Araştırma Makalesi
BibTex RIS Kaynak Göster

Glikoz İzomeraz Üreticisi Dört Geobacillus Suşunun İzolasyonu ve Moleküler Metotlar Kullanarak Tanımlanması

Yıl 2018, , 299 - 308, 31.07.2018
https://doi.org/10.17714/gumusfenbil.319426

Öz

Türkiye'nin
batısındaki iki kaplıca, termofilik mikroorganizmaların mevcudiyetine göre
araştırıldı ve iki termal kaplıcadan,23 termofilik bakteri izole edildi.
İzolatlardan, 4 tanesinin glikoz izomeraz üretimi açısından pozitif olduğu
belirlendi. BT5, CT6SARI ve CT1.2 izolatlarının glikoz
izomerazları, pH 6.5'te optimum büyüme gösterdi; buna karşılık izolat BT1
enzimi, pH 7.5'te optimal aktivite gösterdi. Bu enzimler arasında BT1
izolatının optimal büyüme sıcaklığı 75 °C olarak belirlenirken, diğer üç
izolatın enzimleri ise 80 °C'de optimal büyüme gösterdi. 16S rRNA gen dizi
analizleri ile 4 izolatın, Geobacillus
cinsine ait türler oldukları belirlendi. recN
dizisi benzerlik analizine dayanarak, izolat CT6SARI’nın,
G. termodenitficans’a; izolat BT1’in
de, G. stearothermophilus’a ait
suşlar oldukları belirlendi.BT5 ve CT1.2 izolatlarının kesin tür tayinleri
yapılamadı.

Kaynakça

  • Abdel-rassol, T.M.A., Badr, S.A. ve Omran, H.T., 2012. Glucose (xylose) isomerase production from thermotolerant and thermophilic bacteria, African Journal of Biotechnology, 11, 15798-15801.
  • Altschul, S.F., Gish, W. ve Miller, W., 1990. Basic local aligment search tool, Journal Molecular Biology, 215, 403-410.
  • Bandlish, R.K., Michael, H.J., Epting, K.L., Vieille, C. ve Kelly, R.M., 2002. Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Biotechnology Bioenergy, 80, 185-194.
  • Beffa, T., Blanc, M., Lyon, P.F., Vogt, G., Marchiani, M., Fischer, J.L. ve Aragno, M., 1996. Isolation of Thermus strains from hot compost (60 to 80 ˚C). Applied and Environmental Microbiology, 62, 1723-1727.
  • Beg, O.K., Bhushan, B., Kapoor, M. ve Hoondal, G.S., 2000. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3, Journal of Industrial Microbiology and Biotechnology, 24, 396-402.
  • Benson, D.A., Boguski, M.S., Lipman, D.J., Oulette, B.F.F., Rapp, B.A. ve Wheelet, D.L., 1999. GenBank, Nucleic Acids Research, 27, 12-17.
  • Bhosale, S.H., Rao, M.B. ve Deshpande, V.V., 1996. Molecular and industrial aspects of glucose isomerase, Microbiological Reviews, 60, 280-300.
  • Brosius, J., Palmer, M.L., Kennedy, P.J. ve Noller, H.F., 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, Proceedings of the National Academy of Sciences of the United States, 75, 4801-4805
  • Calik, P., Angardi, V. ve Isik, N., 2009. Glucose isomerase production on a xylan-based medium by Bacillus thermoantarcticus, Biochemical Engineering Journal, 43, 8–15.
  • Canakci, S., Inan, K., Kacagan, M. ve Belduz, A.O., 2007. Evaluation of Arabinofuranosidase and Xylanase Activities of Geobacillus spp. Isolated from Some Hot Springs in Turkey, Journal of Microbiology and Biotechnology, 17, 1262-1270.
  • Chauthaiwale, J.V. ve Rao, M.B., 1994. Production and purification of extracellular xylose ısomerase from an alkaliphilic, thermophilic Bacillus sp, Applied Environmental Microbiology, 60, 4495–4499.
  • Dische, Z. ve Borenfreund, E., 1951. A new spectrophotometric method for the detection and determination of ketosugars and trioses, The Journal of Biological Chemistry, 192, 583-587.
  • Dussault, HP., 1955. An improved technique for staining red halophilic bacteria. Journal Bacteriology, 70, 484–485.
  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39, 783–791.
  • Hartley, B.S., Hanlon, N., Jackson, R.J., Rangarajan, M., 2000. Glucose isomerase: insights into protein engineering for increased thermostability. Biochimica et Biophysica Acta, 1543, 294-335.
  • Hess, J.M., Tchernajenko, V., Vieille, C., Zeikus, J.G. ve Kelly, R.M., 1998. Thermotoga neapolitana Homotetrameric Xylose Isomerase is Expressed as a Catalytically Active and Thermostable Dimer in Escherichia coli, Applied Environmental Microbiology, 64, 2357-2360.
  • Inan, K., Canakci, S., Belduz, A.O. ve Sahin, F., 2011. Brevibacillus aydinogluensis sp. nov., a moderately thermophilic bacterium isolated from Karakoc hot spring in Turkey. International Journal of Systematic and Evolutionary Microbiology, 62, 849-855.
  • Inyang, C.U., Gebhart, U., Obi, S.K.C. ve Bisswanger, H., 1995. Isolation and characterization of a d-glucose/xylose ısomerase from a new thermophilic strain Streptomyces sp. (Plc), Applied Microbiology Biotechnology, 43, 632-638.
  • Karaoglu, H., Yanmis, D., Sal, F.A., Celik, A., Canakci, S. ve Belduz, A.O., 2013. Biochemical characterization of a novel glucose isomerase from Anoxybacillus gonensis G2T that displays a high level of activity and thermal stability. Journal of Molecular Catalysis B: Enzymatic, 97, 215-224.
  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, Journal of Molecular Evolution 16, 111-120.
  • La Duc, M.T., Satomi, M. ve Agata, N., 2004. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group, Journal of Microbiological Methods, 56, 383–394.
  • Lehmbacher, A. ve Bisswanger, H., 1990, Isolation and characterization of extremely thermostable D-xylose ısomerase from Thermus Aquaticus Hb8, Journal Genom Microbiolology, 136, 679-686.
  • Liu, S.Y., Wiegel, J. ve Gherardine, F.C., 1996. Purification and cloning of a thermostable xylose (glucose) ısomerase with an acidic ph optimum from Thermoanaerobacterium strain Jw/Sl-Ys 489, Journal Bacteriology, 178, 5938-5945.
  • Meintanis, C., Chalkou, K.I. ve Kormas, K.A., 2008. Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus, Letters in Applied Microbiology, 46, 395-401.
  • Mu, W., Wang, X., Xue, Q., Jiang, B., Zhang, T. Ve Miao, M., 2012. Characterization of a thermostable glucose isomerase with an acidic pH optimum from Acidothermus cellulolyticus. Food Research International, 47, 364–367.
  • Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S. ve Ivanov, M.V., 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans, International Journal of Systematic and Evolutionary Microbiology, 51, 433-446.
  • Powers, E.M., 1995. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts, Applied and Environmental Microbiology, 61, 3756–3758.
  • Schenck, F., 2000. High fructose syrups - a review, Indian Sugar, 50, 281–287.
  • Sharma, A., Pandey, A, ve Shouche, Y.S., 2008. Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India, Journal Basic Microbiolgy, 48, 1-8.
  • Smibert, R.M. ve Krieg, N.R. 1994, Phenotypic characterization. In Methods for General and Molecular Bacteriology. Gerhardt, P., Murray, R.G.E., Wood, W.A. and Krieg N.R. (eds.), Washington, DC: American Society for Microbiology. pp. 607–654.
  • Stackebrandt, E. ve Goebel, B.M., 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, International Journal of Systematic and Evolutionary Microbiology, 44, 846-849.
  • Stackebrandt, E., Frederiksen, W. ve Garrity, G.M., 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology, International Journal of Systematic and Evolutionary Microbiology, 52, 1043-1047.
  • Tamura, K., Dudley, J. ve Nei, M., 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0, Molecular Biology and Evolution, 24, 1596–1599.
  • Thompson, J.D., Higgins, D.G. ve Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, 22, 4673–4680.
  • Touzel, J.P., O’donohue, M. ve Debeire, P., 2000. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. International Journal of Systematic and Evolutionary Microbiology, 50, 315-320.
  • Yamanaka, K., 1975. D-Xylose isomerase from Lactobacillus brevis, Methods Enzymology, 41,466-471.
  • Yanmıs, D., Karaoglu, H., Colak, D.N., Sal, F.A., Canakcı, S. ve Belduz A.O., 2014. Characterization of a novel xylose isomerase from Anoxybacillus gonensis G2T. Turkish Journal of Biology, 38, 586-592.
  • Xu, H., Shen, D., Wu, X.Q., Liu, Z.W. ve Yang, Q.H., 2014. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum, Journal Indian Microbiology Biotechnology, 41, 1581-1589.
  • Zeigler, D.R., 2003. Gene sequences useful for predicting relatedness of whole genomes in bacteria, International Journal of Systematic and Evolutionary Microbiology, 53, 1893-1900.
  • Zeigler, D.R., 2005. Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus, International Journal of Systematic and Evolutionary Microbiology, 55, 1171-1179.

Isolation of Four Glucose Isomerase Producing Strains of Geobacillus and Their Identification Using Molecular Methods

Yıl 2018, , 299 - 308, 31.07.2018
https://doi.org/10.17714/gumusfenbil.319426

Öz

Two hot springs located in west of
Turkey were investigated with respect to presence of thermophilic
microorganisms. 23 thermophilic bacteria were
isolated from two hot springs. Among these, 4 strains were found positive for
glucose isomerase production.
The
glucose
isomerases
of strains BT5,
CT6SARI and CT1.2
showed
optimal growth at pH 6.5, whereas the enzyme of strain BT1 represented optimal
activity at pH 7.5. The strain BT1 had the lowest temperature optima (75°C)
among these strains whereas the other three strains showed optimal growth at 80
°C. On the basis of the 16S rRNA gene sequence analysis, the 4 isolates are
members of the genus Geobacillus.

Based on recN sequence similarity analysis, the isolate
CT6SARI is a strain of G. thermodenitficans. The isolate BT1 is a strain of G. stearothermophilus. The species
identity for the isolates
BT5 and CT1.2are uncertain.

Kaynakça

  • Abdel-rassol, T.M.A., Badr, S.A. ve Omran, H.T., 2012. Glucose (xylose) isomerase production from thermotolerant and thermophilic bacteria, African Journal of Biotechnology, 11, 15798-15801.
  • Altschul, S.F., Gish, W. ve Miller, W., 1990. Basic local aligment search tool, Journal Molecular Biology, 215, 403-410.
  • Bandlish, R.K., Michael, H.J., Epting, K.L., Vieille, C. ve Kelly, R.M., 2002. Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Biotechnology Bioenergy, 80, 185-194.
  • Beffa, T., Blanc, M., Lyon, P.F., Vogt, G., Marchiani, M., Fischer, J.L. ve Aragno, M., 1996. Isolation of Thermus strains from hot compost (60 to 80 ˚C). Applied and Environmental Microbiology, 62, 1723-1727.
  • Beg, O.K., Bhushan, B., Kapoor, M. ve Hoondal, G.S., 2000. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3, Journal of Industrial Microbiology and Biotechnology, 24, 396-402.
  • Benson, D.A., Boguski, M.S., Lipman, D.J., Oulette, B.F.F., Rapp, B.A. ve Wheelet, D.L., 1999. GenBank, Nucleic Acids Research, 27, 12-17.
  • Bhosale, S.H., Rao, M.B. ve Deshpande, V.V., 1996. Molecular and industrial aspects of glucose isomerase, Microbiological Reviews, 60, 280-300.
  • Brosius, J., Palmer, M.L., Kennedy, P.J. ve Noller, H.F., 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, Proceedings of the National Academy of Sciences of the United States, 75, 4801-4805
  • Calik, P., Angardi, V. ve Isik, N., 2009. Glucose isomerase production on a xylan-based medium by Bacillus thermoantarcticus, Biochemical Engineering Journal, 43, 8–15.
  • Canakci, S., Inan, K., Kacagan, M. ve Belduz, A.O., 2007. Evaluation of Arabinofuranosidase and Xylanase Activities of Geobacillus spp. Isolated from Some Hot Springs in Turkey, Journal of Microbiology and Biotechnology, 17, 1262-1270.
  • Chauthaiwale, J.V. ve Rao, M.B., 1994. Production and purification of extracellular xylose ısomerase from an alkaliphilic, thermophilic Bacillus sp, Applied Environmental Microbiology, 60, 4495–4499.
  • Dische, Z. ve Borenfreund, E., 1951. A new spectrophotometric method for the detection and determination of ketosugars and trioses, The Journal of Biological Chemistry, 192, 583-587.
  • Dussault, HP., 1955. An improved technique for staining red halophilic bacteria. Journal Bacteriology, 70, 484–485.
  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39, 783–791.
  • Hartley, B.S., Hanlon, N., Jackson, R.J., Rangarajan, M., 2000. Glucose isomerase: insights into protein engineering for increased thermostability. Biochimica et Biophysica Acta, 1543, 294-335.
  • Hess, J.M., Tchernajenko, V., Vieille, C., Zeikus, J.G. ve Kelly, R.M., 1998. Thermotoga neapolitana Homotetrameric Xylose Isomerase is Expressed as a Catalytically Active and Thermostable Dimer in Escherichia coli, Applied Environmental Microbiology, 64, 2357-2360.
  • Inan, K., Canakci, S., Belduz, A.O. ve Sahin, F., 2011. Brevibacillus aydinogluensis sp. nov., a moderately thermophilic bacterium isolated from Karakoc hot spring in Turkey. International Journal of Systematic and Evolutionary Microbiology, 62, 849-855.
  • Inyang, C.U., Gebhart, U., Obi, S.K.C. ve Bisswanger, H., 1995. Isolation and characterization of a d-glucose/xylose ısomerase from a new thermophilic strain Streptomyces sp. (Plc), Applied Microbiology Biotechnology, 43, 632-638.
  • Karaoglu, H., Yanmis, D., Sal, F.A., Celik, A., Canakci, S. ve Belduz, A.O., 2013. Biochemical characterization of a novel glucose isomerase from Anoxybacillus gonensis G2T that displays a high level of activity and thermal stability. Journal of Molecular Catalysis B: Enzymatic, 97, 215-224.
  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, Journal of Molecular Evolution 16, 111-120.
  • La Duc, M.T., Satomi, M. ve Agata, N., 2004. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group, Journal of Microbiological Methods, 56, 383–394.
  • Lehmbacher, A. ve Bisswanger, H., 1990, Isolation and characterization of extremely thermostable D-xylose ısomerase from Thermus Aquaticus Hb8, Journal Genom Microbiolology, 136, 679-686.
  • Liu, S.Y., Wiegel, J. ve Gherardine, F.C., 1996. Purification and cloning of a thermostable xylose (glucose) ısomerase with an acidic ph optimum from Thermoanaerobacterium strain Jw/Sl-Ys 489, Journal Bacteriology, 178, 5938-5945.
  • Meintanis, C., Chalkou, K.I. ve Kormas, K.A., 2008. Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus, Letters in Applied Microbiology, 46, 395-401.
  • Mu, W., Wang, X., Xue, Q., Jiang, B., Zhang, T. Ve Miao, M., 2012. Characterization of a thermostable glucose isomerase with an acidic pH optimum from Acidothermus cellulolyticus. Food Research International, 47, 364–367.
  • Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S. ve Ivanov, M.V., 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans, International Journal of Systematic and Evolutionary Microbiology, 51, 433-446.
  • Powers, E.M., 1995. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts, Applied and Environmental Microbiology, 61, 3756–3758.
  • Schenck, F., 2000. High fructose syrups - a review, Indian Sugar, 50, 281–287.
  • Sharma, A., Pandey, A, ve Shouche, Y.S., 2008. Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India, Journal Basic Microbiolgy, 48, 1-8.
  • Smibert, R.M. ve Krieg, N.R. 1994, Phenotypic characterization. In Methods for General and Molecular Bacteriology. Gerhardt, P., Murray, R.G.E., Wood, W.A. and Krieg N.R. (eds.), Washington, DC: American Society for Microbiology. pp. 607–654.
  • Stackebrandt, E. ve Goebel, B.M., 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, International Journal of Systematic and Evolutionary Microbiology, 44, 846-849.
  • Stackebrandt, E., Frederiksen, W. ve Garrity, G.M., 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology, International Journal of Systematic and Evolutionary Microbiology, 52, 1043-1047.
  • Tamura, K., Dudley, J. ve Nei, M., 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0, Molecular Biology and Evolution, 24, 1596–1599.
  • Thompson, J.D., Higgins, D.G. ve Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, 22, 4673–4680.
  • Touzel, J.P., O’donohue, M. ve Debeire, P., 2000. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. International Journal of Systematic and Evolutionary Microbiology, 50, 315-320.
  • Yamanaka, K., 1975. D-Xylose isomerase from Lactobacillus brevis, Methods Enzymology, 41,466-471.
  • Yanmıs, D., Karaoglu, H., Colak, D.N., Sal, F.A., Canakcı, S. ve Belduz A.O., 2014. Characterization of a novel xylose isomerase from Anoxybacillus gonensis G2T. Turkish Journal of Biology, 38, 586-592.
  • Xu, H., Shen, D., Wu, X.Q., Liu, Z.W. ve Yang, Q.H., 2014. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum, Journal Indian Microbiology Biotechnology, 41, 1581-1589.
  • Zeigler, D.R., 2003. Gene sequences useful for predicting relatedness of whole genomes in bacteria, International Journal of Systematic and Evolutionary Microbiology, 53, 1893-1900.
  • Zeigler, D.R., 2005. Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus, International Journal of Systematic and Evolutionary Microbiology, 55, 1171-1179.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kadriye İnan Bektaş

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 6 Haziran 2017
Kabul Tarihi 27 Mart 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA İnan Bektaş, K. (2018). Glikoz İzomeraz Üreticisi Dört Geobacillus Suşunun İzolasyonu ve Moleküler Metotlar Kullanarak Tanımlanması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(2), 299-308. https://doi.org/10.17714/gumusfenbil.319426