Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı çimentolardan üretilen köpük betonlarda atık lastiklerin hafif agrega olarak kullanımı

Yıl 2021, , 692 - 703, 15.07.2021
https://doi.org/10.17714/gumusfenbil.859989

Öz

Küresel ısınmanın artmasıyla birlikte günümüzde yapıların ölü yüklerini azaltmak ve ısı yalıtımı özelliklerini iyileştirmek için geleneksel betona alternatif çözümler aranmaktadır. Bu ihtiyaçlardan dolayı düşük birim ağırlık ve üstün termal özellikleri sahip köpük beton ön plana çıkmaktadır. Bu çalışmada, farklı çimentolar ile farklı birim ağırlığa sahip köpük betonlar üretilmiştir. Çalışma kapsamında CEM II, CEM III ve CEM IV’den oluşan kompoze çimentolar kullanılmıştır. 30, 60 ve 90 kg/m3 köpük içeriği ile 9 farklı karışım elde edilmiştir. Köpük betonların üretiminde agrega olarak 0-1 mm boyutunda atık lastikler kullanılmıştır. Köpük içeriği arttıkça betonların görünür porozite ve su emme değerleri artarken birim ağırlık değerleri azalmıştır. Köpük betonların birim ağırlıkları 595-980 kg/m3 arasında değişmektedir. 28 günlük basınç dayanımları ise 0.53-1.56 MPa arasında değişmektedir. Köpük betonların köpük içeriği arttıkça su işleme derinliği azalmıştır. Köpük betonların su işleme derinlikleri 2.6-8.2 mm arasındadır. İki yönlü ANOVA analizi sonucunda çimento tipindeki değişim köpük beton özelliklerini etkilememektedir. Ancak köpük içeriğindeki değişim köpük beton özelliklerini doğrudan etkileyebilmektedir. CEM III tipi çimentodan üretilen köpük betonların mekanik özellikleri diğer çimento tiplerine göre daha yüksek olmaktadır. Sonuç olarak çevre ve insan sağlığı açısından zararlı olan atık lastiklerin köpük beton üretiminde kullanılabileceği belirlenmiştir. Atık lastik agregası ile üretilen köpük betonların tuğladan daha iyi yakın bir termal özellik göstereceği tahmin edilmektedir.

Kaynakça

  • Adhikari, B., De, D. and Maiti, S., (2000). Reclamation and recycling of waste rubber. Progress in Polymer Science, 25, 909-948. https://doi.org/10.1016/S0079-6700(00)00020-4
  • Afshinnia, K. and Poursaee, A., (2015). The influence of waste crumb rubber in reducing the alkali-silica reaction in mortar bars. Journal of Building Engineering, 4, 231-236. https://doi.org/10.1016/j.jobe.2015.10.002
  • Ahmad, M.R. and Chen, B., (2019). Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate. Composites Part B Engineering 171, 46-60. https://doi.org/10.1016/j.compositesb.2019.04.025
  • Akhund, M.A., Khoso, A.R., Pathan, A.A., Memon, U. and Siddiqui, F.H., (2017). Influence of biomass aggregate on strength of foam concrete. International Journal of Civil Engineering and Technology 8 (8), 1645-1653.
  • Amran, Y.H.M., Farzadnia, N. and Ali, A.A.A., (2015). Properties and applications of foamed concrete; A review. Construction and Building Materials, 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  • ASTM C1437, (2013). Standard test method for flow of hydraulic cement mortar, ASTM International.
  • ASTM C 1585-04, (2004). Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM International.
  • ASTM C348, (1998). Standard test method for flexural strength of hydraulic-cement mortars. ASTM International.
  • ASTM C349, (2002). Standard test method for compressive strength of hydraulic-cement mortars (Using portions of prisms broken in flexure). ASTM International.
  • ASTM C642-13, (2013). Standard test method for density, absorption, and voids in hardened concrete, ASTM International. ASTM International.
  • Bayraktar, O.Y., (2020). Pirinç kabuğu atıklarının köpük beton üretiminde kullanılması. Turkish Journal of Agriculture-Food Science, 8(12), 2716-2722. https://doi.org/10.24925/turjaf.v8i12.2716-2722.4010
  • Chandni, T.J. and Anand, K.B., (2018). Utilization of recycled waste as filler in foam concrete. Journal of Building Engineering, 19, 154-160. https://doi.org/10.1016/j.jobe.2018.04.032
  • Chen, B. and Liu, N., (2013). A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construction and Building Materials, 44, 691-698. https://doi.org/10.1016/j.conbuildmat.2013.03.091
  • Dong, Q., Huang, B. and Shu, X., (2013). Rubber modified concrete improved by chemically active coating and silane coupling agent. Construction and Building Materials 48, 116-123 https://doi.org/10.1016/j.conbuildmat.2013.06.072
  • Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O. and Mills, J.E., (2020). Influence of rubber particles on the properties of foam concrete. Journal of Building Engineering, 30, 101217. https://doi.org/10.1016/j.jobe.2020.101217
  • EN 771-1, (2003). Specification for masonry units - Part 1: Clay masonry units. European Standard.
  • Ganjian, E., Khorami, M. and Maghsoudi, A.A., (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23 (5), 1828-1836 https://doi.org/10.1016/j.conbuildmat.2008.09.020
  • Gao, J.M., Qian, C.X., Liu, H.F., Wang, B. and Li, L., (2005). ITZ microstructure of concrete containing GGBS. Cement and Concrete Research 35 (7), 1299-1304 https://doi.org/10.1016/j.cemconres.2004.06.042
  • Gesolu, M. and Güneyisi, E., (2011). Permeability properties of self-compacting rubberized concretes. Construction and Building Materials, 25 (8), 3319-3326 https://doi.org/10.1016/j.conbuildmat.2011.03.021
  • Ghorbani, Saeid, Ghorbani, Sahar, Tao, Z., de Brito, J. and Tavakkolizadeh, M., (2019). Effect of magnetized water on foam stability and compressive strength of foam concrete. Construction and Building Materials, 197(10) 280-290. https://doi.org/10.1016/j.conbuildmat.2018.11.160
  • Giannakou A. and Jones M.R., (2002). Potential of foamed concrete to enhance the thermal performance of low-rise dwellings. Innovations and Developments in Concrete Materials and Construction: Proceedings of the International Conference (pp. 533–544). Dundee.
  • Gowri, R. and Anand, K.B., (2018). Utilization of fly ash and ultrafine GGBS for higher strength foam concrete, in: IOP Conference Series: Materials Science and Engineering, 310. https://doi.org/10.1088/1757-899X/310/1/012070
  • Gupta, T., Chaudhary, S. and Sharma, R.K., (2014). Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73 (30), 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102
  • Gupta, T., Sharma, R.K. and Chaudhary, S., (2015). Impact resistance of concrete containing waste rubber fiber and silica fume. International Journal of Impact Engineering, 83, 76-87. https://doi.org/10.1016/j.ijimpeng.2015.05.002
  • Gupta, T., Tiwari, A., Siddique, S., Sharma, R.K. and Chaudhary, S., (2017). Response assessment under dynamic loading and microstructural ınvestigations of rubberized concrete. Journal of Materials in Civil Engineering, 29(8). https://doi.org/10.1061/(asce)mt.1943-5533.0001905
  • Hassanli, R., Youssf, O. and Mills, J.E., (2017). Experimental investigations of reinforced rubberized concrete structural members. Journal of Building Engineering, 10, 149-165. https://doi.org/10.1016/j.jobe.2017.03.006
  • Jiang, J., Lu, Z., Niu, Y., Li, J. and Zhang, Y., (2016). Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials & Design, 92, 949-959. https://doi.org/10.1016/j.matdes.2015.12.068
  • Jiang, Y., Ling, T.C., Shi, C. and Pan, S.Y., (2018). Characteristics of steel slags and their use in cement and concrete—A review. Resources, Conservation and Recycling 136, 187-197 https://doi.org/10.1016/j.resconrec.2018.04.023
  • Jones, M.R., Zheng, L. and Ozlutas, K., (2016). Stability and instability of foamed concrete. Magazine of Concrete Research, 68 (11) 542-549. https://doi.org/10.1680/macr.15.00097
  • Kaplan, G., Öztürk, A.U. ve Uğur Kaplan, A.B., (2020). Çimento ve uçucu kül bünyesindeki ağır metallerin etkilerinin hidratasyon ve çevre sağlığı açısından incelenmesi. Mühendislik Bilim. ve Tasarım Dergisi, 8(1), 305-313. https://doi.org/10.21923/jesd.512389
  • Khan, Q.S., Sheikh, M.N., McCarthy, T.J., Robati, M. and Allen, M., (2019). Experimental investigation on foam concrete without and with recycled glass powder: A sustainable solution for future construction. Construction and Building Materials, 201, 369-379. https://doi.org/10.1016/j.conbuildmat.2018.12.178
  • Kilincarslan, Ş., Davraz, M. and Akça, M., (2018). The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete. Arabian Journal of Geosciences 11. https://doi.org/10.1007/s12517-018-3627-y
  • Kim, D.V., Cong, L.N., Van, L.T. and Bazhenova, S.I., (2020). Foamed concrete containing various amounts of organic-mineral additives. Journal of Physics: Conference Series, 1425. https://doi.org/10.1088/1742-6596/1425/1/012199
  • Krishnan, G. and Anand, K.B., (2018). Industrial waste utilization for foam concrete. IOP Conference Series: Materials Science and Engineering, 310. https://doi.org/10.1088/1757-899X/310/1/012062
  • Lee YL, Hung YT., (2005). Exploitation of solid wastes with foamed concrete. London: Thomas Telford.
  • Li, P., Wu, H., Liu, Y., Yang, J., Fang, Z. and Lin, B., (2019). Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Construction and Building Materials, 205, 529-542. https://doi.org/10.1016/j.conbuildmat.2019.01.212
  • Majhi, R.K. and Nayak, A.N., (2020). Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator. Journal of Cleaner Production, 255. https://doi.org/10.1016/j.jclepro.2020.120188
  • Mashiri, M.S., Vinod, J.S., Sheikh, M.N. and Tsang, H.H., (2015). Shear strength and dilatancy behaviour of sand-tyre chip mixtures. Soils and Foundations, 55(3), 517-528. https://doi.org/10.1016/j.sandf.2015.04.004
  • Mehrani, S.A., Bhatti, I.A., Bhatti, N.B., Jhatial, A.A. and Lohar, M.A., (2019). Utilization of Rubber powder of waste tyres in foam concrete. Journal of Applied Engineering Sciences 9(22), 87-90. https://doi.org/10.2478/jaes-2019-0011
  • Mendis, A.S.M., Al-Deen, S. and Ashraf, M., (2018). Flexural shear behaviour of reinforced Crumbed Rubber Concrete beam. Construction and Building Materials, 166, 779-791. https://doi.org/10.1016/j.conbuildmat.2018.01.150
  • Nambiar, E.K.K. and Ramamurthy, K., (2007). Sorption characteristics of foam concrete. Cement and Concrete Research, 37(9), 1341-1347. https://doi.org/10.1016/j.cemconres.2007.05.010
  • Nambiar, E.K.K. and Ramamurthy, K., (2006). Influence of filler type on the properties of foam concrete. Cement and Concrete Composites, 28(5), 475-480. https://doi.org/10.1016/j.cemconcomp.2005.12.001
  • Oikonomou, N. and Mavridou, S., (2009). The use of waste tyre rubber in civil engineering works. Sustainability of Construction Materials, 213-238. https://doi.org/10.1533/9781845695842.213
  • Pacheco-Torres, R., Cerro-Prada, E., Escolano, F. and Varela, F., (2018). Fatigue performance of waste rubber concrete for rigid road pavements. Construction and Building Materials, 176, 539-548. https://doi.org/10.1016/j.conbuildmat.2018.05.030
  • Pan, Z., Li, H. and Liu, W., (2014). Preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Construction and Building Materials, 72, 256-261. https://doi.org/10.1016/j.conbuildmat.2014.08.078
  • Prim, P. and Wittmann, F. H., (1983). Structure and water absorption of aerated concrete. Wittmann F.H. (Ed.), Autoclaved Aerated Concrete, Moisture and Properties, (pp. 55-69). Elsevier.
  • Raj, A., Sathyan, D. and Mini, K.M., (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • Ramamurthy, K., Kunhanandan Nambiar, E.K. and Indu Siva Ranjani, G., (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388-396. https://doi.org/10.1016/j.cemconcomp.2009.04.006
  • Scott, E., (2016). End-of-life tyre report, european tyre & rubber manufacturers association, ETRMA.
  • Si, R., Wang, J., Guo, S., Dai, Q. and Han, S., (2018). Evaluation of laboratory performance of self-consolidating concrete with recycled tire rubber. Journal of Cleaner Production, 180, 823-831. https://doi.org/10.1016/j.jclepro.2018.01.180
  • Sofi, A., (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691-2700. https://doi.org/10.1016/j.asej.2017.08.007
  • Tarasov, A.S., Kearsley, E.P., Kolomatskiy, A.S. and Mostert, H.F., (2010). Heat evolution due to cement hydration in foamed concrete. Magazine of Concrete Research, 62(12), 895-906. https://doi.org/10.1680/macr.2010.62.12.895
  • Van Deijk, S. (1992)., Foamed Concrete. Blackwater: A Dutch View, British Cement Association.
  • Vo, C. V., Bunge, F., Duffy, J. and Hood, L., (2011). Advances in thermal insulation of extruded polystyrene foams. Cellular Polymers, 30(3), 137-156. https://doi.org/10.1177/026248931103000303
  • Wakchaure, M.R. and Chavan, P.A., (2014). Waste tyre crumb rubber particle as a partial replacement to fine aggregate in concrete. International Journal of Engineering Research & Technology, 3(6), 1206-1209.
  • Wei, S., Yiqiang, C., Yunsheng, Z. and Jones, M.R. (2013). Characterization and simulation of microstructure and thermal properties of foamed concrete. Construction and Building Materials, 47, 1278-1291. https://doi.org/10.1016/j.conbuildmat.2013.06.027

Use of waste tires as lightweight aggregate in foam concrete produced from different cement

Yıl 2021, , 692 - 703, 15.07.2021
https://doi.org/10.17714/gumusfenbil.859989

Öz

With the increase in global warming, alternative solutions to traditional concrete are being inquired today to reduce dead loads of structures and improve their thermal insulation properties. Due to these needs, foam concrete with low unit weight and superior thermal properties comes to the fore. In this study, foam concretes with different unit weight were produced with different cements. In the scope of the study, composite cements consisting of CEM II, CEM II and CEM IV were used. 9 different mixtures were obtained with foam contents of 30, 60 and 90 kg/m3. 0-1 mm waste tires were used as aggregate in the production of foam concretes. As the foam content increased, the apparent porosity and water absorption values of concrete increased, while the unit weight values decreased. The unit weights of foam concretes range from 595-980 kg/m3. 28-day compressive strength ranges from 0.53-1.56 MPa. As the foam content of foam concretes increased, the depth of water penetration decreased. Water penetration depths of foam concrete are between 2.6-8.2 mm. As a result of two-way ANOVA analysis, the change in cement type does not affect the properties of foam concrete. But the change in foam content can directly affect the properties of foam concrete. The mechanical properties of foam concrete produced from CEM III type cement are higher than other cement types. As a result, it was determined that waste tires that are harmful to the environment and human health can be used in the production of foam concrete. It is estimated that foam concrete produced with waste rubber aggregate will show a closer thermal property than brick.

Kaynakça

  • Adhikari, B., De, D. and Maiti, S., (2000). Reclamation and recycling of waste rubber. Progress in Polymer Science, 25, 909-948. https://doi.org/10.1016/S0079-6700(00)00020-4
  • Afshinnia, K. and Poursaee, A., (2015). The influence of waste crumb rubber in reducing the alkali-silica reaction in mortar bars. Journal of Building Engineering, 4, 231-236. https://doi.org/10.1016/j.jobe.2015.10.002
  • Ahmad, M.R. and Chen, B., (2019). Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate. Composites Part B Engineering 171, 46-60. https://doi.org/10.1016/j.compositesb.2019.04.025
  • Akhund, M.A., Khoso, A.R., Pathan, A.A., Memon, U. and Siddiqui, F.H., (2017). Influence of biomass aggregate on strength of foam concrete. International Journal of Civil Engineering and Technology 8 (8), 1645-1653.
  • Amran, Y.H.M., Farzadnia, N. and Ali, A.A.A., (2015). Properties and applications of foamed concrete; A review. Construction and Building Materials, 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  • ASTM C1437, (2013). Standard test method for flow of hydraulic cement mortar, ASTM International.
  • ASTM C 1585-04, (2004). Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM International.
  • ASTM C348, (1998). Standard test method for flexural strength of hydraulic-cement mortars. ASTM International.
  • ASTM C349, (2002). Standard test method for compressive strength of hydraulic-cement mortars (Using portions of prisms broken in flexure). ASTM International.
  • ASTM C642-13, (2013). Standard test method for density, absorption, and voids in hardened concrete, ASTM International. ASTM International.
  • Bayraktar, O.Y., (2020). Pirinç kabuğu atıklarının köpük beton üretiminde kullanılması. Turkish Journal of Agriculture-Food Science, 8(12), 2716-2722. https://doi.org/10.24925/turjaf.v8i12.2716-2722.4010
  • Chandni, T.J. and Anand, K.B., (2018). Utilization of recycled waste as filler in foam concrete. Journal of Building Engineering, 19, 154-160. https://doi.org/10.1016/j.jobe.2018.04.032
  • Chen, B. and Liu, N., (2013). A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construction and Building Materials, 44, 691-698. https://doi.org/10.1016/j.conbuildmat.2013.03.091
  • Dong, Q., Huang, B. and Shu, X., (2013). Rubber modified concrete improved by chemically active coating and silane coupling agent. Construction and Building Materials 48, 116-123 https://doi.org/10.1016/j.conbuildmat.2013.06.072
  • Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O. and Mills, J.E., (2020). Influence of rubber particles on the properties of foam concrete. Journal of Building Engineering, 30, 101217. https://doi.org/10.1016/j.jobe.2020.101217
  • EN 771-1, (2003). Specification for masonry units - Part 1: Clay masonry units. European Standard.
  • Ganjian, E., Khorami, M. and Maghsoudi, A.A., (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23 (5), 1828-1836 https://doi.org/10.1016/j.conbuildmat.2008.09.020
  • Gao, J.M., Qian, C.X., Liu, H.F., Wang, B. and Li, L., (2005). ITZ microstructure of concrete containing GGBS. Cement and Concrete Research 35 (7), 1299-1304 https://doi.org/10.1016/j.cemconres.2004.06.042
  • Gesolu, M. and Güneyisi, E., (2011). Permeability properties of self-compacting rubberized concretes. Construction and Building Materials, 25 (8), 3319-3326 https://doi.org/10.1016/j.conbuildmat.2011.03.021
  • Ghorbani, Saeid, Ghorbani, Sahar, Tao, Z., de Brito, J. and Tavakkolizadeh, M., (2019). Effect of magnetized water on foam stability and compressive strength of foam concrete. Construction and Building Materials, 197(10) 280-290. https://doi.org/10.1016/j.conbuildmat.2018.11.160
  • Giannakou A. and Jones M.R., (2002). Potential of foamed concrete to enhance the thermal performance of low-rise dwellings. Innovations and Developments in Concrete Materials and Construction: Proceedings of the International Conference (pp. 533–544). Dundee.
  • Gowri, R. and Anand, K.B., (2018). Utilization of fly ash and ultrafine GGBS for higher strength foam concrete, in: IOP Conference Series: Materials Science and Engineering, 310. https://doi.org/10.1088/1757-899X/310/1/012070
  • Gupta, T., Chaudhary, S. and Sharma, R.K., (2014). Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73 (30), 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102
  • Gupta, T., Sharma, R.K. and Chaudhary, S., (2015). Impact resistance of concrete containing waste rubber fiber and silica fume. International Journal of Impact Engineering, 83, 76-87. https://doi.org/10.1016/j.ijimpeng.2015.05.002
  • Gupta, T., Tiwari, A., Siddique, S., Sharma, R.K. and Chaudhary, S., (2017). Response assessment under dynamic loading and microstructural ınvestigations of rubberized concrete. Journal of Materials in Civil Engineering, 29(8). https://doi.org/10.1061/(asce)mt.1943-5533.0001905
  • Hassanli, R., Youssf, O. and Mills, J.E., (2017). Experimental investigations of reinforced rubberized concrete structural members. Journal of Building Engineering, 10, 149-165. https://doi.org/10.1016/j.jobe.2017.03.006
  • Jiang, J., Lu, Z., Niu, Y., Li, J. and Zhang, Y., (2016). Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials & Design, 92, 949-959. https://doi.org/10.1016/j.matdes.2015.12.068
  • Jiang, Y., Ling, T.C., Shi, C. and Pan, S.Y., (2018). Characteristics of steel slags and their use in cement and concrete—A review. Resources, Conservation and Recycling 136, 187-197 https://doi.org/10.1016/j.resconrec.2018.04.023
  • Jones, M.R., Zheng, L. and Ozlutas, K., (2016). Stability and instability of foamed concrete. Magazine of Concrete Research, 68 (11) 542-549. https://doi.org/10.1680/macr.15.00097
  • Kaplan, G., Öztürk, A.U. ve Uğur Kaplan, A.B., (2020). Çimento ve uçucu kül bünyesindeki ağır metallerin etkilerinin hidratasyon ve çevre sağlığı açısından incelenmesi. Mühendislik Bilim. ve Tasarım Dergisi, 8(1), 305-313. https://doi.org/10.21923/jesd.512389
  • Khan, Q.S., Sheikh, M.N., McCarthy, T.J., Robati, M. and Allen, M., (2019). Experimental investigation on foam concrete without and with recycled glass powder: A sustainable solution for future construction. Construction and Building Materials, 201, 369-379. https://doi.org/10.1016/j.conbuildmat.2018.12.178
  • Kilincarslan, Ş., Davraz, M. and Akça, M., (2018). The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete. Arabian Journal of Geosciences 11. https://doi.org/10.1007/s12517-018-3627-y
  • Kim, D.V., Cong, L.N., Van, L.T. and Bazhenova, S.I., (2020). Foamed concrete containing various amounts of organic-mineral additives. Journal of Physics: Conference Series, 1425. https://doi.org/10.1088/1742-6596/1425/1/012199
  • Krishnan, G. and Anand, K.B., (2018). Industrial waste utilization for foam concrete. IOP Conference Series: Materials Science and Engineering, 310. https://doi.org/10.1088/1757-899X/310/1/012062
  • Lee YL, Hung YT., (2005). Exploitation of solid wastes with foamed concrete. London: Thomas Telford.
  • Li, P., Wu, H., Liu, Y., Yang, J., Fang, Z. and Lin, B., (2019). Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Construction and Building Materials, 205, 529-542. https://doi.org/10.1016/j.conbuildmat.2019.01.212
  • Majhi, R.K. and Nayak, A.N., (2020). Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator. Journal of Cleaner Production, 255. https://doi.org/10.1016/j.jclepro.2020.120188
  • Mashiri, M.S., Vinod, J.S., Sheikh, M.N. and Tsang, H.H., (2015). Shear strength and dilatancy behaviour of sand-tyre chip mixtures. Soils and Foundations, 55(3), 517-528. https://doi.org/10.1016/j.sandf.2015.04.004
  • Mehrani, S.A., Bhatti, I.A., Bhatti, N.B., Jhatial, A.A. and Lohar, M.A., (2019). Utilization of Rubber powder of waste tyres in foam concrete. Journal of Applied Engineering Sciences 9(22), 87-90. https://doi.org/10.2478/jaes-2019-0011
  • Mendis, A.S.M., Al-Deen, S. and Ashraf, M., (2018). Flexural shear behaviour of reinforced Crumbed Rubber Concrete beam. Construction and Building Materials, 166, 779-791. https://doi.org/10.1016/j.conbuildmat.2018.01.150
  • Nambiar, E.K.K. and Ramamurthy, K., (2007). Sorption characteristics of foam concrete. Cement and Concrete Research, 37(9), 1341-1347. https://doi.org/10.1016/j.cemconres.2007.05.010
  • Nambiar, E.K.K. and Ramamurthy, K., (2006). Influence of filler type on the properties of foam concrete. Cement and Concrete Composites, 28(5), 475-480. https://doi.org/10.1016/j.cemconcomp.2005.12.001
  • Oikonomou, N. and Mavridou, S., (2009). The use of waste tyre rubber in civil engineering works. Sustainability of Construction Materials, 213-238. https://doi.org/10.1533/9781845695842.213
  • Pacheco-Torres, R., Cerro-Prada, E., Escolano, F. and Varela, F., (2018). Fatigue performance of waste rubber concrete for rigid road pavements. Construction and Building Materials, 176, 539-548. https://doi.org/10.1016/j.conbuildmat.2018.05.030
  • Pan, Z., Li, H. and Liu, W., (2014). Preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Construction and Building Materials, 72, 256-261. https://doi.org/10.1016/j.conbuildmat.2014.08.078
  • Prim, P. and Wittmann, F. H., (1983). Structure and water absorption of aerated concrete. Wittmann F.H. (Ed.), Autoclaved Aerated Concrete, Moisture and Properties, (pp. 55-69). Elsevier.
  • Raj, A., Sathyan, D. and Mini, K.M., (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • Ramamurthy, K., Kunhanandan Nambiar, E.K. and Indu Siva Ranjani, G., (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388-396. https://doi.org/10.1016/j.cemconcomp.2009.04.006
  • Scott, E., (2016). End-of-life tyre report, european tyre & rubber manufacturers association, ETRMA.
  • Si, R., Wang, J., Guo, S., Dai, Q. and Han, S., (2018). Evaluation of laboratory performance of self-consolidating concrete with recycled tire rubber. Journal of Cleaner Production, 180, 823-831. https://doi.org/10.1016/j.jclepro.2018.01.180
  • Sofi, A., (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691-2700. https://doi.org/10.1016/j.asej.2017.08.007
  • Tarasov, A.S., Kearsley, E.P., Kolomatskiy, A.S. and Mostert, H.F., (2010). Heat evolution due to cement hydration in foamed concrete. Magazine of Concrete Research, 62(12), 895-906. https://doi.org/10.1680/macr.2010.62.12.895
  • Van Deijk, S. (1992)., Foamed Concrete. Blackwater: A Dutch View, British Cement Association.
  • Vo, C. V., Bunge, F., Duffy, J. and Hood, L., (2011). Advances in thermal insulation of extruded polystyrene foams. Cellular Polymers, 30(3), 137-156. https://doi.org/10.1177/026248931103000303
  • Wakchaure, M.R. and Chavan, P.A., (2014). Waste tyre crumb rubber particle as a partial replacement to fine aggregate in concrete. International Journal of Engineering Research & Technology, 3(6), 1206-1209.
  • Wei, S., Yiqiang, C., Yunsheng, Z. and Jones, M.R. (2013). Characterization and simulation of microstructure and thermal properties of foamed concrete. Construction and Building Materials, 47, 1278-1291. https://doi.org/10.1016/j.conbuildmat.2013.06.027
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Oğuzhan Yavuz Bayraktar 0000-0003-0578-6965

Gökhan Kaplan 0000-0001-6067-7337

Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 13 Ocak 2021
Kabul Tarihi 14 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Bayraktar, O. Y., & Kaplan, G. (2021). Farklı çimentolardan üretilen köpük betonlarda atık lastiklerin hafif agrega olarak kullanımı. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 692-703. https://doi.org/10.17714/gumusfenbil.859989