Araştırma Makalesi
BibTex RIS Kaynak Göster

Fuzzy inverse logic: part-2. validation and evaluation of the method

Yıl 2021, , 768 - 791, 15.07.2021
https://doi.org/10.17714/gumusfenbil.894879

Öz

In the first part of this study, which consists of two parts, the introduction of the fuzzy inverse logic method, its foundations, computation and process flow and details were given. In this second part, the method was applied on a very simple mathematical problem and on a simple civil engineering design problem in order to investigate and evaluate the validity of the method easily. Fuzzy inverse logic computations have been carried out on these two simple problems for different dimension, sensitivity and acceptable error values. By comparing the obtained results with the desired outputs and mathematical results, the effective computation ability of the method was tried to be revealed. As a result, it is understood that the method developed in this study has many promising aspects in terms of theoretical computations and practical applications and can be used effectively in many scientific fields.

Kaynakça

  • Altaş, İ. H. (1999a). Bulanık Mantık: Bulanıklılık Kavramı. Enerji, Elektrik, Elektromekanik-3e,62, 80-85.
  • Altaş, İ. H. (1999b). Bulanık mantık: Bulanık denetim. Enerji, Elektrik, Elektromekanik-3e, 64(1999), 76-81.
  • Altaş, I. H. (2017). Fuzzy Logic Control in Energy Systems with Design Applications in MATLAB®/Simulink® (91). IET.
  • Chopard, B. and Droz, M. (1998). Cellular automata (Vol. 1). Berlin, Germany: Springer.
  • Cvijović, D. and Klinowski, J. (1995). Taboo search: an approach to the multiple minima problem. Science, 267 (5198), 664-666. https://doi.org/10.1126/science.267.5198.664
  • Erdun, H. (2020). Fuzzy Logic Defuzzification (Bulanıklaştırma) Methods with Examples: Erişim adresi https://www.researchgate.net/publication/344196954_Fuzzy_Logic_Defuzzification_Bulaniklastirma_Methods_with_Examples
  • Harris, J. (2005). Fuzzy logic applications in engineering science (Vol. 29). Springer Science & Business Media.
  • Jain, A. K., Mao, J. and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31-44. https://doi.org/10.1109/2.485891
  • Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, 4, 1942-1948.
  • Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied mathematics and computation, 214(1), 108-132. https://doi.org/10.1016/j.amc.2009.03.090
  • Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  • Mamdani, E. H. (1976). Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies, 8(6), 669-678. https://doi.org/10.1016/S0020-7373(76)80028-4
  • Moscato, P., Cotta, C. and Mendes, A. (2004). Memetic algorithms. In new optimization techniques in engineering (pp. 53-85). Springer, Berlin, Heidelberg.
  • Öztekin, E. ve Filiz, K. (2015). Beton gerilme şekildeğiştirme eğrilerinin bulanık mantık yaklaşımıyla elde edilmesi. Mühendislikte Yeni Teknolojiler Sempozyumu, Bayburt.
  • Parpinelli, R. S., Lopes, H. S. and Freitas, A. A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions On Evolutionary Computation, 6(4), 321-332. https://doi.org/10.1109/TEVC.2002.802452
  • Pörge, B. (2019). Investigation of reliabilities of the triaxial concrete compressive strength models by fuzzy logic approach, Yüksek Lisans Tezi, Bayburt Üniversitesi Fen Bilimleri Enstitüsü, Bayburt.
  • Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8), 5508-5518. Ross, T. J. (2004). Fuzzy logic with engineering applications (Vol. 2). New York: Wiley.
  • Terano, T., Asai, K. and Sugeno, M. (1992). Fuzzy systems theory and its applications. Academic Press Professional, Inc.
  • Tanaka, K. (1997). An introduction to fuzzy logic for practical applications.
  • Van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated annealing. In simulated annealing: Theory and applications (pp. 7-15). Springer.
  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65-85. https://doi.org/10.1007/BF00175354
  • Yager, R. R. and Zadeh, L. A. (Eds.). (2012). An introduction to fuzzy logic applications in intelligent systems (Vol. 165). Springer Science & Business Media.
  • Yang, X. S. and Gandomi, A. H. (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations, 29(5), 464-483. https://doi.org/10.1108/02644401211235834
  • Zadeh, L. A. (1965). Information and control. Fuzzy Sets, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man and Cybernetics, (1), 28-44. https://doi.org/10.1109/TSMC.1973.5408575
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information Sciences, 9(1), 43-80. https://doi.org/10.1016/0020-0255(75)90036-5

Bulanık ters mantık: kısım-2. yöntemin doğrulanması ve değerlendirilmesi

Yıl 2021, , 768 - 791, 15.07.2021
https://doi.org/10.17714/gumusfenbil.894879

Öz

Bulanık ters mantık yönteminin anlatıldığı ve iki kısımdan oluşan çalışmanın birinci kısmında yöntemin tanıtımı, dayandığı temeller, hesap ve işlem akış ve detaylarının verilmiştir. Bu ikinci kısımda ise yöntemin geçerliliğinin kolayca araştırılarak değerlendirilebilmesi için yöntem çok basit bir matematik problem ile inşaat mühendisliğinde basit bir tasarım problemi üzerine uygulanmıştır. Bu basit problemler üzerinde farklı boyut, hassasiyet ve kabul edilebilir hata değerleri için Bulanık ters mantık çözümlemeleri gerçekleştirilmiştir. Elde edilen sonuçlar ile hedeflenen ve matematiksel sonuçlar karşılaştırılarak yöntemin etkin hesap yapabilme yeteneği ortaya konulmaya çalışılmıştır. Çalışmadan elde edilen bulgular detaylıca değerlendirilerek yöntemin avantajları, dezavantajları belirlenmeye çalışılmıştır. Sonuç olarak bu çalışmada geliştirilen yöntemin teorik hesaplamalar ve pratik uygulamalar açısından ümit verici birçok yönü olduğu ve birçok alanda etkili olarak kullanılabileceği anlaşılmıştır.

Kaynakça

  • Altaş, İ. H. (1999a). Bulanık Mantık: Bulanıklılık Kavramı. Enerji, Elektrik, Elektromekanik-3e,62, 80-85.
  • Altaş, İ. H. (1999b). Bulanık mantık: Bulanık denetim. Enerji, Elektrik, Elektromekanik-3e, 64(1999), 76-81.
  • Altaş, I. H. (2017). Fuzzy Logic Control in Energy Systems with Design Applications in MATLAB®/Simulink® (91). IET.
  • Chopard, B. and Droz, M. (1998). Cellular automata (Vol. 1). Berlin, Germany: Springer.
  • Cvijović, D. and Klinowski, J. (1995). Taboo search: an approach to the multiple minima problem. Science, 267 (5198), 664-666. https://doi.org/10.1126/science.267.5198.664
  • Erdun, H. (2020). Fuzzy Logic Defuzzification (Bulanıklaştırma) Methods with Examples: Erişim adresi https://www.researchgate.net/publication/344196954_Fuzzy_Logic_Defuzzification_Bulaniklastirma_Methods_with_Examples
  • Harris, J. (2005). Fuzzy logic applications in engineering science (Vol. 29). Springer Science & Business Media.
  • Jain, A. K., Mao, J. and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31-44. https://doi.org/10.1109/2.485891
  • Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, 4, 1942-1948.
  • Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied mathematics and computation, 214(1), 108-132. https://doi.org/10.1016/j.amc.2009.03.090
  • Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  • Mamdani, E. H. (1976). Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies, 8(6), 669-678. https://doi.org/10.1016/S0020-7373(76)80028-4
  • Moscato, P., Cotta, C. and Mendes, A. (2004). Memetic algorithms. In new optimization techniques in engineering (pp. 53-85). Springer, Berlin, Heidelberg.
  • Öztekin, E. ve Filiz, K. (2015). Beton gerilme şekildeğiştirme eğrilerinin bulanık mantık yaklaşımıyla elde edilmesi. Mühendislikte Yeni Teknolojiler Sempozyumu, Bayburt.
  • Parpinelli, R. S., Lopes, H. S. and Freitas, A. A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions On Evolutionary Computation, 6(4), 321-332. https://doi.org/10.1109/TEVC.2002.802452
  • Pörge, B. (2019). Investigation of reliabilities of the triaxial concrete compressive strength models by fuzzy logic approach, Yüksek Lisans Tezi, Bayburt Üniversitesi Fen Bilimleri Enstitüsü, Bayburt.
  • Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8), 5508-5518. Ross, T. J. (2004). Fuzzy logic with engineering applications (Vol. 2). New York: Wiley.
  • Terano, T., Asai, K. and Sugeno, M. (1992). Fuzzy systems theory and its applications. Academic Press Professional, Inc.
  • Tanaka, K. (1997). An introduction to fuzzy logic for practical applications.
  • Van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated annealing. In simulated annealing: Theory and applications (pp. 7-15). Springer.
  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65-85. https://doi.org/10.1007/BF00175354
  • Yager, R. R. and Zadeh, L. A. (Eds.). (2012). An introduction to fuzzy logic applications in intelligent systems (Vol. 165). Springer Science & Business Media.
  • Yang, X. S. and Gandomi, A. H. (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations, 29(5), 464-483. https://doi.org/10.1108/02644401211235834
  • Zadeh, L. A. (1965). Information and control. Fuzzy Sets, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man and Cybernetics, (1), 28-44. https://doi.org/10.1109/TSMC.1973.5408575
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information Sciences, 9(1), 43-80. https://doi.org/10.1016/0020-0255(75)90036-5
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ertekin Öztekin 0000-0002-4229-0953

Yayımlanma Tarihi 15 Temmuz 2021
Gönderilme Tarihi 11 Mart 2021
Kabul Tarihi 8 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Öztekin, E. (2021). Fuzzy inverse logic: part-2. validation and evaluation of the method. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 768-791. https://doi.org/10.17714/gumusfenbil.894879