Araştırma Makalesi
BibTex RIS Kaynak Göster

The impact of turnip mosaic virus on physiological and morphological parameters of kale plants

Yıl 2021, , 919 - 924, 15.07.2021
https://doi.org/10.17714/gumusfenbil.885232

Öz

Kale is one of the most important leafy vegetables. Turnip mosaic virus (TuMV) is a Potyvirus of the family Potyviridae that causes diseases in kale plants. This study was carried out to determine effect of TuMV on morphological and physiological characteristics of kale plants. Relationships between TuMV infection and some morphological/physiological parameters of kale were determined. According to the results obtained, in TuMV-infected kale plants have reduced plant (6.0%) and leaf (13.9%) length, leaf width (25.9%), stalk length (8.6%), root length (55.5%), plant fresh (37.8%) and, dry (38.9%) weight, root fresh (43.8%), dry (41.1%) weight, leaf chlorophyll (12.4%) and water (0.57%) contents There were significant differences (p<0.05) between healthy and infected plants for the morphological and physiological parameters.

Kaynakça

  • Akcura, C. and Sevik, M. A. (2016). Determination of viruses in leaf cabbage production areas in Samsun province. Yuzuncu Yil University Journal of Agricultural Sciences, 26(2), 196-201.
  • Aksu, G., Temel, E. and Altay, H. (2017). Effects of potassium iodide foliar applications on iodine enrichment of rocket plant (Eruca vesicaria). Canakkale Onsekiz Mart University, Journal of Agriculture Faculty, 5(2), 97-104.
  • Fang, Z., Liu, Y., Lou, P. and Liu, G. (2005). Current trends in cabbage breeding. Journal of New Seeds, 6(2-3), 75-107. https://doi.org/10.1300/J153v06n02_05
  • Gorecka, K. and Lehmann, P. (2001). Infectious diseases of horseradish (Cochlearia armoracia L.) in Poland. Plant Breeding and Seed Science, 45(1), 55-64.
  • Guo, D. P., Guo, Y. P., Zhao, J. P., Liu, H., Peng, Y., Wang, Q. M. and Rao, G. Z. (2005). Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after Turnip mosaic virus infection. Plant Science, 168(1), 57-63. https://doi.org/10.1016/j.plantsci.2004.07.019
  • Hooks, C. R. R., Wright, M. G., Kabasawa, D. S., Manandhar, R. and Almeida, R. P. P. (2008). Effect of Banana bunchy top virus infection on morphology and growth characteristics of banana. Annals of Applied Biology, 153(1), 1-9. https://doi.org/10.1111/j.1744-7348.2008.00233.x
  • Jiang, Y., Wang, J. H., Yang, H., Xu, M. Y., Yuan, S., Sun, W. and Lin, H. H. (2010). Identification and sequence analysis of Turnip mosaic virus infection on cruciferous crops in southwest of China. Journal of Plant Pathology, 92(1), 241-244. https://dx.doi.org/10.4454/jpp.v92i1.37
  • Jones, R. A. C., Coutts, B. A. and Hawkes, J. (2007). Yield-limiting potential of Beet western yellows virus in Brassica napus. Australian Journal of Agricultural Research, 58, 788-801. https://doi.org/10.1071/AR06391
  • Kolte, S. J. (2018). Diseases of Annual Edible Oilseed Crops: Rapeseed-Mustard and Sesame Diseases. CRC press, USA.
  • Latham, L. J., Smith, L. J. and Jones, R. A. C. (2003). Incidence of three viruses in vegetable brassica plantings and associated wild radish weeds in south-west Australia. Australasian Plant Pathology, 32(3), 387-391. https://doi.org/10.1071/AP03031
  • Liu, X. P., Lu, W. C., Liu, Y. K. and Li, J. L. (1990). A study on TuMV strain differentiation of cruciferous vegetables from ten provinces in China. Chinese Science Bulletin, 35, 1734-1739.
  • Liu X. P., Lu, W. C., Liu, Y. K. and Wei, S. Q. (1996). Occurrence and strain differentiation of Turnip mosaic potyvirus and sources of resistance in Chinese cabbage in China. Acta Horticulturae, 407, 431-440. https://doi.org/10.17660/ActaHortic.1996.407.55
  • Nguyen, H. D., Tomitaka, Y., Ho, S. Y. W., Duchene, S., Vetten, H. J., Lesemann, D. and Ohshima, K. (2013). Turnip mosaic potyvirus probably first spread to Eurasian Brassica crops from wild orchids about 1000 years ago. PLoS One, 8, 1-13. https://doi.org/10.1371/journal.pone.0055336
  • Raybould, A. F., Maskell, L. C., Edwards, M. L., Cooper, J. I. and Gray, A. J. (1999). The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. New Phytologist, 141, 265-275. https://doi.org/10.1046/j.1469-8137.1999.00339.x
  • Rusholme, R. L., Higgins, E. E., Walsh, J. A. and Lydiate, D. J. (2007). Genetic control of broad-spectrum resistance to Turnip mosaic virus in Brassica rapa (Chinese cabbage). Journal of General Virology, 88(11), 3177-3186. https://doi.org/10.1099/vir.0.83194-0
  • Sevik, M. A. (2016a). Viruses infecting brassica crops in the Black Sea Region of Turkey. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 66(7), 553-557.
  • Sevik, M. A. (2016b). Turnip mosaic virus infecting kale plants in Ordu, Turkey. Phyton-International Journal of Experimental Botany, 85, 231-235. https://doi.org/10.1080/09064710.2016.1199731
  • Sevik, M. A. (2019). Viruses infecting cool season crops in the northern Turkey. Anais da Academia Brasileira de Ciencias, 91(3): e20180224. https://doi.org/10.1590/0001-3765201920180224
  • Shattuck, V. I. (1992). The biology, epidemiology and control of Turnip mosaic virus. J. Janick (Ed) Plant breeding reviews (pp. 199-238). New York, John Wiley and Sons.
  • Spence, N. J., Phiri, N. A., Hughes, S. L., Mwaniki, A., Simons, S., Oduor, G., Chacha, D., Kuria, A., Ndirangu, S., Kibata, G. N. and Marris, G. C. (2007). Economic impact of Turnip mosaic virus, Cauliflower mosaic virus and Beet mosaic virus in three Kenyan vegetables. Plant Pathology, 56, 317-323. https://doi.org/10.1111/j.1365-3059.2006.01498.x
  • Tabarestani, A. Z., Shamsbakhsh, M., & Safaei, N. (2010). Distribution of three important aphid borne canola viruses in Golestan province. Iranian Journal of Plant Protection Science, 41(2), 251-259.
  • Turkstat. (2018). Turkish statistical institute, Production values of crop products. http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel.zul. Accessed 20 October 2018.
  • Wang, L, Hunt Jr. E. R., Qu, J. J., Hao, X. and Daughtry, C. S. (2011). Estimating dry matter content of fresh leaves from the residuals between leaf and water reflectance. Remote Sensing Letters, 2(2), 137-145. https://doi.org/10.1080/01431161.2010.503973
  • Wang, Z., Jiang, D., Zhang, C., Tan, H., Li, Y., Lv, S. and Cui, X. (2015). Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Gene, 571(2), 178-187. https://doi.org/10.1016/j.gene.2015.06.047
  • Xie, T. T., Su, P. X., An, L. Z., Shan, L. S., Zhou, Z. J., & Chai, Z. P. (2016). Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton. Plant Production Science, 19(1), 165-172. https://doi.org/10.1080/1343943X.2015.1128088

Turnip mosaic virus’un yaprak lahana bitkilerinin fizyolojik ve morfolojik parametrelerine etkisi

Yıl 2021, , 919 - 924, 15.07.2021
https://doi.org/10.17714/gumusfenbil.885232

Öz

Yaprak lahana en önemli yaprağı yenen sebze türlerinden biridir. Potyviridae familyası Potyvirus cinsi içerisinde yer alan Turnip mosaic virus (TuMV), yaprak lahana bitkilerinde hastalıklara neden olmaktadır. TuMV'nin yaprak lahana bitkilerinin morfolojik ve fizyolojik özelliklerine etkisini belirlemek amacıyla bu çalışma yürütülmüştür. TuMV enfeksiyonu ile yaprak lahana bitkisinin bazı morfolojik ve fizyolojik parametreleri arasındaki ilişkiler belirlenmiştir. Çalışmada elde edilen sonuçlara göre, TuMV enfeksiyonu yaprak lahanaların; bitki (%6.0) ve yaprak (%13.9) boyunda, yaprak (%25.9) genişliğinde, sap (%8.6) ve kök (%55.9) uzunluğunda, bitki yaş (%37.8) ve kuru (%38.9) ağırlığında, kök yaş (%43.8) ve kuru (%41.1) ağırlığında, yaprak klorofil (%12.4) ve su (%0.57) içeriğinde azalmalara neden olmuştur. TuMV'nin yaprak lahana bitkilerinin morfolojik ve fizyolojik parametrelere etkisi bakımından, sağlıklı ve enfekteli bitkiler arasında önemli farklılıklar (p<0.05) bulunmuştur.

Kaynakça

  • Akcura, C. and Sevik, M. A. (2016). Determination of viruses in leaf cabbage production areas in Samsun province. Yuzuncu Yil University Journal of Agricultural Sciences, 26(2), 196-201.
  • Aksu, G., Temel, E. and Altay, H. (2017). Effects of potassium iodide foliar applications on iodine enrichment of rocket plant (Eruca vesicaria). Canakkale Onsekiz Mart University, Journal of Agriculture Faculty, 5(2), 97-104.
  • Fang, Z., Liu, Y., Lou, P. and Liu, G. (2005). Current trends in cabbage breeding. Journal of New Seeds, 6(2-3), 75-107. https://doi.org/10.1300/J153v06n02_05
  • Gorecka, K. and Lehmann, P. (2001). Infectious diseases of horseradish (Cochlearia armoracia L.) in Poland. Plant Breeding and Seed Science, 45(1), 55-64.
  • Guo, D. P., Guo, Y. P., Zhao, J. P., Liu, H., Peng, Y., Wang, Q. M. and Rao, G. Z. (2005). Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after Turnip mosaic virus infection. Plant Science, 168(1), 57-63. https://doi.org/10.1016/j.plantsci.2004.07.019
  • Hooks, C. R. R., Wright, M. G., Kabasawa, D. S., Manandhar, R. and Almeida, R. P. P. (2008). Effect of Banana bunchy top virus infection on morphology and growth characteristics of banana. Annals of Applied Biology, 153(1), 1-9. https://doi.org/10.1111/j.1744-7348.2008.00233.x
  • Jiang, Y., Wang, J. H., Yang, H., Xu, M. Y., Yuan, S., Sun, W. and Lin, H. H. (2010). Identification and sequence analysis of Turnip mosaic virus infection on cruciferous crops in southwest of China. Journal of Plant Pathology, 92(1), 241-244. https://dx.doi.org/10.4454/jpp.v92i1.37
  • Jones, R. A. C., Coutts, B. A. and Hawkes, J. (2007). Yield-limiting potential of Beet western yellows virus in Brassica napus. Australian Journal of Agricultural Research, 58, 788-801. https://doi.org/10.1071/AR06391
  • Kolte, S. J. (2018). Diseases of Annual Edible Oilseed Crops: Rapeseed-Mustard and Sesame Diseases. CRC press, USA.
  • Latham, L. J., Smith, L. J. and Jones, R. A. C. (2003). Incidence of three viruses in vegetable brassica plantings and associated wild radish weeds in south-west Australia. Australasian Plant Pathology, 32(3), 387-391. https://doi.org/10.1071/AP03031
  • Liu, X. P., Lu, W. C., Liu, Y. K. and Li, J. L. (1990). A study on TuMV strain differentiation of cruciferous vegetables from ten provinces in China. Chinese Science Bulletin, 35, 1734-1739.
  • Liu X. P., Lu, W. C., Liu, Y. K. and Wei, S. Q. (1996). Occurrence and strain differentiation of Turnip mosaic potyvirus and sources of resistance in Chinese cabbage in China. Acta Horticulturae, 407, 431-440. https://doi.org/10.17660/ActaHortic.1996.407.55
  • Nguyen, H. D., Tomitaka, Y., Ho, S. Y. W., Duchene, S., Vetten, H. J., Lesemann, D. and Ohshima, K. (2013). Turnip mosaic potyvirus probably first spread to Eurasian Brassica crops from wild orchids about 1000 years ago. PLoS One, 8, 1-13. https://doi.org/10.1371/journal.pone.0055336
  • Raybould, A. F., Maskell, L. C., Edwards, M. L., Cooper, J. I. and Gray, A. J. (1999). The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. New Phytologist, 141, 265-275. https://doi.org/10.1046/j.1469-8137.1999.00339.x
  • Rusholme, R. L., Higgins, E. E., Walsh, J. A. and Lydiate, D. J. (2007). Genetic control of broad-spectrum resistance to Turnip mosaic virus in Brassica rapa (Chinese cabbage). Journal of General Virology, 88(11), 3177-3186. https://doi.org/10.1099/vir.0.83194-0
  • Sevik, M. A. (2016a). Viruses infecting brassica crops in the Black Sea Region of Turkey. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 66(7), 553-557.
  • Sevik, M. A. (2016b). Turnip mosaic virus infecting kale plants in Ordu, Turkey. Phyton-International Journal of Experimental Botany, 85, 231-235. https://doi.org/10.1080/09064710.2016.1199731
  • Sevik, M. A. (2019). Viruses infecting cool season crops in the northern Turkey. Anais da Academia Brasileira de Ciencias, 91(3): e20180224. https://doi.org/10.1590/0001-3765201920180224
  • Shattuck, V. I. (1992). The biology, epidemiology and control of Turnip mosaic virus. J. Janick (Ed) Plant breeding reviews (pp. 199-238). New York, John Wiley and Sons.
  • Spence, N. J., Phiri, N. A., Hughes, S. L., Mwaniki, A., Simons, S., Oduor, G., Chacha, D., Kuria, A., Ndirangu, S., Kibata, G. N. and Marris, G. C. (2007). Economic impact of Turnip mosaic virus, Cauliflower mosaic virus and Beet mosaic virus in three Kenyan vegetables. Plant Pathology, 56, 317-323. https://doi.org/10.1111/j.1365-3059.2006.01498.x
  • Tabarestani, A. Z., Shamsbakhsh, M., & Safaei, N. (2010). Distribution of three important aphid borne canola viruses in Golestan province. Iranian Journal of Plant Protection Science, 41(2), 251-259.
  • Turkstat. (2018). Turkish statistical institute, Production values of crop products. http://tuikapp.tuik.gov.tr/bitkiselapp/bitkisel.zul. Accessed 20 October 2018.
  • Wang, L, Hunt Jr. E. R., Qu, J. J., Hao, X. and Daughtry, C. S. (2011). Estimating dry matter content of fresh leaves from the residuals between leaf and water reflectance. Remote Sensing Letters, 2(2), 137-145. https://doi.org/10.1080/01431161.2010.503973
  • Wang, Z., Jiang, D., Zhang, C., Tan, H., Li, Y., Lv, S. and Cui, X. (2015). Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Gene, 571(2), 178-187. https://doi.org/10.1016/j.gene.2015.06.047
  • Xie, T. T., Su, P. X., An, L. Z., Shan, L. S., Zhou, Z. J., & Chai, Z. P. (2016). Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton. Plant Production Science, 19(1), 165-172. https://doi.org/10.1080/1343943X.2015.1128088
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Mehmet Ali Şevik 0000-0002-8895-7944

Nuran Cansız 0000-0003-3093-6275

Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 23 Şubat 2021
Kabul Tarihi 5 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şevik, M. A., & Cansız, N. (2021). The impact of turnip mosaic virus on physiological and morphological parameters of kale plants. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 919-924. https://doi.org/10.17714/gumusfenbil.885232