Araştırma Makalesi
BibTex RIS Kaynak Göster

5G aday frekans bandında 4-Portlu MIMO antenin geliştirilmesi

Yıl 2021, , 653 - 662, 15.07.2021
https://doi.org/10.17714/gumusfenbil.742908

Öz

Bu çalışmada, 5G aday frekans bandında 4-portlu masif Çoklu–Giriş–Çoklu–Çıkış (Multiple–Input–Multiple–Output, MIMO) anten tasarımı geliştirilmiştir. MIMO anten yapısı, bir dikdörtgen, bir daire ve bir zemin düzleminden oluşmaktadır. MIMO anten boyutu 35x50x0.76mm3’tür. Antenin bant genişliği S11 parametresine göre 1.1GHz olarak bulunmuştur. Bant genişliği bu anten için yüksek olup ideal değere sahiptir. MIMO antenin aktif yansıma katsayıları maksimum-14.5dB civarlarında ve zarf korelasyon katsayıları ise 0.017’den daha küçük bulunmuştur. Antenin 24GHz’de maksimum verimlilik değeri %94.50, 27GHz’de %91.81 ve 28GHz’de %81.81 olarak elde edilmiştir. Geliştirilen 4-portlu MIMO antenin radyasyon değerleri normalize edilmiş değerlerdir. Antenin tasarımı ve analizi ANSYS HFSS® bilgisayar benzetimi kullanılarak tamamlanmıştır. İncelenen frekans değerleri 5G teknolojisi için lisanslanmış aday frekans değerleridir. Tasarlanan antenden bulunan kazanç değerleri 24GHz’de 12.70dB, 27GHz’de 13.05dB ve 28GHz’de 10.48dB olarak bulunmuştur. Bulunan kazanç değerleri 4-portlu MIMO anten için önemli değerlere sahiptir.

Destekleyen Kurum

Recep Tayyip Erdoğan Üniversitesi

Kaynakça

  • Iqbal, A., Basir, A., Smida, A., Mallat, N. K., Elfergani, I., Rodriguez, J. and Kim, S. (2019). Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications. IEEE Access, 7, 111135-111144. https://doi.org/10.1109/ACCESS.2019.2933913
  • Khalid, M., Iffat Naqvi, S., Hussain, N., Rahman, M., Mirjavadi, S.S., Khan, M. J. and Amin, Y. (2020). 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9(1), 71. https://doi.org/10.3390/electronics9010071
  • Manan, A., Naqvi, S. I., Azam, M. A., Amin, Y., Loo, J. and Tenhunen, H. (2019). MIMO Antenna array for mm-wave 5G smart devices. In2019 22nd International Multitopic Conference (INMIC) (pp. 1-5). IEEE. https://doi.org/10.1109/INMIC48123.2019.9022757
  • Marzudi, W. N. N. W., Abidin, Z. Z., Muji, S. Z. M., Yue, M. and Abd-Alhameed, R. A. (2014). Minimization of mutual coupling using neutralization line technique for 2.4 GHz wireless applications. https://doi.org/10.17781/P001280
  • Nandi, D., and Maitra, A. (2018). Study of rain attenuation effects for 5G Mm-wave cellular communication in tropical location. IET Microwaves, Antennas & Propagation, 12(9), 1504-1507. https://doi.org/10.1049/iet-map.2017.1029
  • Ojaroudi Parchin, N., Jahanbakhsh Basherlou, H., Alibakhshikenari, M., Ojaroudi Parchin, Y., Al-Yasir, Y. I., Abd-Alhameed, R. A. and Limiti, E. (2019). Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems. Electronics, 8(5), 521. https://doi.org/10.3390/electronics8050521
  • Park, J. S., Ko, J. B., Kwon, H. K., Kang, B. S. Park, B. and Kim, D. (2016). A tilted combined beam antenna for 5G communications using a 28-GHz band. IEEE Antennas and Wireless Propagation Letters, 15, 1685-1688. https://doi.org/10.1109/LAWP.2016.2523514
  • Perić, M. V., Perić, D. B., Todorović, B. M. and Popović, M. V. (2016). Dynamic rain attenuation model for millimeter wave network analysis. IEEE Transactions on Wireless Communications, 16(1), 441-450. https://doi.org/10.1109/TWC.2016.2624729
  • Rajo-Iglesias, E. and Sharawi, M. S. (2016). MIMO Antennas. in wideband, multiband, and smart reconfigurable antennas for modern wireless communications (pp. 145-175). IGI Global.
  • Sharawi, M. S. (2013). Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 55(5), 218-232. https://doi.org/10.1109/MAP.2013.6735522
  • Sharawi, M. S. (2017). Advancements in MIMO antenna systems. Developments in Antenna Analysis and Synthesis.
  • Sharawi, Mohammad S., Symon K. Podilchak, Mohamed T. Hussain, and Yahia MM Antar (2017). Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. IET Microwaves, Antennas & Propagation 11, (2), 287-293. https://doi.org/10.1049/iet-map.2016.0457
  • Shayea, I., Rahman, T. A., Azmi, M. H. and Islam, M. R. (2018). Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia.IEEE Access, 6, 19044-19064. https://doi.org/10.1109/ACCESS.2018.2810855
  • Shoaib, N., Shoaib, S., Khattak, R. Y., Shoaib, I., Chen, X. and Perwaiz, A. (2018). MIMO antennas for smart 5G devices. IEEE Access, 6, 77014-77021. https://doi.org/10.1109/ACCESS.2018.2876763
  • Sun, Y. X. and Leung, K. W. (2016). Substrate-integrated two-port dual-frequency antenna. IEEE Transactions on Antennas and Propagation, 64(8), 3692-3697. https://doi.org/10.1109/TAP.2016.2565740
  • Zhang, Y., Deng, J. Y., Li, M. J., Sun, D. and Guo, L. X. (2019). A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 747-751. doi: 10.1109/LAWP.2019.2901961

Development of 4-Port MIMO antenna in the 5G candidate frequency band

Yıl 2021, , 653 - 662, 15.07.2021
https://doi.org/10.17714/gumusfenbil.742908

Öz

In this study, 4 port massive Multiple–Input–Multiple–Output (MIMO) antenna design has been developed in the 5G candidate frequency band. The MIMO antenna structure consists of a rectangle, a circle, and a ground plane. MIMO antenna size is 35x50x0.76mm3. According to the S11 parameter, the bandwidth of the antenna was found to be 1.1GHz. The bandwidth is high for this antenna and has an ideal value. The active reflection coefficients of the MIMO antenna were maximum -14.5dB and the envelope correlation coefficient was less than 0.017. The maximum efficiency of the antenna at 24GHz is 94.50%, 91.81% at 27GHz and, 81.81% at 28GHz. The radiation values of the developed 4-port MIMO antenna are normalized values. The design and analysis of the antenna was completed using ANSYS HFSS® computer simulator. The frequency values investigated are candidate frequency values licensed for 5G technology. The gain values from the designed antenna are 12.70B at 24GHz, 13.05dB at 27GHz and, 10.48dB at 28GHz. The gain values found have important values for the 4-port MIMO antenna.

Kaynakça

  • Iqbal, A., Basir, A., Smida, A., Mallat, N. K., Elfergani, I., Rodriguez, J. and Kim, S. (2019). Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications. IEEE Access, 7, 111135-111144. https://doi.org/10.1109/ACCESS.2019.2933913
  • Khalid, M., Iffat Naqvi, S., Hussain, N., Rahman, M., Mirjavadi, S.S., Khan, M. J. and Amin, Y. (2020). 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9(1), 71. https://doi.org/10.3390/electronics9010071
  • Manan, A., Naqvi, S. I., Azam, M. A., Amin, Y., Loo, J. and Tenhunen, H. (2019). MIMO Antenna array for mm-wave 5G smart devices. In2019 22nd International Multitopic Conference (INMIC) (pp. 1-5). IEEE. https://doi.org/10.1109/INMIC48123.2019.9022757
  • Marzudi, W. N. N. W., Abidin, Z. Z., Muji, S. Z. M., Yue, M. and Abd-Alhameed, R. A. (2014). Minimization of mutual coupling using neutralization line technique for 2.4 GHz wireless applications. https://doi.org/10.17781/P001280
  • Nandi, D., and Maitra, A. (2018). Study of rain attenuation effects for 5G Mm-wave cellular communication in tropical location. IET Microwaves, Antennas & Propagation, 12(9), 1504-1507. https://doi.org/10.1049/iet-map.2017.1029
  • Ojaroudi Parchin, N., Jahanbakhsh Basherlou, H., Alibakhshikenari, M., Ojaroudi Parchin, Y., Al-Yasir, Y. I., Abd-Alhameed, R. A. and Limiti, E. (2019). Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems. Electronics, 8(5), 521. https://doi.org/10.3390/electronics8050521
  • Park, J. S., Ko, J. B., Kwon, H. K., Kang, B. S. Park, B. and Kim, D. (2016). A tilted combined beam antenna for 5G communications using a 28-GHz band. IEEE Antennas and Wireless Propagation Letters, 15, 1685-1688. https://doi.org/10.1109/LAWP.2016.2523514
  • Perić, M. V., Perić, D. B., Todorović, B. M. and Popović, M. V. (2016). Dynamic rain attenuation model for millimeter wave network analysis. IEEE Transactions on Wireless Communications, 16(1), 441-450. https://doi.org/10.1109/TWC.2016.2624729
  • Rajo-Iglesias, E. and Sharawi, M. S. (2016). MIMO Antennas. in wideband, multiband, and smart reconfigurable antennas for modern wireless communications (pp. 145-175). IGI Global.
  • Sharawi, M. S. (2013). Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 55(5), 218-232. https://doi.org/10.1109/MAP.2013.6735522
  • Sharawi, M. S. (2017). Advancements in MIMO antenna systems. Developments in Antenna Analysis and Synthesis.
  • Sharawi, Mohammad S., Symon K. Podilchak, Mohamed T. Hussain, and Yahia MM Antar (2017). Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. IET Microwaves, Antennas & Propagation 11, (2), 287-293. https://doi.org/10.1049/iet-map.2016.0457
  • Shayea, I., Rahman, T. A., Azmi, M. H. and Islam, M. R. (2018). Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia.IEEE Access, 6, 19044-19064. https://doi.org/10.1109/ACCESS.2018.2810855
  • Shoaib, N., Shoaib, S., Khattak, R. Y., Shoaib, I., Chen, X. and Perwaiz, A. (2018). MIMO antennas for smart 5G devices. IEEE Access, 6, 77014-77021. https://doi.org/10.1109/ACCESS.2018.2876763
  • Sun, Y. X. and Leung, K. W. (2016). Substrate-integrated two-port dual-frequency antenna. IEEE Transactions on Antennas and Propagation, 64(8), 3692-3697. https://doi.org/10.1109/TAP.2016.2565740
  • Zhang, Y., Deng, J. Y., Li, M. J., Sun, D. and Guo, L. X. (2019). A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 747-751. doi: 10.1109/LAWP.2019.2901961
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Ali Özaslan 0000-0002-8721-601X

Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 26 Mayıs 2020
Kabul Tarihi 8 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Özaslan, M. A. (2021). 5G aday frekans bandında 4-Portlu MIMO antenin geliştirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 653-662. https://doi.org/10.17714/gumusfenbil.742908