2022). Micro-scale prototyping in electronic devices: SLA as a high-resolution solution. International Journal of Electronics and Electrical Engineering, 47(5), 524-531. https://doi.org/10.1109/IJEEE.2022.3020587
  • Smith, R., Chen, H. (2022). Applications of high-resolution stereolithography in microelectronics: A review. Journal of Manufacturing Processes, 75, 148–157. https://doi.org/10.1016/j.jmapro.2021.10.017
  • Tanaka, S., Kobayashi, M., Ito, Y. (2023). Energy-efficient advancements in Selective Laser Sintering. Additive Manufacturing Science, 14(3), 287-298. https://doi.org/10.1016/j.ams.2023.03.009
  • Turner, B.N., Strong, R., Gold, S.A. (2014). A review of melt extrusion additive manufacturing processes. Rapid Prototyping Journal, 20(3), 192–204. https://doi.org/10.1108/RPJ-01-2013-0012
  • Wang, L., Li, H., Zhang, Y. (2021). Energy-efficient LED-based masked stereolithography for high-speed additive manufacturing. Journal of Cleaner Production, 286, 125497. https://doi.org/10.1016/j.jclepro.2020.125497
  • Wang, L., Li, H., Zhang, Y. (2023). SLA and mSLA printing technologies: Surface quality, speed, and efficiency comparisons. Journal of Cleaner Production, 286, 125509. https://doi.org/10.1016/j.jclepro.2023.125509
  • Wang, L., Zhao, M. (2022). Applications of mSLA in rapid prototyping for industrial uses. Industrial Manufacturing Journal, 17(3), 305–317. https://doi.org/10.1016/j.indmanuf.2022.305317
  • Wang, L., Zhao, Y., Lee, J. (2022). Polymers in AM and industrial applications. Journal of Cleaner Production, 335, 1302–1318. https://doi.org/10.1016/j.jclepro.2022.04.035
  • Wang, M., Zhao, L. (2023). Recent advances in additive manufacturing for complex geometries. Advanced Manufacturing Technology, 29(2), 145-158. https://doi.org/10.1016/j.amt.2023.01.012
  • Wang, T., Chen, F., et al. (2021). LED-based energy efficiency in mSLA printing. Journal of Cleaner Production, 286, 125497. https://doi.org/10.1016/j.jclepro.2021.125497
  • Wang, T., Zhao, Y., Wu, L. (2021). Comparative analysis of production speeds: mSLA vs. SLA systems in automotive prototyping. Additive Manufacturing, 38, 101682. https://doi.org/10.1016/j.addma.2021.101682
  • Yun, D., Park, S., Kim, J. (2023). mSLA as a sustainable alternative: Energy efficiency in large-scale manufacturing. Journal of Sustainable Manufacturing, 17(1), 130-142. https://doi.org/10.1016/j.jsm.2023.01.021
  • Zhang, L., Lee, H. (2022). Fused Deposition Modeling (FDM) in prototyping and low-cost production. Polymers in Additive Manufacturing, 12(5), 334-345. https://doi.org/10.1016/j.pam.2022.05.014
  • Zhang, L., Yu, H. (2023). Surface quality enhancement in mSLA for dental applications. Dental Materials and Technologies, 18(4), 210–223. https://doi.org/10.1016/j.dentmat.2023.210223
  • Zhang, X., Ma, Y., Lee, D. (2021). Photopolymerized bio-inks for bioprinting applications: SLA and mSLA innovations. Biofabrication, 13(4), 045007. https://doi.org/10.1088/1758-5090/ac0021
  • Zhang, Y., Li, P., Wu, G. (2020). Development of flexible and biocompatible photopolymers for SLA 3D printing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(3), 1307–1315. https://doi.org/10.1002/jbm.b.34501
  • Zhang, Y., Liu, T., Chen, H. (2023). Advanced applications of SLA and mSLA in medical fields. Journal of Biomedical Materials,58(4), 100134. https://doi.org/10.1016/j.jbiomater.2023.100134
  • Zhang, Z., Yang, H., Tang, C. (2021). SLA 3D printing technology for bioprinting applications. Journal of Bioprinting, 7(1), e290. https://doi.org/10.18063/ijb.v7i1.290
  • Zhao, P., Zhang, X., Lee, J. (2022). Advances in SLA and mSLA: Assessing energy consumption and environmental impacts in additive manufacturing. Additive Manufacturing Journal, 42, 101231. https://doi.org/10.1016/j.addma.2022.101231
  • Zhao, W., Lin, Q. (2023). Future directions in LED-based mSLA for sustainable manufacturing. Sustainable Engineering and Technology Review, 45(2), 215–229. https://doi.org/10.1016/j.setr.2023.215229
  • Zhao, W., Wang, Y. (2023). Material versatility in mSLA for biomedical applications. Materials in Medicine and Technology, 22(2), 251–267. https://doi.org/10.1016/j.mmt.2023.251267

Polymer additive manufacturing in stereolithography (SLA) and masked stereolithography (mSLA) methods: a review of advantages, limitations, and current applications

Yıl 2025, Cilt: 15 Sayı: 4, 1291 - 1306, 15.12.2025
https://doi.org/10.17714/gumusfenbil.1593073
https://izlik.org/JA49TX34LS

Öz

Stereolithography (SLA) and Masked Stereolithography (mSLA) are widely used polymer additive manufacturing methods that offer high resolution and excellent surface quality. SLA utilizes a UV laser to cure photopolymer resin point by point, while mSLA accelerates production by curing entire layers simultaneously using LED light and digital masking. This review analyzes the advantages and limitations of SLA and mSLA based on recent literature. It highlights their applications in medical, dental, and industrial prototyping, particularly where precision and material performance are critical. The development of biocompatible, flexible, and energy-efficient photopolymer resins has further enhanced their suitability in biomedical fields. Additionally, the integration of these methods into smart manufacturing systems supports their role in sustainable production. The article emphasizes current usage trends, future potential, and RD needs to improve SLA and mSLA technologies further.

Kaynakça

  • Alghamdi, S., S., John, S., Choudhury, N., R., Dutta, N., K. (2021). Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers, 13(5), 753. https://doi.org/10.3390/polym13050753
  • Bhushan, B., Caspers, M. (2017). An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23(1), 111–117. https://doi.org/10.1007/s00542-017-3447-9
  • Bhushan, B., Caspers, M. (2019). Energy-efficient mSLA and its industrial applications. Additive Manufacturing, 29, 129-137. https://doi.org/10.1016/j.addma.2019.04.002
  • Bhushan, B., Caspers, M. (2019). Mask-based stereolithography and energy-efficient manufacturing. Microsystem Technologies, 25(2), 234-242. https://doi.org/10.1007/s00542-019-04769-2
  • Chen, D., Lin, T. (2024). Innovations in mSLA for medical prototyping. Medical Engineering and Manufacturing, 13(1), 98–112. https://doi.org/10.1016/j.medeng.2024.98112
  • Chen, H., Li, P. (2022). The future of SLA in dental technology. Dental Materials Today, 37(2), 302105. https://doi.org/10.1016/j.dentmat.2022.302105
  • Chen, H., Li, Z. (2023). Enhanced mask-based stereolithography for efficient additive manufacturing. International Journal of Advanced Manufacturing Technology, 45, 789–804. https://doi.org/10.1007/s00170-023-1480-9
  • Chen, H., Zhao, Y. (2022). Advances in SLA-based bioprinting for tissue engineering applications. Materials Today, 23(1), 45–58. https://doi.org/10.1016/j.mattod.2022.01.014
  • Chen, H., Zhao, Y., Zhang, Y., Shi, Y. (2021). Recent advances in stereolithography-based bioprinting and additive manufacturing. Bioprinting, 21, e00145. https://doi.org/10.1016/j.bprint.2021.e00145
  • Chen, L., Li, Z., Huang, J., Zhang, L. (2021). Application of stereolithography in the manufacturing of surgical guides: A systematic review. International Journal of Oral and Maxillofacial Surgery, 50(1), 12–22. https://doi.org/10.1016/j.ijom.2021.04.020
  • Chen, Y., Zhao, X. (2021). Innovations in SLA technology for medical applications. Journal of Manufacturing Science, 89(4), 753-761. https://doi.org/10.1115/1.4048331
  • Chen, Y., Zhao, X. (2021). Advancements in SLA-based biocompatible photopolymerization for medical implants: Reducing energy consumption. Journal of Biomedical Materials Research, 109(4), 769-780. https://doi.org/10.1002/jbm.a.37290
  • Cheng, R., Li, Y., Tan, H. (2023). Comparative study of photopolymer-based 3D printing technologies: SLA vs. mSLA in industrial applications. Materials Today Communications, 59, 102385. https://doi.org/10.1016/j.mtcomm.2023.102385
  • Chia, H.N., Wu, B.M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9(1), 1-14. https://doi.org/10.1186/s13036-015-0001-4
  • Chua, C.K., Leong, K.F. (2017). 3D Printing and Additive Manufacturing: Principles and Applications. World Scientific Publishing. https://doi.org/10.1142/10439
  • Dolenc, M., Dolenc, A., Lenarčič, M. (2020). An overview of stereolithography techniques in the medical field. 3D Printing and Additive Manufacturing, 7(1), 16–22. https://doi.org/10.1089/3dp.2019.0027
  • Ergene, B., Bolat, Ç., (2023). Simulation of Fused Deposition Modeling of Glass Fiber Reinforced ABS Impact Samples: The Effect of Fiber Ratio, Infill Rate, and Infill Pattern on Warpage and Residual Stresses, Hittite Journal of Science and Engineering, 10(1), 21-31. https://doi.org/10.17350/HJSE19030000287
  • Gibson, I., Rosen, D.W., Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer. https://doi.org/10.1007/978-1-4939-2113-3
  • Goodridge, R.D., Tuck, C.J., Hague, R.J.M. (2012). Laser sintering of polyamides and other polymers. Progress in Materials Science, 57(2), 229–267. https://doi.org/10.1016/j.pmatsci.2011.04.001
  • Gupta, R., Lee, J. (2023). Energy-efficient mSLA applications in prototyping. Additive Manufacturing Today, 12, 112-122. https://doi.org/10.1016/j.addmatoday.2023.112456
  • Gupta, R., Singh, D. (2022). Development and optimization of SLA photopolymers for medical applications. Journal of Biomedical Materials Research, 110(3), 543–552. https://doi.org/10.1002/jbm.b.34875
  • Hull, C.W. (1986). Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent No. 4,575,330.
  • Huang, T., Gao, Y., Xu, R. (2023). Cost-effective prototyping methods in educational settings using FDM technology. International Journal of Educational Manufacturing, 9(1), 58-70. https://doi.org/10.1016/j.ijem.2023.01.006
  • Jang, J., Lee, H., Kim, J. (2020). Antibacterial SLA resins for medical devices: A step towards infection-free implants. Materials Today Bio, 6, 100055. https://doi.org/10.1016/j.mtbio.2020.100055
  • Jang, T.S., Jung, H.D., Kim, S.H., Kim, H.E. (2018). Antibacterial properties of SLA photopolymers in 3D printed materials. Materials, 11(10), 1-14. https://doi.org/10.3390/ma11101819
  • Kim, H., Lee, S. (2023). Advanced mSLA techniques for improved layer precision and efficiency. International Journal of Manufacturing Systems, 24(3), 324–336. https://doi.org/10.1016/j.ijms.2023.324336
  • Kumar, S., Yang, L., Patel, M. (2023). Automotive advancements using SLA and mSLA for prototyping. Automotive Engineering, 19(7), 205109. https://doi.org/10.1016/j.autoeng.2023.205109
  • Lee, H., Zhang, Q. (2022). Advances in stereolithography materials for enhanced durability and flexibility. Polymer Engineering, 8(4), 275-288. https://doi.org/10.1016/j.polyeng.2022.04.003
  • Lee, J., Chen, R. (2022). Prototyping applications in art and education with mSLA. Creative Engineering Review, 25(2), 105004. https://doi.org/10.1016/j.creativeeng.2022.105004
  • Lee, J., Kim, H., Park, S. (2023). Speed improvements in mSLA 3D printing through advanced LED technology. Rapid Prototyping Journal, 29(2), 150–159. https://doi.org/10.1108/RPJ-09-2022-0123
  • Lee, T., Kim, R. (2023). Energy consumption analysis of LED-based mSLA systems. Journal of Cleaner Production, 320, 146–159. https://doi.org/10.1016/j.jclepro.2023.146159
  • Li, X., Zhang, Y., Liu, Q. (2022). Additive manufacturing technologies for personalized medical applications. Journal of Biomedical Engineering, 15(3), 210-225. https://doi.org/10.1016/j.jbe.2022.03.001
  • Lin, T., Chen, D. (2024). Advanced bio-compatible resins for mSLA technology. Journal of Biomaterials Science, 29(1), 35–48. https://doi.org/10.1016/j.biomatsci.2024.35048
  • Lin, W., Fang, Z., Lu, J. (2024). Analysis of mSLA advancements: Cost efficiency and material versatility in rapid prototyping. Procedia CIRP, 127, 110–115. https://doi.org/10.1016/j.procir.2024.01.015
  • Liu, T., Chen, W. (2023). Exploring rapid prototyping with mSLA technology. Advanced Manufacturing, 39(5), 1122-1130. https://doi.org/10.1007/s00170-022-08773-1
  • Lu, C., Zhang, F. (2022). Evaluation of cost-effectiveness in mSLA-produced dental prosthetics. Dental Materials, 38(7), 978-987. https://doi.org/10.1016/j.dental.2022.03.002
  • Lu, H., Zhang, Q. (2022). Rapid production of surgical devices using mSLA. Journal of Medical Device Innovation, 8(3), 215–225. https://doi.org/10.1016/j.jmdi.2022.215225
  • Lu, X., Zhang, W. (2023). Innovations in biocompatible SLA resins for dental applications. Polymer Science Today, 88(4), 213–229. https://doi.org/10.1016/j.polymer.2023.04.002
  • Lu, X., Zhang, W., Liu, Y. (2022). Biocompatible and flexible SLA resins for tissue engineering applications. Journal of Applied Polymer Science, 139(7), e51607. https://doi.org/10.1002/app.51607
  • Ma, J., Lee, J.H. (2020). Improving manufacturing efficiency in 3D printed dental and medical devices using mSLA. Advanced Manufacturing Research, 28(2), 119–127. https://doi.org/10.1016/j.amr.2020.119127
  • Ma, J., Lee, J.H. (2021). The role of mSLA in medical and industrial prototyping: A critical review. Journal of Additive Manufacturing Processes, 9(2), 215–226. https://doi.org/10.1016/j.jamp.2021.215226
  • Ma, L., Lee, S. (2020). Enhanced resolution and material properties of SLA printed parts in biomedical applications. Polymers for Advanced Technologies, 31(8), 1498-1507. https://doi.org/10.1002/pat.4910
  • Melchels, F.P.W., Feijen, J., Grijpma, D.W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
  • Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • Prakash, P., Singh, V. (2021). Surgical guide accuracy and clinical outcomes of SLA and mSLA-produced models. Journal of Clinical Orthodontics, 55(6), 363-370. https://doi.org/10.1007/s11805-021-00781-7
  • Prakash, R., Zhu, Y. (2019). SLA photopolymerization for complex, high-resolution, and bio-compatible structures: Opportunities and challenges. Materials Science and Engineering: C, 97, 940–950. https://doi.org/10.1016/j.msec.2018.12.004
  • Prakash, V., Singh, R. (2021). Masked stereolithography in rapid prototyping of surgical guides: A comparative analysis. Biomedical Engineering Research, 12(1), 45–56.
  • Smith, A., Chen, L. (2022). Micro-scale prototyping in electronic devices: SLA as a high-resolution solution. International Journal of Electronics and Electrical Engineering, 47(5), 524-531. https://doi.org/10.1109/IJEEE.2022.3020587
  • Smith, R., Chen, H. (2022). Applications of high-resolution stereolithography in microelectronics: A review. Journal of Manufacturing Processes, 75, 148–157. https://doi.org/10.1016/j.jmapro.2021.10.017
  • Tanaka, S., Kobayashi, M., Ito, Y. (2023). Energy-efficient advancements in Selective Laser Sintering. Additive Manufacturing Science, 14(3), 287-298. https://doi.org/10.1016/j.ams.2023.03.009
  • Turner, B.N., Strong, R., Gold, S.A. (2014). A review of melt extrusion additive manufacturing processes. Rapid Prototyping Journal, 20(3), 192–204. https://doi.org/10.1108/RPJ-01-2013-0012
  • Wang, L., Li, H., Zhang, Y. (2021). Energy-efficient LED-based masked stereolithography for high-speed additive manufacturing. Journal of Cleaner Production, 286, 125497. https://doi.org/10.1016/j.jclepro.2020.125497
  • Wang, L., Li, H., Zhang, Y. (2023). SLA and mSLA printing technologies: Surface quality, speed, and efficiency comparisons. Journal of Cleaner Production, 286, 125509. https://doi.org/10.1016/j.jclepro.2023.125509
  • Wang, L., Zhao, M. (2022). Applications of mSLA in rapid prototyping for industrial uses. Industrial Manufacturing Journal, 17(3), 305–317. https://doi.org/10.1016/j.indmanuf.2022.305317
  • Wang, L., Zhao, Y., Lee, J. (2022). Polymers in AM and industrial applications. Journal of Cleaner Production, 335, 1302–1318. https://doi.org/10.1016/j.jclepro.2022.04.035
  • Wang, M., Zhao, L. (2023). Recent advances in additive manufacturing for complex geometries. Advanced Manufacturing Technology, 29(2), 145-158. https://doi.org/10.1016/j.amt.2023.01.012
  • Wang, T., Chen, F., et al. (2021). LED-based energy efficiency in mSLA printing. Journal of Cleaner Production, 286, 125497. https://doi.org/10.1016/j.jclepro.2021.125497
  • Wang, T., Zhao, Y., Wu, L. (2021). Comparative analysis of production speeds: mSLA vs. SLA systems in automotive prototyping. Additive Manufacturing, 38, 101682. https://doi.org/10.1016/j.addma.2021.101682
  • Yun, D., Park, S., Kim, J. (2023). mSLA as a sustainable alternative: Energy efficiency in large-scale manufacturing. Journal of Sustainable Manufacturing, 17(1), 130-142. https://doi.org/10.1016/j.jsm.2023.01.021
  • Zhang, L., Lee, H. (2022). Fused Deposition Modeling (FDM) in prototyping and low-cost production. Polymers in Additive Manufacturing, 12(5), 334-345. https://doi.org/10.1016/j.pam.2022.05.014
  • Zhang, L., Yu, H. (2023). Surface quality enhancement in mSLA for dental applications. Dental Materials and Technologies, 18(4), 210–223. https://doi.org/10.1016/j.dentmat.2023.210223
  • Zhang, X., Ma, Y., Lee, D. (2021). Photopolymerized bio-inks for bioprinting applications: SLA and mSLA innovations. Biofabrication, 13(4), 045007. https://doi.org/10.1088/1758-5090/ac0021
  • Zhang, Y., Li, P., Wu, G. (2020). Development of flexible and biocompatible photopolymers for SLA 3D printing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(3), 1307–1315. https://doi.org/10.1002/jbm.b.34501
  • Zhang, Y., Liu, T., Chen, H. (2023). Advanced applications of SLA and mSLA in medical fields. Journal of Biomedical Materials,58(4), 100134. https://doi.org/10.1016/j.jbiomater.2023.100134
  • Zhang, Z., Yang, H., Tang, C. (2021). SLA 3D printing technology for bioprinting applications. Journal of Bioprinting, 7(1), e290. https://doi.org/10.18063/ijb.v7i1.290
  • Zhao, P., Zhang, X., Lee, J. (2022). Advances in SLA and mSLA: Assessing energy consumption and environmental impacts in additive manufacturing. Additive Manufacturing Journal, 42, 101231. https://doi.org/10.1016/j.addma.2022.101231
  • Zhao, W., Lin, Q. (2023). Future directions in LED-based mSLA for sustainable manufacturing. Sustainable Engineering and Technology Review, 45(2), 215–229. https://doi.org/10.1016/j.setr.2023.215229
  • Zhao, W., Wang, Y. (2023). Material versatility in mSLA for biomedical applications. Materials in Medicine and Technology, 22(2), 251–267. https://doi.org/10.1016/j.mmt.2023.251267
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Tasarımı ve Makine Elemanları, Kompozit ve Hibrit Malzemeler, Polimer Teknolojisi
Bölüm Derleme
Yazarlar

Mustafa Üstündağ 0000-0001-5287-8198

Mehmet Kır 0000-0002-2318-3765

Gönderilme Tarihi 28 Kasım 2024
Kabul Tarihi 2 Aralık 2025
Yayımlanma Tarihi 15 Aralık 2025
DOI https://doi.org/10.17714/gumusfenbil.1593073
IZ https://izlik.org/JA49TX34LS
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Üstündağ, M., & Kır, M. (2025). Polymer additive manufacturing in stereolithography (SLA) and masked stereolithography (mSLA) methods: a review of advantages, limitations, and current applications. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(4), 1291-1306. https://doi.org/10.17714/gumusfenbil.1593073