Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of graphene oxide by modified Hummers method and its effects on Al/GO/n-InP diode performance as interlayer film

Yıl 2021, , 235 - 244, 15.01.2021
https://doi.org/10.17714/gumusfenbil.770061

Öz

Graphene oxide (GO) was synthesized by the modified Hummers method. The graphene oxide film deposited by using spray pyrolysis on metal-semiconductor interface of Al/GO/n-InP Schottky diode. The effect of GO film on Al/GO/n-InP Schottky diode characteristics was investigated. The structural properties of GO films were determined by X-Ray diffraction measurements (XRD) and scanning electron microscopy (SEM) measurements. The absorbance and transmittance spectra of the GO film were measured and their optical properties were investigated. From the I-V characteristics of the Al/GO/n-InP diode at room temperature, this structure was shown to have a rectifying property. In addition, it was determined that the diode had very good photovoltaic properties from the I-V measurements under dark and 100 mW/cm2 light intensity. The characteristic parameters of the Al/GO/n-InP Schottky diode such as the ideal factor (n), barrier height (Φb0), series resistance (Rs) and shunt resistance (Rsh) were calculated and compared with the reference Al/n-InP diode. The Al/GO/n-InP Schottky diode structure was found to be a suitable material for various electronic and optoelectronic circuit applications.

Kaynakça

  • Alam, S. N., Sharma, N. and Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified hummers method and ıts thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 06(01), 1-18, https://doi:10.4236/graphene.2017.61001.
  • Aydoğan, Ş., Sağlam, M. and Türüt, A. (2008). Some electrical properties of polyaniline/p-Si/Al structure at 300K and 77K temperatures, Microelectronic Engineering, 85(2), 278-283, https://doi:10.1016/j.mee.2007.06.004.
  • Baltakesmez, A., Taşer, A., Kudaş, Z., Güzeldir, B., Ekinci, D. and Sağlam, M. (2019). Barrier height modification of n-InP using a silver nanoparticles loaded graphene oxide as an ınterlayer in a wide temperature range, Journal of Electronic Materials, 48(5), 3169-3182, https://doi:10.1007/s11664-019-07088-8.
  • Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R. and Menéndez, R. (2013). Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 65, 156-164, https://doi:10.1016/j.carbon.2013.08.009.
  • Chen, C., Xu, K., Ji, X., Miao, L. and Jiang, J. (2014). Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide, Physical Chemistry Chemical Physics, 16(22), 11031-11036,
  • Cheung, S. K., Cheung, N. W. and H., N. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics, Applied Physics Letters, 49(2), 85-87, https://doi:10.1063/1.97359.
  • Cimilli Çatır, F. E. (2020). Fabrication and characterization of Au/n-type InP Schottky barrier diode with monolayer graphene interlayer, Semiconductor Science and Technology, 35(3), 035023, https://doi:10.1088/1361-6641/ab6bb4.
  • Cimilli Çatır, F. E. (2020). The structural, optical, and electrical characterization of Ti/n-InP Schottky diodes with graphene oxide ınterlayer deposited by spray pyrolysis method, Physica Status Solidi (a), 217(19), 2000125, https://doi:https://doi.org/10.1002/pssa.202000125.
  • Cimilli, F. E., Efeoğlu, H., Sağlam, M. and Türüt, A. (2008). Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In Schottky diodes, Journal of Materials Science: Materials in Electronics, 20(2), 105-112, https://doi:10.1007/s10854-008-9635-z.
  • Cimilli, F. E., Sağlam, M. and Türüt, A. (2007). Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes, Semiconductor Science and Technology, 22(8), 851-854, https://doi:10.1088/0268-1242/22/8/003.
  • Çakıcı, T., Sağlam, M. and Güzeldir, B. (2015). The comparison of electrical characteristics of Au/n-InP/In and Au/In2S3/n-InP/In junctions at room temperature, Materials Science and Engineering: B, 193, 61-69, https://doi:10.1016/j.mseb.2014.11.003.
  • Çiçek, O., Tan, S. O., Tecimer, H. and Altındal, Ş. (2018). Role of graphene-doped organic/polymer nanocomposites on the electronic properties of Schottky junction structures for photocell applications, Journal of Electronic Materials, 47(12), 7134-7142, https://doi:10.1007/s11664-018-6644-4.
  • Çiçek, O., Uslu Tecimer, H., Tan, S. O., Tecimer, H., Orak, İ. and Altındal, Ş. (2017). Synthesis and characterization of pure and graphene (Gr)-doped organic/polymer nanocomposites to investigate the electrical and photoconductivity properties of Au/n-GaAs structures, Composites Part B: Engineering, 113, 14-23, https://doi:10.1016/j.compositesb.2017.01.012.
  • Dimiev, A. M. and Eigler, S. (2016). Graphene oxide: fundamentals and applications United Kingdom: John Wiley & Sons.
  • Dimiev, A. M. and Tour, J. M. (2014). Mechanism of graphene oxide formation, ACS Nano, 8(3), 3060-3068,
  • Duman, S., Ozcelik, F. S., Gürbulak, B., Gülnahar, M. and Turut, A. (2015). Current-voltage and capacitance-conductance-voltage characteristics of Al/SiO2/p-Si and Al/methyl green (MG)/p-Si structures, Metallurgical and Materials Transactions A, 46(1), 347-353, https://doi:10.1007/s11661-014-2621-6.
  • Gullu, O., Cankaya, M. and Rajagopal Reddy, V. (2018). Barrier enhancement of Al/n-InP Schottky diodes by graphene oxide thin layer, Indian Journal of Physics, 93(4), 467-474, https://doi:10.1007/s12648-018-1311-4.
  • Hummers, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339-1339, https://doi:10.1021/ja01539a017.
  • Li, F., Jiang, X., Zhao, J. and Zhang, S. (2015). Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy, 16, 488-515,
  • Olumurewa, K. O., Olofinjana, B., Fasakin, O., Eleruja, M. A. and Ajayi, E. O. B. (2017). Characterization of high yield graphene oxide synthesized by simplified Hummers method, Graphene, 06(04), 85-98, https://doi:10.4236/graphene.2017.64007.
  • Park, S., and Ruoff, R. S. (2009). Chemical methods for the production of graphenes, Nature nanotechnology, 4(4), 217,
  • Perrozzi, F., Prezioso, S. and Ottaviano, L. (2014). Graphene oxide: from fundamentals to applications, Journal of Physics: Condensed Matter, 27(1), 013002, https://doi:10.1088/0953-8984/27/1/013002.
  • Phan, D. T., Gupta, R. K., Chung, G. S., Al-Ghamdi, A. A., Al-Hartomy, O. A., El-Tantawy, F. and Yakuphanoglu, F. (2012). Photodiodes based on graphene oxide–silicon junctions, Solar Energy, 86(10), 2961-2966, https://doi:https://doi.org/10.1016/j.solener.2012.07.002.
  • Reddy, P. R. S., Janardhanam, V., Jyothi, I., Yuk, S. H., Reddy, V. R., Jeong, J. C. and Choi, C. J. (2016). Modification of Schottky barrier properties of Ti/p-type InP Schottky diode by polyaniline (PANI) organic interlayer, JSTS:Journal of Semiconductor Technology and Science, 16(5), 664-674, https://doi:10.5573/jsts.2016.16.5.664.
  • Reddy, V. R., Reddy, Y. M., Padmasuvarna, R., ve Narasappa, T. L. (2015). Ru/Ti Schottky contacts on n-type In-P (100): temperature dependence of current-voltage (I-V) characteristics, Procedia Materials Science, 10, 666-672, https://doi:10.1016/j.mspro.2015.06.060.
  • Rhoderick, E. H. and Williams, R. H. (1988). Metal-semiconductor contact New York: Clarendon Press; Oxford University Press.
  • Sağlam, M., Ayyıldız, E., Gümüş, A., Türüt, A., Efeoğlu, H. and Tüzemen, S. (1996). Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes, Applied Physics A: Materials Science & Processing, 62(3), 269-273, https://doi:10.1007/s003390050297.
  • Sattler, K. D. (2016). Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamonds New York: CRC Press.
  • Zhao, J., Liu, L. and Li, F. (2015). Graphene oxide: physics and applications Verlag Berlin Heidelberg: Springer.

Grafen oksitin modifiye Hummers yöntemi ile sentezi ve film olarak Al/GO/n-InP diyot performansına etkileri

Yıl 2021, , 235 - 244, 15.01.2021
https://doi.org/10.17714/gumusfenbil.770061

Öz

Grafen oksit (GO) modifiye Hummers yöntemi ile sentezlendi. Metal-yarıiletken arayüzeyine spray pyrolysis yöntemiyle büyütülen grafen oksit filmin Al/GO/n-InP Schottky diyot karakteristikleri üzerine etkisi araştırıldı. GO filmlerin yapısal özellikleri X-Işını kırınımı ölçümleri (XRD) ve taramalı elektron mikroskobu (SEM) ölçümleri ile belirlendi. GO filmin absorbans ve transmittans spektrumları alınarak optik özellikleri araştırıldı. Al/GO/n-InP diyotunun oda sıcaklığındaki I-V karakteristiklerinden bu yapının doğrultucu özellik gösterdiği görüldü. Ayrıca, karanlık ve 100 mW/cm2 ışık şiddeti altında yapılan I-V ölçümleri doğrultusunda diyotun oldukça iyi fotovoltaik özelliklere sahip olduğu belirlendi. Al/GO/n-InP Schottky diyotunun idealite faktörü (n) ,engel yüksekliği (Φb0), seri direnç (Rs) ve şönt direnci Rsh gibi karakteristik parametreleri hesaplanarak arayüzey tabakasız referans Al/n-InP diyotu ile karşılaştırıldı. Al/GO/n-InP Schottky diyot yapısının çeşitli elektronik ve optoelektronik devre uygulamaları için uygun bir malzeme olduğu görüldü.

Kaynakça

  • Alam, S. N., Sharma, N. and Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified hummers method and ıts thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 06(01), 1-18, https://doi:10.4236/graphene.2017.61001.
  • Aydoğan, Ş., Sağlam, M. and Türüt, A. (2008). Some electrical properties of polyaniline/p-Si/Al structure at 300K and 77K temperatures, Microelectronic Engineering, 85(2), 278-283, https://doi:10.1016/j.mee.2007.06.004.
  • Baltakesmez, A., Taşer, A., Kudaş, Z., Güzeldir, B., Ekinci, D. and Sağlam, M. (2019). Barrier height modification of n-InP using a silver nanoparticles loaded graphene oxide as an ınterlayer in a wide temperature range, Journal of Electronic Materials, 48(5), 3169-3182, https://doi:10.1007/s11664-019-07088-8.
  • Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R. and Menéndez, R. (2013). Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 65, 156-164, https://doi:10.1016/j.carbon.2013.08.009.
  • Chen, C., Xu, K., Ji, X., Miao, L. and Jiang, J. (2014). Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide, Physical Chemistry Chemical Physics, 16(22), 11031-11036,
  • Cheung, S. K., Cheung, N. W. and H., N. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics, Applied Physics Letters, 49(2), 85-87, https://doi:10.1063/1.97359.
  • Cimilli Çatır, F. E. (2020). Fabrication and characterization of Au/n-type InP Schottky barrier diode with monolayer graphene interlayer, Semiconductor Science and Technology, 35(3), 035023, https://doi:10.1088/1361-6641/ab6bb4.
  • Cimilli Çatır, F. E. (2020). The structural, optical, and electrical characterization of Ti/n-InP Schottky diodes with graphene oxide ınterlayer deposited by spray pyrolysis method, Physica Status Solidi (a), 217(19), 2000125, https://doi:https://doi.org/10.1002/pssa.202000125.
  • Cimilli, F. E., Efeoğlu, H., Sağlam, M. and Türüt, A. (2008). Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In Schottky diodes, Journal of Materials Science: Materials in Electronics, 20(2), 105-112, https://doi:10.1007/s10854-008-9635-z.
  • Cimilli, F. E., Sağlam, M. and Türüt, A. (2007). Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes, Semiconductor Science and Technology, 22(8), 851-854, https://doi:10.1088/0268-1242/22/8/003.
  • Çakıcı, T., Sağlam, M. and Güzeldir, B. (2015). The comparison of electrical characteristics of Au/n-InP/In and Au/In2S3/n-InP/In junctions at room temperature, Materials Science and Engineering: B, 193, 61-69, https://doi:10.1016/j.mseb.2014.11.003.
  • Çiçek, O., Tan, S. O., Tecimer, H. and Altındal, Ş. (2018). Role of graphene-doped organic/polymer nanocomposites on the electronic properties of Schottky junction structures for photocell applications, Journal of Electronic Materials, 47(12), 7134-7142, https://doi:10.1007/s11664-018-6644-4.
  • Çiçek, O., Uslu Tecimer, H., Tan, S. O., Tecimer, H., Orak, İ. and Altındal, Ş. (2017). Synthesis and characterization of pure and graphene (Gr)-doped organic/polymer nanocomposites to investigate the electrical and photoconductivity properties of Au/n-GaAs structures, Composites Part B: Engineering, 113, 14-23, https://doi:10.1016/j.compositesb.2017.01.012.
  • Dimiev, A. M. and Eigler, S. (2016). Graphene oxide: fundamentals and applications United Kingdom: John Wiley & Sons.
  • Dimiev, A. M. and Tour, J. M. (2014). Mechanism of graphene oxide formation, ACS Nano, 8(3), 3060-3068,
  • Duman, S., Ozcelik, F. S., Gürbulak, B., Gülnahar, M. and Turut, A. (2015). Current-voltage and capacitance-conductance-voltage characteristics of Al/SiO2/p-Si and Al/methyl green (MG)/p-Si structures, Metallurgical and Materials Transactions A, 46(1), 347-353, https://doi:10.1007/s11661-014-2621-6.
  • Gullu, O., Cankaya, M. and Rajagopal Reddy, V. (2018). Barrier enhancement of Al/n-InP Schottky diodes by graphene oxide thin layer, Indian Journal of Physics, 93(4), 467-474, https://doi:10.1007/s12648-018-1311-4.
  • Hummers, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339-1339, https://doi:10.1021/ja01539a017.
  • Li, F., Jiang, X., Zhao, J. and Zhang, S. (2015). Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy, 16, 488-515,
  • Olumurewa, K. O., Olofinjana, B., Fasakin, O., Eleruja, M. A. and Ajayi, E. O. B. (2017). Characterization of high yield graphene oxide synthesized by simplified Hummers method, Graphene, 06(04), 85-98, https://doi:10.4236/graphene.2017.64007.
  • Park, S., and Ruoff, R. S. (2009). Chemical methods for the production of graphenes, Nature nanotechnology, 4(4), 217,
  • Perrozzi, F., Prezioso, S. and Ottaviano, L. (2014). Graphene oxide: from fundamentals to applications, Journal of Physics: Condensed Matter, 27(1), 013002, https://doi:10.1088/0953-8984/27/1/013002.
  • Phan, D. T., Gupta, R. K., Chung, G. S., Al-Ghamdi, A. A., Al-Hartomy, O. A., El-Tantawy, F. and Yakuphanoglu, F. (2012). Photodiodes based on graphene oxide–silicon junctions, Solar Energy, 86(10), 2961-2966, https://doi:https://doi.org/10.1016/j.solener.2012.07.002.
  • Reddy, P. R. S., Janardhanam, V., Jyothi, I., Yuk, S. H., Reddy, V. R., Jeong, J. C. and Choi, C. J. (2016). Modification of Schottky barrier properties of Ti/p-type InP Schottky diode by polyaniline (PANI) organic interlayer, JSTS:Journal of Semiconductor Technology and Science, 16(5), 664-674, https://doi:10.5573/jsts.2016.16.5.664.
  • Reddy, V. R., Reddy, Y. M., Padmasuvarna, R., ve Narasappa, T. L. (2015). Ru/Ti Schottky contacts on n-type In-P (100): temperature dependence of current-voltage (I-V) characteristics, Procedia Materials Science, 10, 666-672, https://doi:10.1016/j.mspro.2015.06.060.
  • Rhoderick, E. H. and Williams, R. H. (1988). Metal-semiconductor contact New York: Clarendon Press; Oxford University Press.
  • Sağlam, M., Ayyıldız, E., Gümüş, A., Türüt, A., Efeoğlu, H. and Tüzemen, S. (1996). Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes, Applied Physics A: Materials Science & Processing, 62(3), 269-273, https://doi:10.1007/s003390050297.
  • Sattler, K. D. (2016). Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamonds New York: CRC Press.
  • Zhao, J., Liu, L. and Li, F. (2015). Graphene oxide: physics and applications Verlag Berlin Heidelberg: Springer.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fulya Esra Cimilli Çatır 0000-0002-0757-3130

Yayımlanma Tarihi 15 Ocak 2021
Gönderilme Tarihi 15 Temmuz 2020
Kabul Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Cimilli Çatır, F. E. (2021). Grafen oksitin modifiye Hummers yöntemi ile sentezi ve film olarak Al/GO/n-InP diyot performansına etkileri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 235-244. https://doi.org/10.17714/gumusfenbil.770061