Araştırma Makalesi
BibTex RIS Kaynak Göster

In silico simulation of pathogen interaction with bee probiotics

Yıl 2025, Cilt: 15 Sayı: 4, 1125 - 1132, 15.12.2025
https://doi.org/10.17714/gumusfenbil.1752884

Öz

Honeybee (Apis mellifera L.) colonies face serious biological threats from bacterial pathogens such as Paenibacillus larvae and Melissococcus plutonius. This study evaluated the inhibitory potential of bacteriocins derived from Apilactobacillus kunkeei strains against multiple virulence factors of these pathogens using in silico methods. Bacteriocins identified by BAGEL4, including Ak-Bac1 (class IIa) and Ak-Bac2 (class III), were subjected to protein–protein docking analyses using ClusPro and HDOCK platforms with three virulence-associated proteins: the amidase enzyme and spore coat protein CotE from P. larvae, and the surface adhesin protein from M. plutonius. The docking results revealed strong binding affinities, particularly between Ak-Bac2 and the P. larvae amidase enzyme, as well as between Ak-Bac1 and the CotE spore protein, suggesting both enzymatic inhibition and spore suppression effects. These findings indicate that A. kunkeei bacteriocins exhibit broad-spectrum antagonistic potential against honeybee pathogens, providing a molecular basis for the development of probiotic-based biocontrol strategies to support honeybee health.

Kaynakça

  • Aziz, T., Naveed, M., Makhdoom, S. I., Ali, U., Mughal, M. S., Sarwar, A., & Alhomrani, M. (2023). Genome investigation and functional annotation of Lactiplantibacillus plantarum YW11 revealing streptin and ruminococcin-A as potent nutritive bacteriocins against gut symbiotic pathogens. Molecules, 28(2), 491. https://doi.org/10.3390/molecules28020491
  • Dang, T., Loll, B., Müller, S., Skobalj, R., Ebeling, J., Bulatov, T., & Süssmuth, R. D. (2022). Molecular basis of antibiotic self-resistance in a bee larvae pathogen. Nature Communications, 13(1), 2349. https://doi.org/10.1038/s41467-022-29829-w
  • Endo, A., & Salminen, S. (2013). Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiology, 36(6), 444–448. https://doi.org/10.1016/j.syapm.2013.06.002
  • Forsgren, E. (2010). European foulbrood in honey bees. Journal of Invertebrate Pathology, 103(S1), S5–S9. https://doi.org/10.1016/j.jip.2009.06.016
  • Genersch, E. (2010). Honey bee pathology: Current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology, 87(1), 87–97. https://doi.org/10.1007/s00253-010-2573-8
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature protocols, 12(2), 255-278. https://doi.org/10.1038/nprot.2016.169
  • Olofsson, T. C., Butler, È., Markowicz, P., Lindholm, C., Larsson, L., & Vásquez, A. (2016). Lactic acid bacterial symbionts in honeybees–an unknown key to honey's antimicrobial and therapeutic activities. International Wound Journal, 13(5), 668-679. https://doi.org/10.1111/iwj.12345
  • Stepniak-Konieczna, E., Konieczny, P., Cywoniuk, P., Dluzewska, J., & Sobczak, K. (2020). AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1. Nucleic Acids Research, 48(5), 2531-2543. https://doi.org/10.1093/nar/gkaa007
  • Sunny, S., & Jayaraj, P. B. (2022). Protein–protein docking: Past, present, and future. The protein journal, 41(1), 1-26. https://doi.org/10.1007/s10930-021-10031-8
  • Tian, B., Fadhil, N. H., Powell, J. E., Kwong, W. K., & Moran, N. A. (2021). Long-term exposure to antibiotics has lasting effects on honeybee gut microbiota. Nature Communications, 12, 1–11. https://doi.org/10.1038/s41467-021-22516-5
  • Usta, M., Zengin, K., Okuyan, S., Solmaz, S., Nalçacıoğlu, R., & Demirbağ, Z. (2025). Isolation and probiotic evaluation of Apilactobacillus kunkeei and Bombella sp. from Apis mellifera anatoliaca and Bombus terrestris. International Microbiology, 1-12. https://doi.org/10.1007/s10123-024-00631-6
  • van Heel, A. J., de Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018). BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic acids research, 46(W1), W278-W281. https://doi.org/10.1093/nar/gky383
  • Vásquez, A., & Olofsson, T. C. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research, 48(3), 189–195. https://doi.org/10.3896/IBRA.1.48.3.07.
  • Vergalito, F., Testa, B., Cozzolino, A., Letizia, F., Succi, M., Lombardi, S. J., & Iorizzo, M. (2020). Potential application of Apilactobacillus kunkeei for human use: Evaluation of probiotic and functional properties. Foods, 9(11), 1535. https://doi.org/10.3390/foods9111535
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature methods, 12(1), 7-8. https://doi.org/10.1038/nmeth.3213

Arı probiyotikleriyle patojen etkileşiminin in silico simülasyonu

Yıl 2025, Cilt: 15 Sayı: 4, 1125 - 1132, 15.12.2025
https://doi.org/10.17714/gumusfenbil.1752884

Öz

Bal arısı (Apis mellifera L.) kolonileri, Paenibacillus larvae ve Melissococcus plutonius gibi bakteriyel patojenlerden kaynaklanan ciddi biyolojik tehditlerle karşı karşıyadır. Bu çalışma, Apilactobacillus kunkeei suşlarından elde edilen bakteriyosinlerin, bu patojenlerin çoklu virülans faktörlerine karşı inhibe edici potansiyelini in silico yöntemler kullanarak değerlendirmiştir. BAGEL4 tarafından tanımlanan Ak-Bac1 (sınıf IIa) ve Ak-Bac2 (sınıf III) dahil olmak üzere bakteriyosinler, ClusPro ve HDOCK platformları kullanılarak üç virülansla ilişkili proteinle protein-protein kenetlenme analizlerine tabi tutulmuştur: P. larvae'den amidaz enzimi ve spor coat proteini CotE ve M. plutonius'tan yüzey adezin proteini. Bağlanma sonuçları, özellikle Ak-Bac2 ile P. larvae amidaz enzimi arasında ve Ak-Bac1 ile CotE spor proteini arasında güçlü bağlanma afiniteleri ortaya çıkarmış ve bu da hem enzimatik inhibisyon hem de spor baskılama etkilerini düşündürmüştür. Bu bulgular, A. kunkeei bakteriyosinlerinin bal arısı patojenlerine karşı geniş spektrumlu antagonistik potansiyel sergilediğini göstermekte ve bal arılarının sağlığını desteklemek için probiyotik bazlı biyolojik mücadele stratejilerinin geliştirilmesi için moleküler bir temel sağlamaktadır.

Kaynakça

  • Aziz, T., Naveed, M., Makhdoom, S. I., Ali, U., Mughal, M. S., Sarwar, A., & Alhomrani, M. (2023). Genome investigation and functional annotation of Lactiplantibacillus plantarum YW11 revealing streptin and ruminococcin-A as potent nutritive bacteriocins against gut symbiotic pathogens. Molecules, 28(2), 491. https://doi.org/10.3390/molecules28020491
  • Dang, T., Loll, B., Müller, S., Skobalj, R., Ebeling, J., Bulatov, T., & Süssmuth, R. D. (2022). Molecular basis of antibiotic self-resistance in a bee larvae pathogen. Nature Communications, 13(1), 2349. https://doi.org/10.1038/s41467-022-29829-w
  • Endo, A., & Salminen, S. (2013). Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiology, 36(6), 444–448. https://doi.org/10.1016/j.syapm.2013.06.002
  • Forsgren, E. (2010). European foulbrood in honey bees. Journal of Invertebrate Pathology, 103(S1), S5–S9. https://doi.org/10.1016/j.jip.2009.06.016
  • Genersch, E. (2010). Honey bee pathology: Current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology, 87(1), 87–97. https://doi.org/10.1007/s00253-010-2573-8
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature protocols, 12(2), 255-278. https://doi.org/10.1038/nprot.2016.169
  • Olofsson, T. C., Butler, È., Markowicz, P., Lindholm, C., Larsson, L., & Vásquez, A. (2016). Lactic acid bacterial symbionts in honeybees–an unknown key to honey's antimicrobial and therapeutic activities. International Wound Journal, 13(5), 668-679. https://doi.org/10.1111/iwj.12345
  • Stepniak-Konieczna, E., Konieczny, P., Cywoniuk, P., Dluzewska, J., & Sobczak, K. (2020). AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1. Nucleic Acids Research, 48(5), 2531-2543. https://doi.org/10.1093/nar/gkaa007
  • Sunny, S., & Jayaraj, P. B. (2022). Protein–protein docking: Past, present, and future. The protein journal, 41(1), 1-26. https://doi.org/10.1007/s10930-021-10031-8
  • Tian, B., Fadhil, N. H., Powell, J. E., Kwong, W. K., & Moran, N. A. (2021). Long-term exposure to antibiotics has lasting effects on honeybee gut microbiota. Nature Communications, 12, 1–11. https://doi.org/10.1038/s41467-021-22516-5
  • Usta, M., Zengin, K., Okuyan, S., Solmaz, S., Nalçacıoğlu, R., & Demirbağ, Z. (2025). Isolation and probiotic evaluation of Apilactobacillus kunkeei and Bombella sp. from Apis mellifera anatoliaca and Bombus terrestris. International Microbiology, 1-12. https://doi.org/10.1007/s10123-024-00631-6
  • van Heel, A. J., de Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018). BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic acids research, 46(W1), W278-W281. https://doi.org/10.1093/nar/gky383
  • Vásquez, A., & Olofsson, T. C. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research, 48(3), 189–195. https://doi.org/10.3896/IBRA.1.48.3.07.
  • Vergalito, F., Testa, B., Cozzolino, A., Letizia, F., Succi, M., Lombardi, S. J., & Iorizzo, M. (2020). Potential application of Apilactobacillus kunkeei for human use: Evaluation of probiotic and functional properties. Foods, 9(11), 1535. https://doi.org/10.3390/foods9111535
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature methods, 12(1), 7-8. https://doi.org/10.1038/nmeth.3213
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoinformatik ve Hesaplamalı Biyoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mehtap Usta 0000-0001-7656-5655

Gönderilme Tarihi 28 Temmuz 2025
Kabul Tarihi 17 Kasım 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Usta, M. (2025). In silico simulation of pathogen interaction with bee probiotics. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(4), 1125-1132. https://doi.org/10.17714/gumusfenbil.1752884