Araştırma Makalesi
BibTex RIS Kaynak Göster

Tahribatsız Yöntemler Kullanılarak Trafik Kaynaklı Yer Hareketi Etkisindeki Tarihi Yapıların Stokastik Dinamik Analizi

Yıl 2020, , 298 - 308, 15.04.2020
https://doi.org/10.17714/gumusfenbil.567108

Öz

Bu çalışmada, trafik geçişleri sebebiyle zeminde
meydana gelen yatay mikro titreşim yer hareketi etkisi altındaki tarihi bir
yığma yapının stokastik dinamik analizlerinin gerçekleştirilmesi
amaçlanmaktadır. Bu amaçla, yerinde tahribatsız yöntemler uygulanarak yapıda
kullanılan malzeme özelliklileri tespit edilmeye çalışılmıştır. Yerinde
tahribatsız yöntem olarak ultrasonik hız testi uygulanmış ve taş duvar, tuğla
kemer ve taş kolonlar için belirlenen noktalardan ölçümler alınmıştır. Yerinde yapılan
ölçümler ile elde edilen veriler kullanılarak yapı analizlerinde kullanılan taş
kolon, taş duvar ve tuğla kemer için malzeme özellikleri tespit edilmiştir. Bu
çalışmada, yapının trafik etkisi altındaki stokastik dinamik analizlerinin elde
edilmesi için trafik kaynaklı yer hareketi modeli elde edilmiştir. Stokastik
dinamik analizler yapının hasarsız (çatlaksız) ve hasarlı (çatlaklı) halleri
için gerçekleştirilmiş ve sonuçlar karşılaştırılmıştır.
 

Destekleyen Kurum

Samsun Vakıflar Bölge Müdürlüğü

Teşekkür

Bu çalışma, Samsun Vakıflar Bölge Müdürlüğü tarafından elde edilen veriler ile gerçekleştirilmiştir.

Kaynakça

  • ANSYS. 2013. Workbench 2013. User’s manual, Ansys Incorporation. Canonsburg, PA: Ansys, Inc.
  • Başaran, H., Demir, A., Ercan, E., Nohutçu, H., Hökelekli, E., ve Kozanoğlu, C. 2016. Investigation of seismic safety of a masonry minaret using its dynamic characteristics. Earthquake and Structures, 10: 523–538. doi:10.12989/eas.2016.10.3.523.
  • Bongiovanni, G., Clemente, P., Rinaldis, D., ve Saitta, F. 2011. Traffic Induced Vibrations in Historical Buildings. In Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011. Leuven, Belgium. pp. 812–819.
  • Clough, R.W., Penzien, J. 1993. Dynamics of Structures. McGraw Hill, Singapore.
  • Crispino, M., ve D’Apuzzo, M. 2001. Measurement and prediction of traffic-induced vibrations in a heritage building. Journal of Sound and Vibration, 246: 319–335. doi:10.1006/jsvi.2001.3648.
  • Ercan, A. 2003. Mühendislik Jeofiziği Dizisi-II. Birsen Yayınevi.
  • Erkal, A. 2017. Transmission of Traffic-induced Vibrations on and around the Minaret of Little Hagia Sophia. International Journal of Architectural Heritage, 11: 349–362. Taylor & Francis. doi:10.1080/15583058.2016.1230657.
  • Erkal, A. 2018. Tren geçi̇şleri̇ni̇n Küçük Ayasofya Cami̇ üzeri̇nde ve yanındaki̇ serbest zemi̇n yüzeyi̇nde oluşturduğu ti̇treşi̇mleri̇n deneysel olarak incelenmesi̇. Uludağ University Journal of The Faculty of Engineering, 22: 361–374. doi:10.17482/uumfd.336345.
  • Erkal, A., Laefer, D., Fanning, P., Durukal, E., Hancilar, U., ve Kaya, Y. 2010. Investigation of the Rail-Induced Vibrations on a Masonry Historical Building. Advanced Materials Research, 133–134: 569–574. doi:10.4028/www.scientific.net/amr.133-134.569.
  • Faella, G., Frunzio, G., Guadagnuolo, M., Donadio, A., ve Ferri, L. 2012. The Church of the Nativity in Bethlehem: Non-destructive tests for the structural knowledge. Journal of Cultural Heritage, 13: e27–e41. Elsevier Masson SAS. doi:10.1016/j.culher.2012.10.014.
  • Freund L. B. (1998). Dynamic Fracture Mechanics. Cambridge University Press. p. 83.
  • Gardner G.H.F., Gardner L.W. ve Gregory A.R. 1974. Formation velocity and density- the diagnostic basic for stratigraphic traps. Geophysics 39(6), 770-780.
  • Kanai, K. 1957. Semi-empirical formula for the seismic characteristics of the ground. Bulletin of the Earthquake Research Institute, University of Tokyo., 35: 309–324.
  • Kliukas, R., Jaras, A., ve Kačianauskas, R. 2008. Investigation of Traffic‐Induced Vibration in Vilnius Arch‐Cathedral Belfry. Transport, 23: 323–329. doi:10.3846/1648-4142.2008.23.323-329.
  • Lin, Y.K. 1967. Probabilistic Theory of Structural Dynamics. In 1st Ed. McGraw Hill Book Company, New York.
  • Ma, M., Markine, V., Liu, W., Yuan, Y., ve Zhang, F. 2011. Metro train-induced vibrations on historic buildings in Chengdu, China. Journal of Zhejiang University-SCIENCE A, 12: 782–793. doi:10.1631/jzus.a1100088.
  • Manolis, G.D., ve Koliopoulos, P.K. 2001. Stochastic Structural Dynamics in Earthquake Engineering. WIT Press, Southampton.
  • Mesquita, E., Martini, R., Alves, A., Mota, L., Rubens, T., Antunes, P., ve Varum, H. 2018. Heterogeneity detection of Portuguese–Brazilian masonries through ultrasonic velocities measurements. Journal of Civil Structural Health Monitoring, 8: 847–856. doi:10.1007/s13349-018-0312-5.
  • Moropoulou, A., Bakolas, A., Aggelakopoulou, E., Pineli, T., ve Prassianakis, I. 2003. Estimation of Elastic Constants of Stones , used in Historic Monuments , using Ultrasonic Technique and Correlation to Their Microstructure. In The 3rd International Conference on Non-Destructive Testing of the Hellenic Society for NDT. Chania, Crete, Greece. pp. 242–245.
  • Öziçer, S., ve Uyanık, O. 2017. Beton Dayanımının Yerinde P Dalga Hızından Belirlenmesi ve İzmir Örneği. SDU International Journal of Technological Sciences, 9: 1–16.
  • Richart, F.E., Hall, J.R., Woods, R.D., 1970. Vibrations of Soils and Foundations. Prentice-Hall Inc, Englewood Cliffs, New Jersey.
  • Sabbağ, N., ve Uyanık, O. 2017. Sabbağ N., Uyanık O., 2017. Prediction of Reinforced Concrete Strength by Ultrasonic Velocities. Journal of Applied Geophysics, 141: 13–23.
  • Sabbağ, N., ve Uyanık, O. 2018. Determination of the reinforced concrete strength by apparent resistivity depending on the curing conditions. Journal of Applied Geophysics, 155: 13–25.
  • Tajimi, H. 1960. A statistical method for determining the maximum response of a building structure during an earthquake. In Proc. 2nd World Conf. Earthquake Eng. Tokyo and Kyoto, Japan. pp. 781–797.
  • Uyanık, O., Gülay, F.G., ve Tezcan, S. 2012. Beton Dayanımının Tahribatsız Ultrasonik Yöntemle Tayini. Hazır Beton,: 82–85.
  • Uyanık, O., Kaptan, K., Gülay, F.G., ve Tezcan, S. 2011. Beton Dayanımının Tahribatsız Ultrasonik Yöntemle Tayini. Yapı Dünyası, 184: 55–58.
  • Uyanık, O., Sabbağ, N., Uyanık, N.A., ve Öncü, Z. 2019. Prediction of Mechanical and Physical Properties of Some Sedimentary Rocks from Ultrasonic Velocities. Bulletin of Engineering Geology and the Environment,. doi:DOI: 10.1007/s10064-019-01501-6.
  • Uyanık, O., Şenli, G., ve Çatlıoğlu, B. 2013. Binaların beton kalitesinin tahribatsız jeofizik yöntemlerle belirlenmesi. SDU International Journal of Technologic Sciences, 5: 156–165.
  • Vasanelli, E., Calia, A., Colangiuli, D., Micelli, F., ve Aiello, M.A. 2016. Assessing the reliability of non-destructive and moderately invasive techniques for the evaluation of uniaxial compressive strength of stone masonry units. Construction and Building Materials, 124: 575–581. Elsevier Ltd. doi:10.1016/j.conbuildmat.2016.07.130.
  • Yang, C.Y. 1986. Random Vibration of Structures. John Wiley and Sons Inc., New York.
  • Yang, J.N., ve Agrawal, A.K. 2001. Protective systems for high-technology facilities against microvibration and earthquake. Structural Engineering and Mechanics, 10: 561–575.
  • Zielińska, M., ve Rucka, M. 2018. Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography. Materials, 11: 2543. doi:10.3390/ma11122543.

Stochastic Dynamic Analysis of Historical Structures subjected to Traffic-induced Ground Motion using Non-destructive Methods

Yıl 2020, , 298 - 308, 15.04.2020
https://doi.org/10.17714/gumusfenbil.567108

Öz

In
this study, it is aimed to perform stochastic dynamic analysis of a historical
masonry structure subjected to horizontal micro vibration ground motion
occurring on the ground due to traffic transitions.
For
this purpose, non-destructive methods were applied to determine the material
properties used in the historic building. Ultrasonic velocity test was applied
as a non-destructive method and measurements were taken from the points
determined for stone walls, brick arches and stone columns. The material
properties of the stone columns, stone walls and brick arches used in the
structural analyzes were determined by using the data obtained from the on-site
measurements. In this study, to obtain the stochastic dynamic analysis of the
structure under the influence of traffic, a traffic induced ground motion model
was obtained. The stochastic dynamic analysis was performed for undamaged (non-cracked)
and damaged (cracked) structure and the results were compared.

Kaynakça

  • ANSYS. 2013. Workbench 2013. User’s manual, Ansys Incorporation. Canonsburg, PA: Ansys, Inc.
  • Başaran, H., Demir, A., Ercan, E., Nohutçu, H., Hökelekli, E., ve Kozanoğlu, C. 2016. Investigation of seismic safety of a masonry minaret using its dynamic characteristics. Earthquake and Structures, 10: 523–538. doi:10.12989/eas.2016.10.3.523.
  • Bongiovanni, G., Clemente, P., Rinaldis, D., ve Saitta, F. 2011. Traffic Induced Vibrations in Historical Buildings. In Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011. Leuven, Belgium. pp. 812–819.
  • Clough, R.W., Penzien, J. 1993. Dynamics of Structures. McGraw Hill, Singapore.
  • Crispino, M., ve D’Apuzzo, M. 2001. Measurement and prediction of traffic-induced vibrations in a heritage building. Journal of Sound and Vibration, 246: 319–335. doi:10.1006/jsvi.2001.3648.
  • Ercan, A. 2003. Mühendislik Jeofiziği Dizisi-II. Birsen Yayınevi.
  • Erkal, A. 2017. Transmission of Traffic-induced Vibrations on and around the Minaret of Little Hagia Sophia. International Journal of Architectural Heritage, 11: 349–362. Taylor & Francis. doi:10.1080/15583058.2016.1230657.
  • Erkal, A. 2018. Tren geçi̇şleri̇ni̇n Küçük Ayasofya Cami̇ üzeri̇nde ve yanındaki̇ serbest zemi̇n yüzeyi̇nde oluşturduğu ti̇treşi̇mleri̇n deneysel olarak incelenmesi̇. Uludağ University Journal of The Faculty of Engineering, 22: 361–374. doi:10.17482/uumfd.336345.
  • Erkal, A., Laefer, D., Fanning, P., Durukal, E., Hancilar, U., ve Kaya, Y. 2010. Investigation of the Rail-Induced Vibrations on a Masonry Historical Building. Advanced Materials Research, 133–134: 569–574. doi:10.4028/www.scientific.net/amr.133-134.569.
  • Faella, G., Frunzio, G., Guadagnuolo, M., Donadio, A., ve Ferri, L. 2012. The Church of the Nativity in Bethlehem: Non-destructive tests for the structural knowledge. Journal of Cultural Heritage, 13: e27–e41. Elsevier Masson SAS. doi:10.1016/j.culher.2012.10.014.
  • Freund L. B. (1998). Dynamic Fracture Mechanics. Cambridge University Press. p. 83.
  • Gardner G.H.F., Gardner L.W. ve Gregory A.R. 1974. Formation velocity and density- the diagnostic basic for stratigraphic traps. Geophysics 39(6), 770-780.
  • Kanai, K. 1957. Semi-empirical formula for the seismic characteristics of the ground. Bulletin of the Earthquake Research Institute, University of Tokyo., 35: 309–324.
  • Kliukas, R., Jaras, A., ve Kačianauskas, R. 2008. Investigation of Traffic‐Induced Vibration in Vilnius Arch‐Cathedral Belfry. Transport, 23: 323–329. doi:10.3846/1648-4142.2008.23.323-329.
  • Lin, Y.K. 1967. Probabilistic Theory of Structural Dynamics. In 1st Ed. McGraw Hill Book Company, New York.
  • Ma, M., Markine, V., Liu, W., Yuan, Y., ve Zhang, F. 2011. Metro train-induced vibrations on historic buildings in Chengdu, China. Journal of Zhejiang University-SCIENCE A, 12: 782–793. doi:10.1631/jzus.a1100088.
  • Manolis, G.D., ve Koliopoulos, P.K. 2001. Stochastic Structural Dynamics in Earthquake Engineering. WIT Press, Southampton.
  • Mesquita, E., Martini, R., Alves, A., Mota, L., Rubens, T., Antunes, P., ve Varum, H. 2018. Heterogeneity detection of Portuguese–Brazilian masonries through ultrasonic velocities measurements. Journal of Civil Structural Health Monitoring, 8: 847–856. doi:10.1007/s13349-018-0312-5.
  • Moropoulou, A., Bakolas, A., Aggelakopoulou, E., Pineli, T., ve Prassianakis, I. 2003. Estimation of Elastic Constants of Stones , used in Historic Monuments , using Ultrasonic Technique and Correlation to Their Microstructure. In The 3rd International Conference on Non-Destructive Testing of the Hellenic Society for NDT. Chania, Crete, Greece. pp. 242–245.
  • Öziçer, S., ve Uyanık, O. 2017. Beton Dayanımının Yerinde P Dalga Hızından Belirlenmesi ve İzmir Örneği. SDU International Journal of Technological Sciences, 9: 1–16.
  • Richart, F.E., Hall, J.R., Woods, R.D., 1970. Vibrations of Soils and Foundations. Prentice-Hall Inc, Englewood Cliffs, New Jersey.
  • Sabbağ, N., ve Uyanık, O. 2017. Sabbağ N., Uyanık O., 2017. Prediction of Reinforced Concrete Strength by Ultrasonic Velocities. Journal of Applied Geophysics, 141: 13–23.
  • Sabbağ, N., ve Uyanık, O. 2018. Determination of the reinforced concrete strength by apparent resistivity depending on the curing conditions. Journal of Applied Geophysics, 155: 13–25.
  • Tajimi, H. 1960. A statistical method for determining the maximum response of a building structure during an earthquake. In Proc. 2nd World Conf. Earthquake Eng. Tokyo and Kyoto, Japan. pp. 781–797.
  • Uyanık, O., Gülay, F.G., ve Tezcan, S. 2012. Beton Dayanımının Tahribatsız Ultrasonik Yöntemle Tayini. Hazır Beton,: 82–85.
  • Uyanık, O., Kaptan, K., Gülay, F.G., ve Tezcan, S. 2011. Beton Dayanımının Tahribatsız Ultrasonik Yöntemle Tayini. Yapı Dünyası, 184: 55–58.
  • Uyanık, O., Sabbağ, N., Uyanık, N.A., ve Öncü, Z. 2019. Prediction of Mechanical and Physical Properties of Some Sedimentary Rocks from Ultrasonic Velocities. Bulletin of Engineering Geology and the Environment,. doi:DOI: 10.1007/s10064-019-01501-6.
  • Uyanık, O., Şenli, G., ve Çatlıoğlu, B. 2013. Binaların beton kalitesinin tahribatsız jeofizik yöntemlerle belirlenmesi. SDU International Journal of Technologic Sciences, 5: 156–165.
  • Vasanelli, E., Calia, A., Colangiuli, D., Micelli, F., ve Aiello, M.A. 2016. Assessing the reliability of non-destructive and moderately invasive techniques for the evaluation of uniaxial compressive strength of stone masonry units. Construction and Building Materials, 124: 575–581. Elsevier Ltd. doi:10.1016/j.conbuildmat.2016.07.130.
  • Yang, C.Y. 1986. Random Vibration of Structures. John Wiley and Sons Inc., New York.
  • Yang, J.N., ve Agrawal, A.K. 2001. Protective systems for high-technology facilities against microvibration and earthquake. Structural Engineering and Mechanics, 10: 561–575.
  • Zielińska, M., ve Rucka, M. 2018. Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography. Materials, 11: 2543. doi:10.3390/ma11122543.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kemal Hacıefendioğlu 0000-0002-5791-8053

Yayımlanma Tarihi 15 Nisan 2020
Gönderilme Tarihi 17 Mayıs 2019
Kabul Tarihi 7 Ocak 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Hacıefendioğlu, K. (2020). Tahribatsız Yöntemler Kullanılarak Trafik Kaynaklı Yer Hareketi Etkisindeki Tarihi Yapıların Stokastik Dinamik Analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(2), 298-308. https://doi.org/10.17714/gumusfenbil.567108