Araştırma Makalesi
BibTex RIS Kaynak Göster

Aşındırıcı Türü ve Boyutunun Otomotiv Fren Balatalarının Sürtünme-Aşınma Performansına Etkisi

Yıl 2018, , 335 - 347, 31.07.2018
https://doi.org/10.17714/gumusfenbil.338925

Öz

Bu çalışmada, aşındırıcı türü ve tane boyutunun otomotiv fren balatalarının
sürtünme-aşınma özelliklerine etkisi
incelenmiştir. Numune üretiminde farklı tür ve boyut aralıklarına sahip Al2O3,SiC ve B4C seramik tozlar kullanılmıştır. Numunelerin sürtünme ve aşınma davranışları,
Chase tipi deney cihazında
SAE J661 test prosedürüne uygun
olarak tespit edilmiştir
. Elde edilen sonuçlardan, en yüksek sürtünme katsayısının Al2O3 içeren A63 kodlu
numunede 0,61, en düşük sürtünme katsayısının ise SiC içeren S63 kodlu numunede
0,489 olduğu görülmüştür. B4C içeren B90 kodlu numune en fazla
aşınma direnci sergilemiştir. Artan aşındırıcı tane boyutuyla numunelerin sürtünme
katsayıları artarken özgül aşınma miktarları azalmıştır.
Numunelerin
aşınma davranışlarının ve mekanizmalarının ortaya konulması amacıyla da numune aşınma
yüzeyleri ve aşınma parçacıkları taramalı elektron mikroskopuyla incelenmiştir.

Kaynakça

  • Bijwe, J., 1997. Composites as Friction Materials: Recent Developments in Non-Asbestos-Fiber Reinforced Friction Materials-A Review, Polymer Composites, 18, 3, 378–396.
  • Boz, M. ve Kurt, A., 2007. Effect of ZrSiO4 on the Friction Performance of Automotive Brake Friction Materials, Journal of Materials Science and Technology, 23, 6, 843–850.
  • Cai, P., Wang, Y., Wang, T. ve Wang, Q., 2015. Effect of Resins on Thermal, Mechanical and Tribological Properties of Friction Materials, Tribology International, 87, 1–10.
  • Cai, P., Li, Z., Wang, T. ve Wang, Q., 2015. Effect of Aspect Ratios of Aramid Fiber on Mechanical and Tribological Behaviors of Friction Materials, Tribology International, 92, 109–116.
  • Chan, D. ve Stachowiak G.W., 2004. Review of Automotive Brake Friction Materials”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218, 953–966.
  • Cho, K.H., Jang, H., Hong, Y.S., Kim, S.J., Basch, R.H. ve Fasch, J.W., 2008. The Size Effect of Zircon Particles on the Friction Characteristics of Brake Lining Materials, Wear, 264, 291–297.
  • Eriksson, M. ve Jacobson, S., 2000. Tribological Surfaces of Organic Brake Pads, Tribology International, 33, 817–827.
  • Etemadi, H., Shojaei, A. ve Jahanmard, P., 2014. Effect of Alumina Nanoparticle on the Tribological Performance of Automotive Brake Friction Materials, Journal of Reinforced Plastics and Composites, 33, 2, 166-178.
  • Gurunath, P.V. ve Bijwe J., 2007. Friction and Wear Studies on Brake-Pad Materials Based on Newly Developed Resin, Wear, 263, 1212–1219.
  • Ji, Z., Jin H., Luo, W., Cheng, F., Chen, Y., Ren, Y., Wu, Y. ve Hou S., 2017. The Effect of Crystallinity of Potassium Titanate Whisker on the Tribological Behavior of NAO Friction Materials, Tribology International, 107, 213–220.
  • Kim, S.J. ve Jang, H., 2000. Friction and Wear of Friction Materials Containing Two Different Phenolic Resins Reinforced with Aramid Pulp, Tribology International, 33, 477–484.
  • Kim, S.J., Cho, M.H., Lim, D.S. ve Jang, H., 2001. Synergistic Effects of Aramid Pulp and Potassium Titanate Whiskers in the Automotive Friction Material, Wear, 251, 1484–1491.
  • Kim, S.S., Hwang, H.J., Shin, M.W. ve Jang, H., 2011. Friction and Vibration of Automotive Brake Pads Containing Different Abrasive Particles, Wear, 271, 1194–1202.
  • Lee, E.J., Hwang, H.J., Lee, W.G., Cho, K.H. ve Jang, H., 2010. Morphology and Toughness of Abrasive Particles and Their Effects on the Friction and Wear of Friction Materials: A Case Study with Zircon and Quartz, Tribology Letters, 37, 637–644.
  • Ma, Y., Martynkova, G.S., Valaskova, M., Matejka, V. ve Lu, Y., 2008. Effects of ZrSiO4 in Non-Metallic Brake Friction Materials on Friction Performance, Tribology International, 41, 166–174.
  • Mosleh, M., Blau, P.J. ve Dumitrescu, D., 2004. Characteristics and Morphology of Wear Particles from Laboratory Testing of Disk Brake Materials, Wear, 256, 1128–1134.
  • Neis, P.D., Ferreira, N.F., Fekete, G., Matozo, L.T. ve Masotti D., 2017. Towards A Better Understanding of the Structures Existing on the Surface of Brake Pads, Tribology International, 105, 135–147.
  • Öztürk, B., Arslan, F. ve Öztürk, S., 2007. Hot Wear Properties of Ceramic and Basalt Fiber Reinforced Hybrid Friction Materials, Tribology International, 40, 37–48.
  • Öztürk, B., Öztürk, S. ve Adigüzel, A.A., 2013. Effect of Type and Relative Amount of Solid Lubricants and Abrasives on the Tribological Properties of Brake Friction Materials, Tribology Transactions, 56, 428–441.
  • Satapathy, B.K. ve Bijwe, J., 2005. Fade and Recovery of Non-Asbestos Organic (NAO) Composite Friction Materials Based on Combinations of Rock Fibers and Organic Fibers, Journal of Reinforced Plastics and Composites, 24, 563–576.
  • Singh, T., Tiwari, A., Patnaik, A., Chauhan, R. ve Ali, S., 2017. Influence of Wollastonite Shape and Amount on Tribo-Performance of Nonasbestos Organic Brake Friction Composites, Wear, 386–387, 157–164.
  • Sun, W., Zhou, W., Liu J., Fu, X., Chen G. ve Yao, S., 2018. The Size Effect of SiO2 Particles on Friction Mechanisms of a Composite Friction Material, Tribology Letters, 35, 66–75.
  • Tomasek, V., Kratosova, G., Yun, R., Fan, Y. ve Lu, Y., 2009. Effects of Alumina in Nonmetallic Brake Friction Performance, Journal of Material Science, 44, 266-273.
  • Vishwanath, B., Verma, A.P. ve Rao, C.V.S.K., 1991. Effect of Fabric Geometry on Friction and Wear of Glass-Fibre-Reinforced Composites, Wear, 145, 315–327.
  • Zhu, Z., Xu, L., ve Chen, G., 2011. Effect of Different Whiskers on the Physical and Tribological Properties of Non-metallic Friction Materials, Materials Design, 32, 54–61.

Effect of Abrasive Type and Size on the Friction-Wear Performance of Automotive Brake Friction Materials

Yıl 2018, , 335 - 347, 31.07.2018
https://doi.org/10.17714/gumusfenbil.338925

Öz

This study investigated the effects
of abrasive type and particle size on the friction-wear characteristics of
automotive brake friction materials. The Al2O3, SiC and B4C
ceramic powders with different type and particle size
were used as abrasive. Friction tests were performed on a Chase
friction material testing machine according to the brake lining quality test
procedure as per SAE J661. The composites were contained typical ingredients
for commercial brake friction materials.
The results showed that the highest and the lowest friction coefficients were
recorded as 0,61 and 0,489 for Al2O3 containing A63 and
SiC containing S63 coded samples. The B90 coded composite containing B4C
showed the highest wear resistance. The friction coefficient of the composites
increased and the specific wear rate decreased with increasing abrasive
particle sizes. In order to reveal the wear behaviour and mechanism, the worn
surfaces of the composites as well as wear debris were examined under scanning
electron microscopy.

Kaynakça

  • Bijwe, J., 1997. Composites as Friction Materials: Recent Developments in Non-Asbestos-Fiber Reinforced Friction Materials-A Review, Polymer Composites, 18, 3, 378–396.
  • Boz, M. ve Kurt, A., 2007. Effect of ZrSiO4 on the Friction Performance of Automotive Brake Friction Materials, Journal of Materials Science and Technology, 23, 6, 843–850.
  • Cai, P., Wang, Y., Wang, T. ve Wang, Q., 2015. Effect of Resins on Thermal, Mechanical and Tribological Properties of Friction Materials, Tribology International, 87, 1–10.
  • Cai, P., Li, Z., Wang, T. ve Wang, Q., 2015. Effect of Aspect Ratios of Aramid Fiber on Mechanical and Tribological Behaviors of Friction Materials, Tribology International, 92, 109–116.
  • Chan, D. ve Stachowiak G.W., 2004. Review of Automotive Brake Friction Materials”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218, 953–966.
  • Cho, K.H., Jang, H., Hong, Y.S., Kim, S.J., Basch, R.H. ve Fasch, J.W., 2008. The Size Effect of Zircon Particles on the Friction Characteristics of Brake Lining Materials, Wear, 264, 291–297.
  • Eriksson, M. ve Jacobson, S., 2000. Tribological Surfaces of Organic Brake Pads, Tribology International, 33, 817–827.
  • Etemadi, H., Shojaei, A. ve Jahanmard, P., 2014. Effect of Alumina Nanoparticle on the Tribological Performance of Automotive Brake Friction Materials, Journal of Reinforced Plastics and Composites, 33, 2, 166-178.
  • Gurunath, P.V. ve Bijwe J., 2007. Friction and Wear Studies on Brake-Pad Materials Based on Newly Developed Resin, Wear, 263, 1212–1219.
  • Ji, Z., Jin H., Luo, W., Cheng, F., Chen, Y., Ren, Y., Wu, Y. ve Hou S., 2017. The Effect of Crystallinity of Potassium Titanate Whisker on the Tribological Behavior of NAO Friction Materials, Tribology International, 107, 213–220.
  • Kim, S.J. ve Jang, H., 2000. Friction and Wear of Friction Materials Containing Two Different Phenolic Resins Reinforced with Aramid Pulp, Tribology International, 33, 477–484.
  • Kim, S.J., Cho, M.H., Lim, D.S. ve Jang, H., 2001. Synergistic Effects of Aramid Pulp and Potassium Titanate Whiskers in the Automotive Friction Material, Wear, 251, 1484–1491.
  • Kim, S.S., Hwang, H.J., Shin, M.W. ve Jang, H., 2011. Friction and Vibration of Automotive Brake Pads Containing Different Abrasive Particles, Wear, 271, 1194–1202.
  • Lee, E.J., Hwang, H.J., Lee, W.G., Cho, K.H. ve Jang, H., 2010. Morphology and Toughness of Abrasive Particles and Their Effects on the Friction and Wear of Friction Materials: A Case Study with Zircon and Quartz, Tribology Letters, 37, 637–644.
  • Ma, Y., Martynkova, G.S., Valaskova, M., Matejka, V. ve Lu, Y., 2008. Effects of ZrSiO4 in Non-Metallic Brake Friction Materials on Friction Performance, Tribology International, 41, 166–174.
  • Mosleh, M., Blau, P.J. ve Dumitrescu, D., 2004. Characteristics and Morphology of Wear Particles from Laboratory Testing of Disk Brake Materials, Wear, 256, 1128–1134.
  • Neis, P.D., Ferreira, N.F., Fekete, G., Matozo, L.T. ve Masotti D., 2017. Towards A Better Understanding of the Structures Existing on the Surface of Brake Pads, Tribology International, 105, 135–147.
  • Öztürk, B., Arslan, F. ve Öztürk, S., 2007. Hot Wear Properties of Ceramic and Basalt Fiber Reinforced Hybrid Friction Materials, Tribology International, 40, 37–48.
  • Öztürk, B., Öztürk, S. ve Adigüzel, A.A., 2013. Effect of Type and Relative Amount of Solid Lubricants and Abrasives on the Tribological Properties of Brake Friction Materials, Tribology Transactions, 56, 428–441.
  • Satapathy, B.K. ve Bijwe, J., 2005. Fade and Recovery of Non-Asbestos Organic (NAO) Composite Friction Materials Based on Combinations of Rock Fibers and Organic Fibers, Journal of Reinforced Plastics and Composites, 24, 563–576.
  • Singh, T., Tiwari, A., Patnaik, A., Chauhan, R. ve Ali, S., 2017. Influence of Wollastonite Shape and Amount on Tribo-Performance of Nonasbestos Organic Brake Friction Composites, Wear, 386–387, 157–164.
  • Sun, W., Zhou, W., Liu J., Fu, X., Chen G. ve Yao, S., 2018. The Size Effect of SiO2 Particles on Friction Mechanisms of a Composite Friction Material, Tribology Letters, 35, 66–75.
  • Tomasek, V., Kratosova, G., Yun, R., Fan, Y. ve Lu, Y., 2009. Effects of Alumina in Nonmetallic Brake Friction Performance, Journal of Material Science, 44, 266-273.
  • Vishwanath, B., Verma, A.P. ve Rao, C.V.S.K., 1991. Effect of Fabric Geometry on Friction and Wear of Glass-Fibre-Reinforced Composites, Wear, 145, 315–327.
  • Zhu, Z., Xu, L., ve Chen, G., 2011. Effect of Different Whiskers on the Physical and Tribological Properties of Non-metallic Friction Materials, Materials Design, 32, 54–61.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bülent Öztürk

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 19 Eylül 2017
Kabul Tarihi 16 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Öztürk, B. (2018). Aşındırıcı Türü ve Boyutunun Otomotiv Fren Balatalarının Sürtünme-Aşınma Performansına Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(2), 335-347. https://doi.org/10.17714/gumusfenbil.338925