Araştırma Makalesi
BibTex RIS Kaynak Göster

Deniz içi nakil hatlarında polimer esaslı CNT takviyeli kompozit boruların kullanılabilirliği

Yıl 2021, , 609 - 621, 15.04.2021
https://doi.org/10.17714/gumusfenbil.767802

Öz

Bu çalışmanın amacı, karbon nano tüp (CNT) takviyeli plastik boruların deniz suyu içerisinde kullanılabilirliği ve bunun sonucunda mekanik özelliklerdeki değişimi incelemektir. Deneylerde kullanılan cam/epoksi borular, [±55]3 fiber oryantasyonuna sahip olup; filaman sarım metoduyla üretilmiştir. İkincil takviye malzemesi olarak ağırlıkça %1 oranında CNT kullanılmıştır. Deney numuneleri, kuru ortamın yanı sıra 2,3,4,6 ve 9 aylık reel sürelerle deniz suyu içerisinde bekletildikten sonra çekme ve sertlik testlerine tabi tutulmuşlardır. Testler, ASTM D 2290 standardına göre split disk metoduna uygun halka numuneler üzerinde gerçekleştirilmiştir. Sonuçlar, referans malzemesi cam takviyeli plastikten (CTP) elde edilen sonuçlar ile kıyaslama yapılmıştır. Elde edilen sonuçlara göre CNT’lerin kompozit yapı içerisine girmiş halde üretilmesinin delaminasyon hasarını azalttığı ve bunun sonucunda da kuru ortam şartlarında %21, uzun dönem kullanımlarda ise yaklaşık %18 mukavemet artışı sağladığı belirlenmiştir.

Kaynakça

  • Alpaslan, E., Hacıefendioğlu, K., Birinci, F. ve Kurt, M. (2015). Tarihi Yapilarda Lokal Güçlendirmeye Bağli Lokal Rijitlik Artişinin Yapi Davranişina Etkisi. 2015 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı (3. TDMSK) İzmir.
  • Assatse, Y. T., Ejuh, G., Tchoffo, F. and Ndjaka, J. (2019). DFT studies of nanomaterials designed by the functionalization of modified carboxylated carbon nanotubes with biguanide derivatives for nanomedical, nonlinear and electronic applications. Chinese Journal of Physics, 58, 253-262. https://doi.org/10.1016/j.cjph.2019.01.014
  • Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K. and Han, Y.K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of food and drug analysis, 26(4), 1201-1214. https://doi.org/10.1016/j.jfda.2018.06.011
  • Bellucci, D., Salvatori, R., Anesi, A., Chiarini, L. and Cannillo, V. (2019). SBF assays, direct and indirect cell culture tests to evaluate the biological performance of bioglasses and bioglass-based composites: Three paradigmatic cases. Materials Science and Engineering: C, 96, 757-764. https://doi.org/10.1016/j.msec.2018.12.006
  • Bousfield, G., Morin, S., Jacquet, N. and Richel, A. (2018). Extraction and refinement of agricultural plant fibers for composites manufacturing. Comptes Rendus Chimie, 21(9), 897-906. https://doi.org/10.1016/j.crci.2018.07.001
  • Chen, X., Tao, J., Yi, J., Liu, Y., Bao, R., Li, C. and You, X. (2018). Enhancing the strength of carbon nanotubes reinforced copper matrix composites by optimizing the interface structure and dispersion uniformity. Diamond and Related Materials, 88, 74-84. https://doi.org/10.1016/j.diamond.2018.06.026
  • Clyne, T. W. and Hull, D. (2019). An introduction to composite materials. Cambridge university press. Davies, P., Riou, L., Mazeas, F., and Warnier, P. (2005). Thermoplastic composite cylinders for underwater applications. Journal of Thermoplastic Composite Materials, 18(5), 417-443. https://doi.org/10.1177/0892705705054397
  • Deniz, M. E., Ozdemir, O., Ozen, M. and Karakuzu, R. (2013). Failure pressure and impact response of glass–epoxy pipes exposed to seawater. Composites Part B: Engineering, 53, 355-361. https://doi.org/10.1016/j.compositesb.2013.05.047
  • Doğanay, S. ve Ulcay, Y. (2007). Farklı oranlarda takviye edilmiş cam lifi polyester kompozitlerin deniz suyu etkisi altında yorulma davranışının incelenmesi. Uludağ University Journal of The Faculty of Engineering, 12(2).
  • Gemi, L. (2018). Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Composites Part B: Engineering, 153, 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056
  • Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014). Optimization of fiber distribution in fiber reinforced composite by using NURBS functions. Computational Materials Science, 83, 463-473. https://doi.org/10.1016/j.commatsci.2013.11.032
  • Grishchuk, S. and Schledjewski, R. (2013). Mechanical dispersion methods for carbon nanotubes in aerospace composite matrix systems. In Carbon Nanotube Enhanced Aerospace Composite Materials (pp. 99-154): Springer.
  • Grujicic, M., Bell, W., Thompson, L., Koudela, K. and Cheeseman, B. (2008). Ballistic-protection performance of carbon-nanotube-doped poly-vinyl-ester-epoxy matrix composite armor reinforced with E-glass fiber mats. Materials Science and Engineering: A, 479(1-2), 10-22. https://doi.org/10.1016/j.msea.2007.06.013
  • Gu, B.-E., Huang, C.-Y., Shen, T.-H. and Lee, Y.L. (2018). Effects of multiwall carbon nanotube addition on the corrosion resistance and underwater acoustic absorption properties of polyurethane coatings. Progress in Organic Coatings, 121, 226-235. https://doi.org/10.1016/j.porgcoat.2018.04.033
  • Hassan, E. A., Ge, D., Zhu, S., Yang, L., Zhou, J. and Yu, M. (2019). Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays. Composites Part A: Applied Science and Manufacturing, 127, 105613. https://doi.org/10.1016/j.compositesa.2019.105613
  • Irshidat, M. R., Al-Saleh, M. H. and Almashagbeh, H. (2016). Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites. Materials & Design, 89, 225-234. https://doi.org/10.1016/j.matdes.2015.09.166
  • Jesthi, D. K. and Nayak, R. K. (2019). Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Composites Part B: Engineering, 174, 106980. https://doi.org/10.1016/j.compositesb.2019.106980
  • Jin, K., Wang, H., Tao, J. and Zhang, X. (2019). Interface strengthening mechanisms of Ti/CFRP fiber metal laminate after adding MWCNTs to resin matrix. Composites Part B: Engineering, 171, 254-263. https://doi.org/10.1016/j.compositesb.2019.05.005
  • Kara, M., Kirici, M. and Cagan, S. C. (2019). Effects of the number of fatigue cycles on the hoop tensile strength of glass Fiber/epoxy composite pipes. Journal of Failure Analysis and Prevention, 19(4), 1181-1186. https://doi.org/10.1007/s11668-019-00720-z
  • Kaynan, O., Atescan, Y., Ozden-Yenigun, E. and Cebeci, H. (2018). Mixed Mode delamination in carbon nanotube/nanofiber interlayered composites. Composites Part B: Engineering, 154, 186-194. https://doi.org/10.1016/j.compositesb.2018.07.032
  • Kim, M. T., Rhee, K. Y., Jung, I., Park, S. J. and Hui, D. (2014). Influence of seawater absorption on the vibration damping characteristics and fracture behaviors of basalt/CNT/epoxy multiscale composites. Composites Part B: Engineering, 63, 61-66. https://doi.org/10.1016/j.compositesb.2014.03.010
  • Lee, M., Lee, J., Kim, J. and Lee, G. (2014). Properties of B4C–PbO–Al (OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields. Journal of Nuclear Materials, 445(1-3), 63-71. https://doi.org/10.1016/j.jnucmat.2013.10.051
  • Liu, X., Li, C., Yi, J., Prashanth, K., Chawake, N., Tao, J. and Eckert, J. (2018). Enhancing the interface bonding in carbon nanotubes reinforced Al matrix composites by the in situ formation of TiAl3 and TiC. Journal of Alloys and Compounds, 765, 98-105. https://doi.org/10.1016/j.jallcom.2018.06.170
  • Makowiec, M. E. and Blanchet, T. A. (2017). Improved wear resistance of nanotube-and other carbon-filled PTFE composites. Wear, 374, 77-85. https://doi.org/10.1016/j.wear.2016.12.027
  • Matveeva, A. Y., Lomov, S. V. and Gorbatikh, L. (2019). Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: Modelling investigation. Computational Materials Science, 159, 412-419. https://doi.org/10.1016/j.commatsci.2018.10.031
  • Mittal, G., Dhand, V., Rhee, K. Y., Park, S. J., Kim, H.-J. and Jung, D. H. (2015). Investigation of seawater effects on the mechanical properties of untreated and treated MMT-based glass fiber/vinylester composites. Ocean Engineering, 108, 393-401. https://doi.org/10.1016/j.oceaneng.2015.08.019
  • Mousavi, M. V. and Khoramishad, H. (2019). The effect of hybridization on high-velocity impact response of carbon fiber-reinforced polymer composites using finite element modeling, Taguchi method and artificial neural network. Aerospace Science and Technology, 94, 105393. https://doi.org/10.1016/j.ast.2019.105393
  • Nayak, R. K. (2019). Influence of seawater aging on mechanical properties of nano-Al2O3 embedded glass fiber reinforced polymer nanocomposites. Construction and Building Materials, 221, 12-19. https://doi.org/10.1016/j.conbuildmat.2019.06.043
  • Ng, K.-W., Lam, W.-H. and Pichiah, S. (2013). A review on potential applications of carbon nanotubes in marine current turbines. Renewable and Sustainable Energy Reviews, 28, 331-339. https://doi.org/10.1016/j.rser.2013.08.018
  • Öndürücü, A. ve Muzoğlu, M. (2019). Doğal Lif Takviyeli Kompozitlerin Burkulma Davranışına Deniz Suyunun Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 30-39.
  • Prabhu, T. R. (2015). Effects of solid lubricants, load, and sliding speed on the tribological behavior of silica reinforced composites using design of experiments. Materials & Design, 77, 149-160. https://doi.org/10.1016/j.matdes.2015.03.059
  • Rahmanian, S., Thean, K., Suraya, A., Shazed, M., Salleh, M. M. and Yusoff, H. (2013). Carbon and glass hierarchical fibers: influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Materials & Design, 43, 10-16. https://doi.org/10.1016/j.matdes.2012.06.025
  • Tang, X., Lui, Y. H., Chen, B. and Hu, S. (2017). Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density. Journal of Power Sources, 352, 118-126. https://doi.org/10.1016/j.jpowsour.2017.03.094
  • Taşyürek, M. (2014). Yüzey çatlaklı ve çatlaksız ±55° filaman sarım cnt takviyeli ctp kompozit boruların mekanik özelliklerinin ve iç basınç etkisi altındaki yorulma davranışının araştırılması. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Taşyürek, M. and Tarakçioğlu, N. (2017). Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes. Composites Part B: Engineering, 124, 23-30. https://doi.org/10.1016/j.compositesb.2017.05.050
  • Taşyürek, M. and Tarakçioğlu, N. (2017). Enhancing fatigue life of filament winding laminar and curved pipes containing carbon nanotubes, and their fatigue failure. Polymers and Polymer Composites, 25(2), 167-176. https://doi.org/10.1177/096739111702500207
  • Tsotsis, T. K., Keller, S., Lee, K., Bardis, J. and Bish, J. (2001). Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature. Composites Science and Technology, 61(1), 75-86. https://doi.org/10.1016/S0266-3538(00)00196-2
  • Xiao, C., Tan, Y., Wang, X., Gao, L., Wang, L. and Qi, Z. (2018). Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers. Chemical Physics Letters, 703, 8-16. https://doi.org/10.1016/j.cplett.2018.05.012
  • Zhang, L., Wu, H., Zheng, Z., He, H., Wei, M. and Huang, X. (2019). Fabrication of graphene oxide/multi-walled carbon nanotube/urushiol formaldehyde polymer composite coatings and evaluation of their physico-mechanical properties and corrosion resistance. Progress in Organic Coatings, 127, 131-139. https://doi.org/10.1016/j.porgcoat.2018.10.026

Usability of polymer based CNT reinforced composite pipes in marine transport lines

Yıl 2021, , 609 - 621, 15.04.2021
https://doi.org/10.17714/gumusfenbil.767802

Öz

The aim of this study is to investigate the usability of carbon nanotube (CNT) reinforced plastic pipes in seawater and consequently the changes in mechanical properties. The glass / epoxy tubes used in the experiments have fiber orientation of [± 55]3 and are produced by filament winding method. 1% CNT was used as secondary reinforcing material. The test specimens were subjected to tensile and hardness tests after being kept in seawater for real periods of 2,3,4,6 and 9 months in addition to dry environment. Tests were performed on ring samples according to the split disc method based on ASTM D 2290 test standard. The results were compared with the results obtained from glass reinforced plastic (GRP). According to the results, it was found that the production of CNT reinforced composite structure reduced the delamination damage and as a result of this it provided 21% strength increase in dry environment conditions and also increased the strength in long term usage by approximately 18%.

Kaynakça

  • Alpaslan, E., Hacıefendioğlu, K., Birinci, F. ve Kurt, M. (2015). Tarihi Yapilarda Lokal Güçlendirmeye Bağli Lokal Rijitlik Artişinin Yapi Davranişina Etkisi. 2015 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı (3. TDMSK) İzmir.
  • Assatse, Y. T., Ejuh, G., Tchoffo, F. and Ndjaka, J. (2019). DFT studies of nanomaterials designed by the functionalization of modified carboxylated carbon nanotubes with biguanide derivatives for nanomedical, nonlinear and electronic applications. Chinese Journal of Physics, 58, 253-262. https://doi.org/10.1016/j.cjph.2019.01.014
  • Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K. and Han, Y.K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of food and drug analysis, 26(4), 1201-1214. https://doi.org/10.1016/j.jfda.2018.06.011
  • Bellucci, D., Salvatori, R., Anesi, A., Chiarini, L. and Cannillo, V. (2019). SBF assays, direct and indirect cell culture tests to evaluate the biological performance of bioglasses and bioglass-based composites: Three paradigmatic cases. Materials Science and Engineering: C, 96, 757-764. https://doi.org/10.1016/j.msec.2018.12.006
  • Bousfield, G., Morin, S., Jacquet, N. and Richel, A. (2018). Extraction and refinement of agricultural plant fibers for composites manufacturing. Comptes Rendus Chimie, 21(9), 897-906. https://doi.org/10.1016/j.crci.2018.07.001
  • Chen, X., Tao, J., Yi, J., Liu, Y., Bao, R., Li, C. and You, X. (2018). Enhancing the strength of carbon nanotubes reinforced copper matrix composites by optimizing the interface structure and dispersion uniformity. Diamond and Related Materials, 88, 74-84. https://doi.org/10.1016/j.diamond.2018.06.026
  • Clyne, T. W. and Hull, D. (2019). An introduction to composite materials. Cambridge university press. Davies, P., Riou, L., Mazeas, F., and Warnier, P. (2005). Thermoplastic composite cylinders for underwater applications. Journal of Thermoplastic Composite Materials, 18(5), 417-443. https://doi.org/10.1177/0892705705054397
  • Deniz, M. E., Ozdemir, O., Ozen, M. and Karakuzu, R. (2013). Failure pressure and impact response of glass–epoxy pipes exposed to seawater. Composites Part B: Engineering, 53, 355-361. https://doi.org/10.1016/j.compositesb.2013.05.047
  • Doğanay, S. ve Ulcay, Y. (2007). Farklı oranlarda takviye edilmiş cam lifi polyester kompozitlerin deniz suyu etkisi altında yorulma davranışının incelenmesi. Uludağ University Journal of The Faculty of Engineering, 12(2).
  • Gemi, L. (2018). Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Composites Part B: Engineering, 153, 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056
  • Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014). Optimization of fiber distribution in fiber reinforced composite by using NURBS functions. Computational Materials Science, 83, 463-473. https://doi.org/10.1016/j.commatsci.2013.11.032
  • Grishchuk, S. and Schledjewski, R. (2013). Mechanical dispersion methods for carbon nanotubes in aerospace composite matrix systems. In Carbon Nanotube Enhanced Aerospace Composite Materials (pp. 99-154): Springer.
  • Grujicic, M., Bell, W., Thompson, L., Koudela, K. and Cheeseman, B. (2008). Ballistic-protection performance of carbon-nanotube-doped poly-vinyl-ester-epoxy matrix composite armor reinforced with E-glass fiber mats. Materials Science and Engineering: A, 479(1-2), 10-22. https://doi.org/10.1016/j.msea.2007.06.013
  • Gu, B.-E., Huang, C.-Y., Shen, T.-H. and Lee, Y.L. (2018). Effects of multiwall carbon nanotube addition on the corrosion resistance and underwater acoustic absorption properties of polyurethane coatings. Progress in Organic Coatings, 121, 226-235. https://doi.org/10.1016/j.porgcoat.2018.04.033
  • Hassan, E. A., Ge, D., Zhu, S., Yang, L., Zhou, J. and Yu, M. (2019). Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays. Composites Part A: Applied Science and Manufacturing, 127, 105613. https://doi.org/10.1016/j.compositesa.2019.105613
  • Irshidat, M. R., Al-Saleh, M. H. and Almashagbeh, H. (2016). Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites. Materials & Design, 89, 225-234. https://doi.org/10.1016/j.matdes.2015.09.166
  • Jesthi, D. K. and Nayak, R. K. (2019). Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Composites Part B: Engineering, 174, 106980. https://doi.org/10.1016/j.compositesb.2019.106980
  • Jin, K., Wang, H., Tao, J. and Zhang, X. (2019). Interface strengthening mechanisms of Ti/CFRP fiber metal laminate after adding MWCNTs to resin matrix. Composites Part B: Engineering, 171, 254-263. https://doi.org/10.1016/j.compositesb.2019.05.005
  • Kara, M., Kirici, M. and Cagan, S. C. (2019). Effects of the number of fatigue cycles on the hoop tensile strength of glass Fiber/epoxy composite pipes. Journal of Failure Analysis and Prevention, 19(4), 1181-1186. https://doi.org/10.1007/s11668-019-00720-z
  • Kaynan, O., Atescan, Y., Ozden-Yenigun, E. and Cebeci, H. (2018). Mixed Mode delamination in carbon nanotube/nanofiber interlayered composites. Composites Part B: Engineering, 154, 186-194. https://doi.org/10.1016/j.compositesb.2018.07.032
  • Kim, M. T., Rhee, K. Y., Jung, I., Park, S. J. and Hui, D. (2014). Influence of seawater absorption on the vibration damping characteristics and fracture behaviors of basalt/CNT/epoxy multiscale composites. Composites Part B: Engineering, 63, 61-66. https://doi.org/10.1016/j.compositesb.2014.03.010
  • Lee, M., Lee, J., Kim, J. and Lee, G. (2014). Properties of B4C–PbO–Al (OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields. Journal of Nuclear Materials, 445(1-3), 63-71. https://doi.org/10.1016/j.jnucmat.2013.10.051
  • Liu, X., Li, C., Yi, J., Prashanth, K., Chawake, N., Tao, J. and Eckert, J. (2018). Enhancing the interface bonding in carbon nanotubes reinforced Al matrix composites by the in situ formation of TiAl3 and TiC. Journal of Alloys and Compounds, 765, 98-105. https://doi.org/10.1016/j.jallcom.2018.06.170
  • Makowiec, M. E. and Blanchet, T. A. (2017). Improved wear resistance of nanotube-and other carbon-filled PTFE composites. Wear, 374, 77-85. https://doi.org/10.1016/j.wear.2016.12.027
  • Matveeva, A. Y., Lomov, S. V. and Gorbatikh, L. (2019). Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: Modelling investigation. Computational Materials Science, 159, 412-419. https://doi.org/10.1016/j.commatsci.2018.10.031
  • Mittal, G., Dhand, V., Rhee, K. Y., Park, S. J., Kim, H.-J. and Jung, D. H. (2015). Investigation of seawater effects on the mechanical properties of untreated and treated MMT-based glass fiber/vinylester composites. Ocean Engineering, 108, 393-401. https://doi.org/10.1016/j.oceaneng.2015.08.019
  • Mousavi, M. V. and Khoramishad, H. (2019). The effect of hybridization on high-velocity impact response of carbon fiber-reinforced polymer composites using finite element modeling, Taguchi method and artificial neural network. Aerospace Science and Technology, 94, 105393. https://doi.org/10.1016/j.ast.2019.105393
  • Nayak, R. K. (2019). Influence of seawater aging on mechanical properties of nano-Al2O3 embedded glass fiber reinforced polymer nanocomposites. Construction and Building Materials, 221, 12-19. https://doi.org/10.1016/j.conbuildmat.2019.06.043
  • Ng, K.-W., Lam, W.-H. and Pichiah, S. (2013). A review on potential applications of carbon nanotubes in marine current turbines. Renewable and Sustainable Energy Reviews, 28, 331-339. https://doi.org/10.1016/j.rser.2013.08.018
  • Öndürücü, A. ve Muzoğlu, M. (2019). Doğal Lif Takviyeli Kompozitlerin Burkulma Davranışına Deniz Suyunun Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 30-39.
  • Prabhu, T. R. (2015). Effects of solid lubricants, load, and sliding speed on the tribological behavior of silica reinforced composites using design of experiments. Materials & Design, 77, 149-160. https://doi.org/10.1016/j.matdes.2015.03.059
  • Rahmanian, S., Thean, K., Suraya, A., Shazed, M., Salleh, M. M. and Yusoff, H. (2013). Carbon and glass hierarchical fibers: influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Materials & Design, 43, 10-16. https://doi.org/10.1016/j.matdes.2012.06.025
  • Tang, X., Lui, Y. H., Chen, B. and Hu, S. (2017). Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density. Journal of Power Sources, 352, 118-126. https://doi.org/10.1016/j.jpowsour.2017.03.094
  • Taşyürek, M. (2014). Yüzey çatlaklı ve çatlaksız ±55° filaman sarım cnt takviyeli ctp kompozit boruların mekanik özelliklerinin ve iç basınç etkisi altındaki yorulma davranışının araştırılması. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Taşyürek, M. and Tarakçioğlu, N. (2017). Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes. Composites Part B: Engineering, 124, 23-30. https://doi.org/10.1016/j.compositesb.2017.05.050
  • Taşyürek, M. and Tarakçioğlu, N. (2017). Enhancing fatigue life of filament winding laminar and curved pipes containing carbon nanotubes, and their fatigue failure. Polymers and Polymer Composites, 25(2), 167-176. https://doi.org/10.1177/096739111702500207
  • Tsotsis, T. K., Keller, S., Lee, K., Bardis, J. and Bish, J. (2001). Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature. Composites Science and Technology, 61(1), 75-86. https://doi.org/10.1016/S0266-3538(00)00196-2
  • Xiao, C., Tan, Y., Wang, X., Gao, L., Wang, L. and Qi, Z. (2018). Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers. Chemical Physics Letters, 703, 8-16. https://doi.org/10.1016/j.cplett.2018.05.012
  • Zhang, L., Wu, H., Zheng, Z., He, H., Wei, M. and Huang, X. (2019). Fabrication of graphene oxide/multi-walled carbon nanotube/urushiol formaldehyde polymer composite coatings and evaluation of their physico-mechanical properties and corrosion resistance. Progress in Organic Coatings, 127, 131-139. https://doi.org/10.1016/j.porgcoat.2018.10.026
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Taşyürek 0000-0001-9016-8584

Şerafettin Ekinci 0000-0003-0885-5903

Yayımlanma Tarihi 15 Nisan 2021
Gönderilme Tarihi 13 Temmuz 2020
Kabul Tarihi 29 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Taşyürek, M., & Ekinci, Ş. (2021). Deniz içi nakil hatlarında polimer esaslı CNT takviyeli kompozit boruların kullanılabilirliği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 609-621. https://doi.org/10.17714/gumusfenbil.767802