Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrokimyasal olarak farklı akım yoğunluklarında çinko kaplanan karbon çeliğin klorürlü çözeltilerdeki korozyon davranışının incelenmesi

Yıl 2025, Cilt: 15 Sayı: 4, 1257 - 1269, 15.12.2025
https://doi.org/10.17714/gumusfenbil.1780519

Öz

Bu çalışmada, yüksek karbonlu çeliğin (% 0,83 C) yüzeyi, 1 A/dm², 2 A/dm², 3 A/dm², 4 A/dm² ve 5 A/dm² sabit akım yoğunluklarında 30 dakika süreyle Zn kaplama çözeltisinde elektrolitik olarak kaplanmıştır. Çinko kaplı karbon çeliğinin %3,5 NaCl çözeltilerindeki korozyon direnci Tafel polarizasyon ölçümleri ile belirlenmiştir. Tafel polarizasyon sonuçlarına göre, saf çelik için korozyon akım yoğunluğu 105,0 µA/cm2 iken, 1 A/dm²'lik Zn kaplama ile bu değer 85,7 µA/cm2 olmuş ve 5 A/dm² kaplama ile korozyon akım yoğunluğundaki azalma 10,8 µA/cm2 olarak belirlenmiştir. 5 A/dm² akım uygulanan Zn kaplamada korozyon akım yoğunluğunda % 90 azalma gözlenmiştir. Buna göre, uygulanan kaplamanın sabit akım yoğunluğu arttıkça korozyon akım yoğunluğu azalmıştır. Ayrıca, %3,5'luk NaCl çözeltisinde 5 A/dm² sabit akıma 0, 4, 24, 48 ve 120 saat maruz bırakılan Zn kaplı ve kaplamasız çelik yüzeylerinde zamanla oluşan değişimler SEM görüntüleri ve EDS analizleriyle incelenmiştir. Deneysel sonuçlar, 5 A/dm² sabit akım uygulama koşulları altında Zn kaplamanın daha yoğun ve daha homojen bir kaplama olduğunu göstermiştir. 240 saat, 5 A/dm² sabit akım sonunda kaplama, klorürler gibi korozif ortamlarda korozyon korumasını sürdürmüş ve yüzey kaplaması fazla bozulmamıştır. Ayrıca, optik mikroskop kullanılarak kaplama kalınlıkları belirlenmiştir. 1 A/dm² sabit akımda elde edilen kaplamanın kalınlığı 2 µm olarak belirlenirken, bu oran 5 A/dm² de 14 µm olarak belirlenmiştir. Buna göre elektrokaplamada uygulanan sabit akım yoğunluğunun artmasıyla kaplama kalınlığı homojen bir şekilde artmıştır. Sonuç olarak, klorür içeren agreseif ortamlarda yüksek karbonlu çeliğin korozyonunu önlemede 5 A/dm² sabit akımdaki Zn kaplamanın etkili olduğu görülmüştür.

Etik Beyan

Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul onayı ve/veya yasal-özel izin gerektirmediğini beyan eder.

Destekleyen Kurum

Kocaeli Üniversitesi bilimsel araştırma ve proje Birimi

Proje Numarası

Project No: KOU-BAP FYL-2024-3957

Teşekkür

Yazarlar, laboratuvar desteği için Kocaeli Üniversitesi'ne teşekkürlerini sunarlar. Bu çalışma, Kocaeli Üniversitesi Bilimsel Araştırma ve Proje Birimi tarafından desteklenmiştir. (Proje No: KOU-BAP FYL-2024-3957).

Kaynakça

  • Abioye, O. P., Musa, A. J., Loto, C. A., Fayomi, O. S. I., & Gaiya, G. P. (2019). Evaluation of Corrosive Behavior of Evaluation of Corrosive Behavior of Zinc Composite Coating on Mild Steel for Marine Applications Zinc Composite Coating on Mild Steel for Marine Applications. Journal of Physics: Conference Series, 1378, 042051. doi:10.1088/1742-6596/1378/4/042051
  • Bhat, R. S., Shetty, S. M., & Kumar, N. A. (2021). Corrosion behavior and surface characterization of Zn–Ni alloy coatings in 3.5% NaCl solution. Journal of Materials Engineering and Performance, 30(11), 8188–8195. https://doi.org/10.1007/s11665-021-06074-0
  • Byk, T. V., Gaevskaya, T. V., & Tsybulskaya, L. S. (2008). Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings. Surface and Coatings Technology, 202(24), 5817–5823. https://doi.org/10.1016/j.surfcoat.2008.05.058
  • Brenner, A. (1963). Electrodeposition of alloys. Academic Press.
  • El Fazazi, A., Ouakki, M., & Cherkaoui, M. (2021). Electrochemical deposition and spectroscopy investigation of ZnNi alloy thin films on carbon steel. Journal of Bio- and Tribo-Corrosion, 7(1), 58. https://doi.org/10.1007/s40735-021-00482-y
  • Fashu, S., Gu, C. D., Wang, X. L., & Tu, J. P. (2014). Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a chloride bath. Surface and Coatings Technology, 242, 34–41. https://doi.org/10.1016/j.surfcoat.2014.01.014
  • Fratesi, R., Roventi, G., Giuliani, G., & Tomachuk, C. R. (1997). Corrosion resistance of Zn–Co alloy coatings. Journal of Applied Electrochemistry, 27(9), 1088–1094. https://doi.org/10.1023/A:1018494828198
  • Gomes, A., & da Silva Pereira, M. I. (2006). Pulsed electrodeposition of Zn in alkaline solutions containing polyethylene glycol. Electrochimica Acta, 51(7), 1342–1350. https://doi.org/10.1016/j.electacta.2005.06.026
  • Jiang, C., Huang, H., Ji, Q., Li, J., Chen, B., He, Y., & Guo, Z. (2022). Effect of CeO₂ nanoparticles on the corrosion resistance of electrodeposited Zn–Ni coating in simulated seawater. Journal of Solid State Electrochemistry, 26(6–7), 1455–1467. https://doi.org/10.1007/s10008-022-05181-3
  • Jones, D. A. (1996). Principles and prevention of corrosion (2nd ed.). Prentice Hall.
  • Kanani, N. (2006). Electroplating: Basic principles, processes and practice. Elsevier.
  • Kranthi, K. M., & Shiladitya P. (2021). Corrosion Performance of Electrodeposited Zinc and Zinc-Alloy Coatings in Marine Environment. Corrosion and Materials Degradation, 2, 163-189. https://doi.org/10.3390/cmd2020010
  • Kwon, M., Jo, D.-H., Cho, S. H., Kim, H. T., Park, J. T., & Park, J. M. (2016). Characterization of the corrosion protection mechanism of inorganic zinc-rich coatings with various zinc contents. Surface and Coatings Technology, 288, 163–170. https://doi.org/10.1016/j.surfcoat.2016.01.028
  • Lin, C.-C., & Huang, C.-M. (2006). Effect of plating parameters on the properties of zinc-nickel alloy coating. Journal of Coatings Technology and Research, 3(2), 99–104. https://doi.org/10.1007/s11998-006-0011-8
  • Maniam, K. K., & Paul, S. (2021). Corrosion inhibition of mild steel in sulfuric acid by a newly synthesized Schiff base: An electrochemical, DFT, and Monte Carlo simulation study. Coatings, 11(1), 80. https://doi.org/10.3390/coatings11010080
  • Mosavat, S. H., Shariat, M. H., & Bahrololoom, M. E. (2012). Study of corrosion performance of electrodeposited nanocrystalline Zn–Ni alloy coatings. Corrosion Science, 59, 81–87. https://doi.org/10.1016/j.corsci.2012.02.011
  • Oluwasegun, K. M., Matousek M., & Ojo, O. A. (2015). The effect of coating thickness on corrosion behaviour of Zn-Cu electroplated materials. The International Journal of Advanced Manufacturing Technology, 77, 1249-1257. 1249–1257. DOI. 10.1007/s00170-014-6554-4
  • Popoola, A. P. I., Aigbodion, V. S., & Fayomi, O. S. I. (2016). Anti-corrosion coating of mild steel using ternary Zn–ZnO–ZrO₂ nanocomposite synthesized via electrodeposition technique. Journal of Alloys and Compounds, 654, 561–566. https://doi.org/10.1016/j.jallcom.2015.09.127
  • Ramanauskas, R., Quintana, P., Donado, L., & Garcia, E. (1997). Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings. Surface and Coatings Technology, 92(1–2), 16–21. https://doi.org/10.1016/S0257-8972(96)03125-8
  • Ramesh Bapu, G. N. K., Devaraj, G., & Ayyapparaj, J. (1998). Studies on non-cyanide alkaline zinc electroplating. Journal of Solid State Electrochemistry, 3(1), 48–51. https://doi.org/10.1007/s100080050127
  • Sajjadnejad, M., Mozafari, A., Omidvar, H., & Javanbakht, M. (2014). Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–Ni alloy coatings. Applied Surface Science, 300, 1–7. https://doi.org/10.1016/j.apsusc.2013.12.143
  • Salgueiro-Azevedo, M., Allély, C., Ogle, K., & Volovitch, P. (2015). Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corrosion Science, 90, 472–481. https://doi.org/10.1016/j.corsci.2014.05.014
  • Vatsala, K., & Venkatesha, T. V. (2011). Zn–ZrO₂ nanocomposite coatings: Electrodeposition and evaluation of corrosion resistance. Applied Surface Science, 257(21), 8929–8936. https://doi.org/10.1016/j.apsusc.2011.05.067
  • Zhang, X. G. (1996). Corrosion and electrochemistry of zinc. Plenum Press.

Investigation of the corrosion behavior of carbon steel coated with zinc electrochemically at different current densities in chloride solutions

Yıl 2025, Cilt: 15 Sayı: 4, 1257 - 1269, 15.12.2025
https://doi.org/10.17714/gumusfenbil.1780519

Öz

In this study, the surface of high carbon steel (0.83 % C) was electrolytically coated in Zn coating solution at constant current densities of 1 A/dm², 2 A/dm², 3 A/dm², 4 A/dm² and 5 A/dm² for 30 minutes. The corrosion resistance of zinc-coated carbon steel in 3.5 % NaCl solutions was determined by Tafel polarization measurements. According to the Tafel polarization results, the corrosion current density was 105 µA/cm2 for uncoated carbon steel, while this value was 85.7 µA/cm2 with Zn coating at 1 A/dm², and the decrease in corrosion current density was determined as 10.8 µA/cm2 with 5 A/dm² coating. A 90 % decrease in corrosion current density was observed in the Zn coating to which 5 A/dm² current was applied. Accordingly, as the coating applied constant current density increased, the corrosion current density decreased. In addition, the changes that occur over time on the surfaces of Zn-coated and uncoated steel exposed to a constant current of 5 A/dm² in a 3.5 % NaCl solution for 0, 4, 24, 48, and 120 hours were investigated by SEM images and EDS analyses. The experimental results indicated that the Zn coating was denser and more homogeneous coating under the 5 A/dm² constant current application conditions. After 240 hours, 5 A/dm2 constant current, the coating maintained its corrosion protection in corrosive environments such as chlorides, and the surface coating remained relatively intact. Additionally, coating thicknesses were determined using an optical microscope. The thickness of the Zn coating was determined as 2 µm at a constant current of 1 A/dm2, while this ratio was determined as 14 µm at 5 A/dm2. Accordingly, the coating thickness increased homogeneously with the increase in the constant current density applied in electroplating. As a result, it was observed that the Zn coating at a constant current of 5 A/dm² was effective in preventing the corrosion of high carbon steel in aggressive environments containing chlorides.

Etik Beyan

The authors of this article declare that the materials and methods used in this study do not require ethics committee approval and/or legal-special permission

Destekleyen Kurum

Kocaeli University Scientific Research and Project Unit

Proje Numarası

Project No: KOU-BAP FYL-2024-3957

Teşekkür

The authors thank Kocaeli University for laboratory support. This study was supported by the Kocaeli University Scientific Research and Project Unit. (Project No: KOU-BAP FYL-2024-3957).

Kaynakça

  • Abioye, O. P., Musa, A. J., Loto, C. A., Fayomi, O. S. I., & Gaiya, G. P. (2019). Evaluation of Corrosive Behavior of Evaluation of Corrosive Behavior of Zinc Composite Coating on Mild Steel for Marine Applications Zinc Composite Coating on Mild Steel for Marine Applications. Journal of Physics: Conference Series, 1378, 042051. doi:10.1088/1742-6596/1378/4/042051
  • Bhat, R. S., Shetty, S. M., & Kumar, N. A. (2021). Corrosion behavior and surface characterization of Zn–Ni alloy coatings in 3.5% NaCl solution. Journal of Materials Engineering and Performance, 30(11), 8188–8195. https://doi.org/10.1007/s11665-021-06074-0
  • Byk, T. V., Gaevskaya, T. V., & Tsybulskaya, L. S. (2008). Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings. Surface and Coatings Technology, 202(24), 5817–5823. https://doi.org/10.1016/j.surfcoat.2008.05.058
  • Brenner, A. (1963). Electrodeposition of alloys. Academic Press.
  • El Fazazi, A., Ouakki, M., & Cherkaoui, M. (2021). Electrochemical deposition and spectroscopy investigation of ZnNi alloy thin films on carbon steel. Journal of Bio- and Tribo-Corrosion, 7(1), 58. https://doi.org/10.1007/s40735-021-00482-y
  • Fashu, S., Gu, C. D., Wang, X. L., & Tu, J. P. (2014). Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a chloride bath. Surface and Coatings Technology, 242, 34–41. https://doi.org/10.1016/j.surfcoat.2014.01.014
  • Fratesi, R., Roventi, G., Giuliani, G., & Tomachuk, C. R. (1997). Corrosion resistance of Zn–Co alloy coatings. Journal of Applied Electrochemistry, 27(9), 1088–1094. https://doi.org/10.1023/A:1018494828198
  • Gomes, A., & da Silva Pereira, M. I. (2006). Pulsed electrodeposition of Zn in alkaline solutions containing polyethylene glycol. Electrochimica Acta, 51(7), 1342–1350. https://doi.org/10.1016/j.electacta.2005.06.026
  • Jiang, C., Huang, H., Ji, Q., Li, J., Chen, B., He, Y., & Guo, Z. (2022). Effect of CeO₂ nanoparticles on the corrosion resistance of electrodeposited Zn–Ni coating in simulated seawater. Journal of Solid State Electrochemistry, 26(6–7), 1455–1467. https://doi.org/10.1007/s10008-022-05181-3
  • Jones, D. A. (1996). Principles and prevention of corrosion (2nd ed.). Prentice Hall.
  • Kanani, N. (2006). Electroplating: Basic principles, processes and practice. Elsevier.
  • Kranthi, K. M., & Shiladitya P. (2021). Corrosion Performance of Electrodeposited Zinc and Zinc-Alloy Coatings in Marine Environment. Corrosion and Materials Degradation, 2, 163-189. https://doi.org/10.3390/cmd2020010
  • Kwon, M., Jo, D.-H., Cho, S. H., Kim, H. T., Park, J. T., & Park, J. M. (2016). Characterization of the corrosion protection mechanism of inorganic zinc-rich coatings with various zinc contents. Surface and Coatings Technology, 288, 163–170. https://doi.org/10.1016/j.surfcoat.2016.01.028
  • Lin, C.-C., & Huang, C.-M. (2006). Effect of plating parameters on the properties of zinc-nickel alloy coating. Journal of Coatings Technology and Research, 3(2), 99–104. https://doi.org/10.1007/s11998-006-0011-8
  • Maniam, K. K., & Paul, S. (2021). Corrosion inhibition of mild steel in sulfuric acid by a newly synthesized Schiff base: An electrochemical, DFT, and Monte Carlo simulation study. Coatings, 11(1), 80. https://doi.org/10.3390/coatings11010080
  • Mosavat, S. H., Shariat, M. H., & Bahrololoom, M. E. (2012). Study of corrosion performance of electrodeposited nanocrystalline Zn–Ni alloy coatings. Corrosion Science, 59, 81–87. https://doi.org/10.1016/j.corsci.2012.02.011
  • Oluwasegun, K. M., Matousek M., & Ojo, O. A. (2015). The effect of coating thickness on corrosion behaviour of Zn-Cu electroplated materials. The International Journal of Advanced Manufacturing Technology, 77, 1249-1257. 1249–1257. DOI. 10.1007/s00170-014-6554-4
  • Popoola, A. P. I., Aigbodion, V. S., & Fayomi, O. S. I. (2016). Anti-corrosion coating of mild steel using ternary Zn–ZnO–ZrO₂ nanocomposite synthesized via electrodeposition technique. Journal of Alloys and Compounds, 654, 561–566. https://doi.org/10.1016/j.jallcom.2015.09.127
  • Ramanauskas, R., Quintana, P., Donado, L., & Garcia, E. (1997). Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings. Surface and Coatings Technology, 92(1–2), 16–21. https://doi.org/10.1016/S0257-8972(96)03125-8
  • Ramesh Bapu, G. N. K., Devaraj, G., & Ayyapparaj, J. (1998). Studies on non-cyanide alkaline zinc electroplating. Journal of Solid State Electrochemistry, 3(1), 48–51. https://doi.org/10.1007/s100080050127
  • Sajjadnejad, M., Mozafari, A., Omidvar, H., & Javanbakht, M. (2014). Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–Ni alloy coatings. Applied Surface Science, 300, 1–7. https://doi.org/10.1016/j.apsusc.2013.12.143
  • Salgueiro-Azevedo, M., Allély, C., Ogle, K., & Volovitch, P. (2015). Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corrosion Science, 90, 472–481. https://doi.org/10.1016/j.corsci.2014.05.014
  • Vatsala, K., & Venkatesha, T. V. (2011). Zn–ZrO₂ nanocomposite coatings: Electrodeposition and evaluation of corrosion resistance. Applied Surface Science, 257(21), 8929–8936. https://doi.org/10.1016/j.apsusc.2011.05.067
  • Zhang, X. G. (1996). Corrosion and electrochemistry of zinc. Plenum Press.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrokimya
Bölüm Araştırma Makalesi
Yazarlar

Behçet Kağan Bölük 0009-0007-9866-6298

Sibel Demirel 0000-0003-3789-6579

Proje Numarası Project No: KOU-BAP FYL-2024-3957
Gönderilme Tarihi 9 Eylül 2025
Kabul Tarihi 2 Aralık 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Bölük, B. K., & Demirel, S. (2025). Investigation of the corrosion behavior of carbon steel coated with zinc electrochemically at different current densities in chloride solutions. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(4), 1257-1269. https://doi.org/10.17714/gumusfenbil.1780519