Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating Accuracy of Precise Point Positioning Method in a Micro-Geodetic Network

Yıl 2019, , 575 - 581, 15.07.2019
https://doi.org/10.17714/gumusfenbil.544199

Öz

In this
study, the accuracy of Precise Point Positioning (PPP) method was investigated.
For this purpose, a micro-geodetic network containing 5 stations was
established and 8-hour GNSS Global Navigation Satellite System (GNSS) sessions
for three consecutive days were performed. At the same time, the baselines
between the stations in this network were measured by Electronic Distance Meter
(EDM) and the height differences are measured by the geometric leveling method.
The results obtained from classical terrestrial measurements, which are
considered to be highly accurate (3 mm in horizontal and few mm  invertical), were compared with the results
of PPP and the relative GNSS methods. As a result of the comparisons, it was
seen that the values obtained from the relative GNSS analysis approximated with
the classical method with the levels of 1-6 mm in the horizontal and 10-20 mm
in the vertical direction. For the PPP method, it was seen that the same values
varied between 1-28 mm in horizontal and 5-8 cm in the vertical component. The
standard deviation values of these changes were determined as ± 2.20 mm in
horizontal and ± 16.46 mm in vertical for the relative positioning technique
and  ± 11.43 mm in the horizontal and ±
59.48 mm in vertical component for PPP method.

Kaynakça

  • Abd-Elazeem, M., Farah, A. ve Farrag, F., 2011. Assessment study of using online (CSRS) GPS-PPP Service for mapping applications in Egypt. Journal of Geodetic Science, 1(3), pp.233-239.
  • Alkan, R.M., Saka, M.H., Ozulu, İ.M. ve İlçi, V., 2017. Kinematic precise point positioning using GPS and GLONASS measurements in marine environments. Measurement, 109, pp.36-43.
  • Bahadur, B. ve Nohutcu, M., 2018. PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22(4), p.113.
  • Bisnath, S. ve Gao, Y., 2009. Current state of precise point positioning and future prospects and limitations. In Observing our changing earth (pp. 615-623). Springer, Berlin, Heidelberg.
  • Cai, C., Gao, Y., Pan, L. ve Zhu, J., 2015. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in space research, 56(1), pp.133-143.
  • Herring, T. A., R. W. King, ve S. McClusky. 2019. “GPS processing program suites: GAMIT/GLOBK V10.7.” MIT
  • Marques, H.A., Marques, H.A.S., Aquino, M., Veettil, S.V. ve Monico, J.F.G., 2018. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects. Journal of Space Weather and Space Climate, 8, p.A15.
  • Nikon, (2019, 15 Mart), DTM-322 kullanma kılavuzu https://www.manualslib.com/manual/1216908/Nikon-Total-Station-Dtm-322.html
  • Shi, C., Gu, S., Lou, Y. ve Ge, M., 2012. An improved approach to model ionospheric delays for single-frequency precise point positioning. Advances in Space Research, 49(12), pp.1698-1708.
  • Su, K. ve Jin, S., 2018. Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data. The Journal of Navigation, 71(6), pp.1363-1380.
  • Yao, Y., Zhang, R., Song, W., Shi, C. ve Lou, Y., 2013. An improved approach to model regional ionosphere and accelerate convergence for precise point positioning. Advances in Space Research, 52(8), pp.1406-1415.
  • Yiğit, C.Ö., Kızılarslan, M. ve Çalışkan, E., 2016. GPS-PPP ve GPS/GLONASS-PPP Yöntemlerinin Konum Belirleme Performanslarının Ölçü Süresine Bağlı Olarak Değerlendirilmesi. Harita Teknolojileri Elektronik Dergisi, 8(1), pp.22-39.
  • Zhou, F., Dong, D., Li, W., Jiang, X., Wickert, J. ve Schuh, H., 2018. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions, 22(2), p.33.

Hassas Nokta Konumlama Yönteminin Doğruluğunun Mikro-Jeodezik Bir Ağda İncelenmesi

Yıl 2019, , 575 - 581, 15.07.2019
https://doi.org/10.17714/gumusfenbil.544199

Öz

Bu çalışmada, Hassas Nokta Konumlama (HNK) yönteminin yatay ve düşey
bileşen için doğruluğu incelenmiştir. Bu amaçla, 5 noktalı mikro-jeodezik bir
ağ tesis edilerek ardışık üç gün 8 saatlik Global Navigation Satellite System (GNSS)
oturumları gerçekleştirilmiştir. Aynı zamanda bu ağda, noktalar arasındaki baz
uzunluğu değerleri Elektronik Uzunluk Ölçer (EUÖ) ile yükseklik farkları ise
geometrik nivelman yöntemi ile gidiş-dönüş şeklinde ölçülmüştür. Yüksek doğrulukta
olduğu kabul edilen (yatayda 3 mm düşeyde ise birkaç mm) klasik yersel
ölçümlerden elde edilen sonuçlar HNK ve rölatif GNSS analizi sonuçlarıyla
karşılaştırılmıştır. Yapılan karşılaştırmalar sonucunda, rölatif GNSS analiz
sonuçlarından elde edilen değerlerin klasik yöntemden elde edilen değerlerle
yatayda 1-6 mm düşeyde ise 10-20 mm seviyelerinde yakınlaştığı görülürken, HNK
yöntemi için ise aynı değerlerin yatayda 1-28 mm düşeyde ise 50-80 mm
seviyelerinde değişiklik gösterdiği tespit edilmiştir. Söz konusu değişimlere
ait standart sapma değerlerinin ise rölatif konum belirleme için yatayda
±2.20 mm, düşeyde ±16.46
mm olduğu, HNK yöntemi için ise yatayda ±11.43 mm düşeyde ise ±59.48 mm
seviyelerinde olduğu görülmüştür.

Kaynakça

  • Abd-Elazeem, M., Farah, A. ve Farrag, F., 2011. Assessment study of using online (CSRS) GPS-PPP Service for mapping applications in Egypt. Journal of Geodetic Science, 1(3), pp.233-239.
  • Alkan, R.M., Saka, M.H., Ozulu, İ.M. ve İlçi, V., 2017. Kinematic precise point positioning using GPS and GLONASS measurements in marine environments. Measurement, 109, pp.36-43.
  • Bahadur, B. ve Nohutcu, M., 2018. PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22(4), p.113.
  • Bisnath, S. ve Gao, Y., 2009. Current state of precise point positioning and future prospects and limitations. In Observing our changing earth (pp. 615-623). Springer, Berlin, Heidelberg.
  • Cai, C., Gao, Y., Pan, L. ve Zhu, J., 2015. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in space research, 56(1), pp.133-143.
  • Herring, T. A., R. W. King, ve S. McClusky. 2019. “GPS processing program suites: GAMIT/GLOBK V10.7.” MIT
  • Marques, H.A., Marques, H.A.S., Aquino, M., Veettil, S.V. ve Monico, J.F.G., 2018. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects. Journal of Space Weather and Space Climate, 8, p.A15.
  • Nikon, (2019, 15 Mart), DTM-322 kullanma kılavuzu https://www.manualslib.com/manual/1216908/Nikon-Total-Station-Dtm-322.html
  • Shi, C., Gu, S., Lou, Y. ve Ge, M., 2012. An improved approach to model ionospheric delays for single-frequency precise point positioning. Advances in Space Research, 49(12), pp.1698-1708.
  • Su, K. ve Jin, S., 2018. Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data. The Journal of Navigation, 71(6), pp.1363-1380.
  • Yao, Y., Zhang, R., Song, W., Shi, C. ve Lou, Y., 2013. An improved approach to model regional ionosphere and accelerate convergence for precise point positioning. Advances in Space Research, 52(8), pp.1406-1415.
  • Yiğit, C.Ö., Kızılarslan, M. ve Çalışkan, E., 2016. GPS-PPP ve GPS/GLONASS-PPP Yöntemlerinin Konum Belirleme Performanslarının Ölçü Süresine Bağlı Olarak Değerlendirilmesi. Harita Teknolojileri Elektronik Dergisi, 8(1), pp.22-39.
  • Zhou, F., Dong, D., Li, W., Jiang, X., Wickert, J. ve Schuh, H., 2018. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions, 22(2), p.33.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sefa Yalvaç 0000-0002-8989-6231

Yayımlanma Tarihi 15 Temmuz 2019
Gönderilme Tarihi 25 Mart 2019
Kabul Tarihi 16 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Yalvaç, S. (2019). Hassas Nokta Konumlama Yönteminin Doğruluğunun Mikro-Jeodezik Bir Ağda İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(3), 575-581. https://doi.org/10.17714/gumusfenbil.544199