Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikrodalga ve kıvılcım plazma sinterlemenin Cu-LaB6 nanokompozitlerin elektriksel, ısıl ve mekanik özellikleri üzerindeki etkilerinin karşılaştırılması

Yıl 2021, , 1282 - 1294, 15.10.2021
https://doi.org/10.17714/gumusfenbil.926697

Öz

Çalışmada, nano lantan heksaborid (LaB6) partiküllerinin, mikrodalga sinterleme (MS) ve kıvılcım plazma sinterleme (SPS) işlemleri kullanılarak üretilen bakır esaslı nanokompozitlerin (Cu-LaB6) elektriksel, ısıl ve mekanik özellikleri üzerine etkileri araştırılmıştır. Nano LaB6 partikülleri, MS ve SPS ile üretilen Cu matrisli nanokompozitlerin elektrik iletkenliğini sırasıyla % 20 ve % 13 oranında azalmasına neden olmuştur. Cu-LaB6 nanokompozitleri, takviyesiz Cu'dan daha düşük termal iletkenliğe sahip olmuştur. SPS metodu ile üretilen Cu-LaB6 nanokompozitinin elektriksel ve ısıl iletkenlikleri, MS ile üretilen Cu-LaB6 nanokompozitinden daha yüksek olmuştur. Nanokompozitlerin ısıl iletkenliğini elektriksel iletkenliklerinden hesaplayabilmek için partikül hacim oranını ve gözenekliliği dikkate alan bir denklem geliştirilmiştir. Cu-LaB6 nanokompozitler için hesaplanan ısıl iletkenlik değerleri deneysel sonuçlara oldukça yakın sonuçlar vermiştir. Cu-LaB6 nanokompozitleri, takviye edilmemiş Cu malzemelere göre sırasıyla % 49 ve % 38 oranında daha yüksek sertliğe ve basma dayanımına sahip olmuştur. SPS yöntemi ile üretilen Cu-LaB6 nanokompozitinin sertliği ve basma dayanımı, MS ile üretilen Cu-LaB6 nanokompozitinden daha yüksek olmuştur. Nano LaB6 partiküllerinin, Cu'nun elektriksel ve ısıl iletkenliklerinin bir miktar düşmesine neden olmasına rağmen, nano LaB6 partikülleri ile SPS işleminin olumlu etkileri biraraya getirilerek, yüksek sertlik ve basma dayanımına sahip Cu-LaB6 nanokompozit üretilmiştir.

Kaynakça

  • Afzal, S. R. and Harish, S. (2020). Synthesis and characterization of titanium carbide reinforced copper based metal matrix composite. International Research Journal of Engineering and Technology, 7(7), 2451-2457.
  • Ayyappadas, C., Annamalai, A. R., Agrawal, D. K. and Muthuchamy, A. (2017). Conventional and microwave assisted sintering of copper-silicon carbide metal matrix composites: a comparison. Metallurgical Research & Technology, 114(5), 506(1-10). https://doi.org/10.1051/metal/2017033 Balice, L., Cologna, M., Audubert, F. and Hazemann, J. L. (2021). Densification mechanisms of UO2 consolidated by spark plasma sintering. Journal of the European Ceramic Society, 41(1), 719-728. https://doi.org/10.1016/j.jeurceramsoc.2020.07.002
  • Bian, Y., Ni, J., Wang, C., Zhen, J., Hao, H., Kong, X., Chen, H., Li, J., Li, X., Jia, Z., Luo, W. and Chen, Z. (2021). Microstructure and wear characteristics of in-situ micro/nanoscale niobium carbide reinforced copper composites fabricated through powder metallurgy. Materials Characterization, 172(110847), 1-14. https://doi.org/10.1016/j.matchar.2020.110847
  • Cavaliere, P., Sadeghi, B. and Shabani, A. (2019). Spark plasma sintering: Process fundamentals. P. Cavaliere (Ed.) Spark Plasma Sintering of Materials Advances in Processing and Applications (pp. 3-20). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-05327-7
  • Chmielewski, M., Pietrzak, K., Strojny-Nędza, A., Kaszyca, K., Zybała, R., Bazarnik, P., Lewandowska, M. and Nosewicz, S. (2017). Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique. Science of Sintering, 49, 11-22. https://doi.org/10.2298/SOS1701011C
  • Cong, D., Huimin, L., Shan, F., Yuan, Q., Qilong, H. and Jiachen, J. (2019). Effect of La2O3 addition on copper matrix composites reinforced with Al2O3 ceramic particles. Materials Research Express, 6(10), (1-9). https://doi.org/10.1088/2053-1591/ab3eff
  • Degroh, H. C. and Balachandran, U. B. (2018). Conductivity of copper-carbon covetic composite. NASA STI Program, 219790 (pp 11).
  • Dias, M., Pinhão, N., Faustino, R., Martins, R. M. S., Ramos, A. S., Vieira, M. T., Correia, J. B., Camacho, E.., Fernandes, F. M. B., Nunes, B., Almeida, A., Mardolcar, U. V. and Alves, E. (2019). New WC-Cu composites for the divertor in fusion reactors. Journal of Nuclear Materials, 521, 31-37. https://doi.org/10.1016/j.jnucmat.2019.04.026
  • Fathy, A., Wagih, A. and Abu-Oqail, A. (2019). Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling. Ceramics International, 45(2:A), 2319-2329. https://doi.org/10.1016/j.ceramint.2018.10.147
  • Fan, X., Huang, X., Liu, Q., Ding, H. Wang, H. and Hao, C., (2019). The microstructures and properties of in-situ ZrB2 reinforced Cu matrix composites. Results in Physics, 14(102494), 1-6. https://doi.org/10.1016/j.rinp.2019.102494
  • Hossein, A., Reza, E. and Baghchesara, M. A. (2014). Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study. Composites Part B: Engineering, 56, 217-221. https://doi.org/10.1016/j.compositesb.2013.08.023
  • Kargul, M., Borowiecka-Jamrozek, J. and Konieczny, M. (2018). The effect of reinforcement particle size on the properties of Cu-Al2O3 composites. IOP Conference Series: Materials Science and Engineering, 461(012035), 1-6. https://doi.org/10.1088/1757-899X/461/1/012035
  • Kumar, M., Gupta, G. K., Modi, O. P., Prasad, B. K., Khare, A. K. and Sharma, M. (2017). Effect of separate and combined milling of Cu and TiB2 powders on the electrical and mechanical properties of Cu–TiB2 composites. The Canadian Journal of Metallurgy and Materials Science, 56(1), 58-66. https://doi.org/10.1080/00084433.2016.1247129
  • Lakshmanan, P., Dharmaselvan, S., Paramasivam, S., Kumar Kirubanandan, L. and Vigneshi R. (2019). Tribological properties of B4C nano particulates reinforced copper matrix nanocomposites. Materials Today: Proceedings, 16, 584-591. https://doi.org/10.1016/j.matpr.2019.05.132
  • Leich, L., Röttger, A., Kuchenbecker, R. and Theisen, W. (2020). Electro-discharge sintering of nanocrystalline NdFeB magnets: process parameters, microstructure, and the resulting magnetic properties. Journal of Materials Science: Materials in Electronics, 31, 20431-20443. https://doi.org/10.1007/s10854-020-04562-6
  • Li, J., Li, Y., Wang, Z., Bian, H., Hou, Y., Wang, F., Xu, G., Liu, B. and Liu, Y. (2016). Ultrahigh oxidation resistance and high electrical conductivity in copper-silver powder. Scientific Reports, 6(39650), 1-10. https://doi.org/10.1038/srep39650
  • Li, X., Wang, Y., Yin, C.-R. and Yin, Z. (2020). Copper nanowires in recent electronic applications: progress and perspectives. Journal of Materials Chemistry C, 8(3), 849-872. https://doi.org/10.1039/C9TC04744A
  • Lin, H., Guo, X., Song, K., Feng, J., Li, S. and Zhang, X. (2021). Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers. Nanotechnology Reviews, 10(1), 62-72. https://doi.org/10.1515/ntrev-2021-0006
  • Matvienko, O., Daneyko, O., Kovalevskaya, T., Khrustalyov, A., Zhukov, I. and Vorozhtsov, A. (2021). Investigation of stresses induced due to the mismatch of the coefficients of thermal expansion of the matrix and the strengthening particle in aluminum-based composites. Metals, 11(279), 1-20. https://doi.org/10.3390/met11020279
  • Moustafa, E. B. and Taha, M. A. (2021). Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying. International Journal of Minerals, Metallurgy and Materials, 28(3), 475-486. https://doi.org/10.1007/s12613-020-2176-z
  • Ngai, T. L., Zheng, W. and Li, Y. (2013). Effect of sintering temperature on the preparation of Cu–Ti3SiC2 metal matrix composite. Progress in Natural Science: Materials International, 23(1), 70-76. https://doi.org/10.1016/j.pnsc.2013.01.011
  • Oghbaei, M. and Mirzaee, O. (2010). Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 494, 175-189. https://doi.org/10.1016/j.jallcom.2010.01.068
  • Panda, S., Dash, K. and Ray, B. C. (2014). Processing and properties of Cu based micro- and nano-composites. Bulletin of Materials Science, 37(2), 227-238. https://doi.org/10.1007/s12034-014-0643-8
  • Pellizzari, M. and Cipolloni, G. (2020). Spark plasma sintering of copper matrix composites reinforced with TiB2 particles. Materials. 13(2602), 1-14. https://doi.org/10.3390/ma13112602
  • Raab, S. J., Guschlbauer, R., Lodes, M. A. and Körner, C. (2016). Thermal and electrical conductivity of 99.9% pure copper processed via selective electron beam melting. Advanced Engineering Materials, 18(9), 1661-1666. https://doi.org/10.1002/adem.201600078
  • Raj, S. S., Elavarasan, E., Arundeva, S., Devaraj, S., Gokulraj, E. and Govindharasu. C. (2018). Tribological test on copper based hybrid composite material, International Journal of Engineering Research & Technology (IJERT) ICITMSEE, 6(10), 1-4.
  • Ren, J., Liang, S., Jiang, Y. and Du, X. (2019). Research on the microstructure and properties of in situ (TiB2-TiB)/Cu composites. Acta Metallurgica Sinica, 55(1), 126-132. https://doi.org/10.11900/0412.1961.2017.00532
  • Saheb, N. (2013). Spark plasma and microwave sintering of Al6061 and Al2124 alloys. International Journal of Minerals, Metallurgy and Materials, 20(2), 152-159. https://doi.org/10.1007/s12613-013-0707-6
  • Sathish, T., Chandramohan, D., Vijayan, V. and Sebastian, P. J. (2019). Investigation on microstructural and mechanical properties of Cu reinforced with SiC composites prepared by microwave sintering process. Journal of New Materials for Electrochemical Systems, 22, 5-9. https://doi.org/10.14447/jnmes.v22i1.a02
  • Satishkumar, P., Mahesh, G., Meenakshi, R. and Vijayan, S. N. (2021). Tribological characteristics of powder metallurgy processed Cu- WC/SiC metal matrix composites. Materials Today: Proceedings, 37, 459-465. https://doi.org/10.1016/j.matpr.2020.05.449
  • Schipper, B. W. Lin, H. –Ch. Meloni, M. A. Wansleeben, K. Heijungs, R. and Van der Voet, E. (2018). Estimating global copper demand until 2100 with regression and stock dynamics. Resources, Conservation and Recycling, 132, 28-36. https://doi.org/10.1016/j.resconrec.2018.01.004
  • Shaik, M. A. and Golla, B. R. (2020). Two body abrasion wear behaviour of Cu–ZrB2 composites against SiC emery paper. Wear, 450-451(203260), 1-14. https://doi.org/10.1016/j.wear.2020.203260
  • Singh, M. K., Gautam, R. K. and Ji, G. (2019). Mechanical properties and corrosion behavior of copper based hybrid composites synthesized by stir casting. Results in Physics, 13(102319), 1-11. https://doi.org/10.1016/j.rinp.2019.102319
  • Solodkyi, I., Bezdorozhev, O. and Loboda, P. (2020). High electrical conductive copper matrix composites reinforced with LaB6-TiB2 eutectic particles. Vacuum, 177(109407), 1-4. https://doi.org/10.1016/j.vacuum.2020.109407
  • Somani, N., Sharma, N., Sharma, A., Gautam, Y. K., Khatri, P. and Solomon, J. A. A. (2018). Fabrication of Cu-SiC composites using powder metallurgy technique. Materials Today: Proceedings, 5(14:2), 28136-28141. https://doi.org/10.1016/j.matpr.2018.10.055
  • Sridhar, M. M. J., Ravichandran, M. and Meignanamoorthy, M. (2020). Influence of different reinforcements on properties of copper matrix composites: A review. AIP Conference Proceedings, 2283(020129), 1-10. https://doi.org/10.1063/5.0029257
  • Strojny-Nędza, A., Pietrzak, K., Gładki, A., Nosewicz, S., Jarząbek, D. M. and Chmielewski, M. (2018). The effect of ceramic type reinforcement on structure and properties of Cu-Al2O3 composites. Bulletin of the Polish Academy of Sciences. Technical Sciences, 66(4), 553-560. https://doi.org/10.24425/124271
  • Suárez, M., Fernández, A., Menéndez, J. L., Torrecillas, R., Kessel, H. U., Hennicke, J., Kirchner, R. and Kessel, T. (2013). Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. B. Ertug (Ed.), Sintering Applications (pp 319-342). London: IntechOpen. http://dx.doi.org/10.5772/53706
  • Taha, M. A. and Zawrah, M. F. (2017). Effect of nano ZrO2 on strengthening and electrical properties of Cu-matrix nanocomposites prepared by mechanical alloying. Ceramics International, 43(15), 12698–12704. https://doi.org/10.1016/j.ceramint.2017.06.153
  • Tejado, E., Müller, A. V., You, J.-H. and Pastor, J. Y. (2018). The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content. Journal of Nuclear Materials, 498, 468-475. https://doi.org/10.1016/j.jnucmat.2017.08.020
  • Wang, C., Min, G. and and Kang, S. (2011). Thermal conducting property of SiCp-reinforced copper matrix composites by hot pressing. Journal of Composite Materials. 45(18), 1849-1852. https://doi.org/10.1177/0021998310387685
  • White, G. K. and Tainsh, R. J. (1960). Lorenz number for high-purity copper. Physical Review Journals Archive, 119(6), 1869-1871. https://doi.org/10.1103/PhysRev.119.1869
  • Ye, X. -P., Li, Y. -L., Weng, J. -D., Cai, L. -C. and Liu, C. -L. (2018). Research status on strengthening mechanism of particle-reinforced metal matrix composites. Journal of Materials Engineering, 46(12), 28-37. https://doi.org/10.11868/j.issn.1001-4381.2016.001214
  • Yin, J., Zhou, P., Liang, H., Yao, D., Xia, Y., Zuo, K. and Zeng, Y. (2020). Microstructure and mechanical properties of Cu matrix composites reinforced by TiB2/TiN ceramic reinforcements. Acta Metallurgica Sinica (English Letters), 33, 1609-1617. https://doi.org/10.1007/s40195-020-01100-5

Comparison of the effects of microwave and spark plasma sintering on the electrical, thermal, and mechanical properties of Cu-LaB6 nanocomposites

Yıl 2021, , 1282 - 1294, 15.10.2021
https://doi.org/10.17714/gumusfenbil.926697

Öz

The effects of lanthanum hexaboride (LaB6) nano-particles on the electrical, thermal, and mechanical properties of copper-based nanocomposites (Cu-LaB6) produced using microwave sintering (MS) and spark plasma sintering (SPS) processes were investigated in this study. Nano LaB6 particles reduced the electrical conductivity of Cu matrix nanocomposites produced via MS and SPS by 20% and 13%, respectively. Cu-LaB6 nanocomposites had lower thermal conductivity than unreinforced Cu. The electrical and thermal conductivities of the Cu-LaB6 nanocomposite produced by the SPS process were higher than those of the Cu-LaB6 nanocomposite produced by the MS process. An equation that takes particle volume ratio and porosity into account was developed to predict the thermal conductivity of nanocomposites from their electrical conductivity. The calculated thermal conductivity values for Cu-LaB6 nanocomposites were very close to the experimental results. Cu-LaB6 nanocomposites had much higher hardness and compressive strength by 49% and 38%, respectively, compared to those of unreinforced Cu. The hardness and compressive strength of the Cu-LaB6 nanocomposite produced by SPS were higher than those of the Cu-LaB6 nanocomposite manufactured via MS. Although nano LaB6 reinforcement particles reduced the electrical and thermal conductivities of Cu, Cu-LaB6 nanocomposite having high hardness and compressive strength were produced by combining the positive influences of nano LaB6 reinforcement particles and the SPS process.

Kaynakça

  • Afzal, S. R. and Harish, S. (2020). Synthesis and characterization of titanium carbide reinforced copper based metal matrix composite. International Research Journal of Engineering and Technology, 7(7), 2451-2457.
  • Ayyappadas, C., Annamalai, A. R., Agrawal, D. K. and Muthuchamy, A. (2017). Conventional and microwave assisted sintering of copper-silicon carbide metal matrix composites: a comparison. Metallurgical Research & Technology, 114(5), 506(1-10). https://doi.org/10.1051/metal/2017033 Balice, L., Cologna, M., Audubert, F. and Hazemann, J. L. (2021). Densification mechanisms of UO2 consolidated by spark plasma sintering. Journal of the European Ceramic Society, 41(1), 719-728. https://doi.org/10.1016/j.jeurceramsoc.2020.07.002
  • Bian, Y., Ni, J., Wang, C., Zhen, J., Hao, H., Kong, X., Chen, H., Li, J., Li, X., Jia, Z., Luo, W. and Chen, Z. (2021). Microstructure and wear characteristics of in-situ micro/nanoscale niobium carbide reinforced copper composites fabricated through powder metallurgy. Materials Characterization, 172(110847), 1-14. https://doi.org/10.1016/j.matchar.2020.110847
  • Cavaliere, P., Sadeghi, B. and Shabani, A. (2019). Spark plasma sintering: Process fundamentals. P. Cavaliere (Ed.) Spark Plasma Sintering of Materials Advances in Processing and Applications (pp. 3-20). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-05327-7
  • Chmielewski, M., Pietrzak, K., Strojny-Nędza, A., Kaszyca, K., Zybała, R., Bazarnik, P., Lewandowska, M. and Nosewicz, S. (2017). Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique. Science of Sintering, 49, 11-22. https://doi.org/10.2298/SOS1701011C
  • Cong, D., Huimin, L., Shan, F., Yuan, Q., Qilong, H. and Jiachen, J. (2019). Effect of La2O3 addition on copper matrix composites reinforced with Al2O3 ceramic particles. Materials Research Express, 6(10), (1-9). https://doi.org/10.1088/2053-1591/ab3eff
  • Degroh, H. C. and Balachandran, U. B. (2018). Conductivity of copper-carbon covetic composite. NASA STI Program, 219790 (pp 11).
  • Dias, M., Pinhão, N., Faustino, R., Martins, R. M. S., Ramos, A. S., Vieira, M. T., Correia, J. B., Camacho, E.., Fernandes, F. M. B., Nunes, B., Almeida, A., Mardolcar, U. V. and Alves, E. (2019). New WC-Cu composites for the divertor in fusion reactors. Journal of Nuclear Materials, 521, 31-37. https://doi.org/10.1016/j.jnucmat.2019.04.026
  • Fathy, A., Wagih, A. and Abu-Oqail, A. (2019). Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling. Ceramics International, 45(2:A), 2319-2329. https://doi.org/10.1016/j.ceramint.2018.10.147
  • Fan, X., Huang, X., Liu, Q., Ding, H. Wang, H. and Hao, C., (2019). The microstructures and properties of in-situ ZrB2 reinforced Cu matrix composites. Results in Physics, 14(102494), 1-6. https://doi.org/10.1016/j.rinp.2019.102494
  • Hossein, A., Reza, E. and Baghchesara, M. A. (2014). Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study. Composites Part B: Engineering, 56, 217-221. https://doi.org/10.1016/j.compositesb.2013.08.023
  • Kargul, M., Borowiecka-Jamrozek, J. and Konieczny, M. (2018). The effect of reinforcement particle size on the properties of Cu-Al2O3 composites. IOP Conference Series: Materials Science and Engineering, 461(012035), 1-6. https://doi.org/10.1088/1757-899X/461/1/012035
  • Kumar, M., Gupta, G. K., Modi, O. P., Prasad, B. K., Khare, A. K. and Sharma, M. (2017). Effect of separate and combined milling of Cu and TiB2 powders on the electrical and mechanical properties of Cu–TiB2 composites. The Canadian Journal of Metallurgy and Materials Science, 56(1), 58-66. https://doi.org/10.1080/00084433.2016.1247129
  • Lakshmanan, P., Dharmaselvan, S., Paramasivam, S., Kumar Kirubanandan, L. and Vigneshi R. (2019). Tribological properties of B4C nano particulates reinforced copper matrix nanocomposites. Materials Today: Proceedings, 16, 584-591. https://doi.org/10.1016/j.matpr.2019.05.132
  • Leich, L., Röttger, A., Kuchenbecker, R. and Theisen, W. (2020). Electro-discharge sintering of nanocrystalline NdFeB magnets: process parameters, microstructure, and the resulting magnetic properties. Journal of Materials Science: Materials in Electronics, 31, 20431-20443. https://doi.org/10.1007/s10854-020-04562-6
  • Li, J., Li, Y., Wang, Z., Bian, H., Hou, Y., Wang, F., Xu, G., Liu, B. and Liu, Y. (2016). Ultrahigh oxidation resistance and high electrical conductivity in copper-silver powder. Scientific Reports, 6(39650), 1-10. https://doi.org/10.1038/srep39650
  • Li, X., Wang, Y., Yin, C.-R. and Yin, Z. (2020). Copper nanowires in recent electronic applications: progress and perspectives. Journal of Materials Chemistry C, 8(3), 849-872. https://doi.org/10.1039/C9TC04744A
  • Lin, H., Guo, X., Song, K., Feng, J., Li, S. and Zhang, X. (2021). Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers. Nanotechnology Reviews, 10(1), 62-72. https://doi.org/10.1515/ntrev-2021-0006
  • Matvienko, O., Daneyko, O., Kovalevskaya, T., Khrustalyov, A., Zhukov, I. and Vorozhtsov, A. (2021). Investigation of stresses induced due to the mismatch of the coefficients of thermal expansion of the matrix and the strengthening particle in aluminum-based composites. Metals, 11(279), 1-20. https://doi.org/10.3390/met11020279
  • Moustafa, E. B. and Taha, M. A. (2021). Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying. International Journal of Minerals, Metallurgy and Materials, 28(3), 475-486. https://doi.org/10.1007/s12613-020-2176-z
  • Ngai, T. L., Zheng, W. and Li, Y. (2013). Effect of sintering temperature on the preparation of Cu–Ti3SiC2 metal matrix composite. Progress in Natural Science: Materials International, 23(1), 70-76. https://doi.org/10.1016/j.pnsc.2013.01.011
  • Oghbaei, M. and Mirzaee, O. (2010). Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 494, 175-189. https://doi.org/10.1016/j.jallcom.2010.01.068
  • Panda, S., Dash, K. and Ray, B. C. (2014). Processing and properties of Cu based micro- and nano-composites. Bulletin of Materials Science, 37(2), 227-238. https://doi.org/10.1007/s12034-014-0643-8
  • Pellizzari, M. and Cipolloni, G. (2020). Spark plasma sintering of copper matrix composites reinforced with TiB2 particles. Materials. 13(2602), 1-14. https://doi.org/10.3390/ma13112602
  • Raab, S. J., Guschlbauer, R., Lodes, M. A. and Körner, C. (2016). Thermal and electrical conductivity of 99.9% pure copper processed via selective electron beam melting. Advanced Engineering Materials, 18(9), 1661-1666. https://doi.org/10.1002/adem.201600078
  • Raj, S. S., Elavarasan, E., Arundeva, S., Devaraj, S., Gokulraj, E. and Govindharasu. C. (2018). Tribological test on copper based hybrid composite material, International Journal of Engineering Research & Technology (IJERT) ICITMSEE, 6(10), 1-4.
  • Ren, J., Liang, S., Jiang, Y. and Du, X. (2019). Research on the microstructure and properties of in situ (TiB2-TiB)/Cu composites. Acta Metallurgica Sinica, 55(1), 126-132. https://doi.org/10.11900/0412.1961.2017.00532
  • Saheb, N. (2013). Spark plasma and microwave sintering of Al6061 and Al2124 alloys. International Journal of Minerals, Metallurgy and Materials, 20(2), 152-159. https://doi.org/10.1007/s12613-013-0707-6
  • Sathish, T., Chandramohan, D., Vijayan, V. and Sebastian, P. J. (2019). Investigation on microstructural and mechanical properties of Cu reinforced with SiC composites prepared by microwave sintering process. Journal of New Materials for Electrochemical Systems, 22, 5-9. https://doi.org/10.14447/jnmes.v22i1.a02
  • Satishkumar, P., Mahesh, G., Meenakshi, R. and Vijayan, S. N. (2021). Tribological characteristics of powder metallurgy processed Cu- WC/SiC metal matrix composites. Materials Today: Proceedings, 37, 459-465. https://doi.org/10.1016/j.matpr.2020.05.449
  • Schipper, B. W. Lin, H. –Ch. Meloni, M. A. Wansleeben, K. Heijungs, R. and Van der Voet, E. (2018). Estimating global copper demand until 2100 with regression and stock dynamics. Resources, Conservation and Recycling, 132, 28-36. https://doi.org/10.1016/j.resconrec.2018.01.004
  • Shaik, M. A. and Golla, B. R. (2020). Two body abrasion wear behaviour of Cu–ZrB2 composites against SiC emery paper. Wear, 450-451(203260), 1-14. https://doi.org/10.1016/j.wear.2020.203260
  • Singh, M. K., Gautam, R. K. and Ji, G. (2019). Mechanical properties and corrosion behavior of copper based hybrid composites synthesized by stir casting. Results in Physics, 13(102319), 1-11. https://doi.org/10.1016/j.rinp.2019.102319
  • Solodkyi, I., Bezdorozhev, O. and Loboda, P. (2020). High electrical conductive copper matrix composites reinforced with LaB6-TiB2 eutectic particles. Vacuum, 177(109407), 1-4. https://doi.org/10.1016/j.vacuum.2020.109407
  • Somani, N., Sharma, N., Sharma, A., Gautam, Y. K., Khatri, P. and Solomon, J. A. A. (2018). Fabrication of Cu-SiC composites using powder metallurgy technique. Materials Today: Proceedings, 5(14:2), 28136-28141. https://doi.org/10.1016/j.matpr.2018.10.055
  • Sridhar, M. M. J., Ravichandran, M. and Meignanamoorthy, M. (2020). Influence of different reinforcements on properties of copper matrix composites: A review. AIP Conference Proceedings, 2283(020129), 1-10. https://doi.org/10.1063/5.0029257
  • Strojny-Nędza, A., Pietrzak, K., Gładki, A., Nosewicz, S., Jarząbek, D. M. and Chmielewski, M. (2018). The effect of ceramic type reinforcement on structure and properties of Cu-Al2O3 composites. Bulletin of the Polish Academy of Sciences. Technical Sciences, 66(4), 553-560. https://doi.org/10.24425/124271
  • Suárez, M., Fernández, A., Menéndez, J. L., Torrecillas, R., Kessel, H. U., Hennicke, J., Kirchner, R. and Kessel, T. (2013). Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. B. Ertug (Ed.), Sintering Applications (pp 319-342). London: IntechOpen. http://dx.doi.org/10.5772/53706
  • Taha, M. A. and Zawrah, M. F. (2017). Effect of nano ZrO2 on strengthening and electrical properties of Cu-matrix nanocomposites prepared by mechanical alloying. Ceramics International, 43(15), 12698–12704. https://doi.org/10.1016/j.ceramint.2017.06.153
  • Tejado, E., Müller, A. V., You, J.-H. and Pastor, J. Y. (2018). The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content. Journal of Nuclear Materials, 498, 468-475. https://doi.org/10.1016/j.jnucmat.2017.08.020
  • Wang, C., Min, G. and and Kang, S. (2011). Thermal conducting property of SiCp-reinforced copper matrix composites by hot pressing. Journal of Composite Materials. 45(18), 1849-1852. https://doi.org/10.1177/0021998310387685
  • White, G. K. and Tainsh, R. J. (1960). Lorenz number for high-purity copper. Physical Review Journals Archive, 119(6), 1869-1871. https://doi.org/10.1103/PhysRev.119.1869
  • Ye, X. -P., Li, Y. -L., Weng, J. -D., Cai, L. -C. and Liu, C. -L. (2018). Research status on strengthening mechanism of particle-reinforced metal matrix composites. Journal of Materials Engineering, 46(12), 28-37. https://doi.org/10.11868/j.issn.1001-4381.2016.001214
  • Yin, J., Zhou, P., Liang, H., Yao, D., Xia, Y., Zuo, K. and Zeng, Y. (2020). Microstructure and mechanical properties of Cu matrix composites reinforced by TiB2/TiN ceramic reinforcements. Acta Metallurgica Sinica (English Letters), 33, 1609-1617. https://doi.org/10.1007/s40195-020-01100-5
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ege Anıl Diler 0000-0002-1667-5737

Yayımlanma Tarihi 15 Ekim 2021
Gönderilme Tarihi 23 Nisan 2021
Kabul Tarihi 18 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Diler, E. A. (2021). Comparison of the effects of microwave and spark plasma sintering on the electrical, thermal, and mechanical properties of Cu-LaB6 nanocomposites. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1282-1294. https://doi.org/10.17714/gumusfenbil.926697