Araştırma Makalesi
BibTex RIS Kaynak Göster

Atık LDPE'nin asfaltın fiziksel ve işlenebilirlik özelliklerine etkisi

Yıl 2021, , 1103 - 1114, 15.10.2021
https://doi.org/10.17714/gumusfenbil.931151

Öz

Bu çalışmada, bir atık plastik çeşidi olan LDPE’nin asfaltın fiziksel ve işlenebilirlik özelliklerine etkisi araştırılmıştır. Bunun için, asfalt ile LDPE arasında bir etkileşim sağlamak amacıyla B 70/100 saf asfaltına asfalt ağırlığının % 2.5’i kadar Trietanolamin (TEOA) kimyasalı eklenmiştir. Elde edilen, asfalt-TEOA harmanına asfalt ağırlığının % 1, 2, 3, 4 ve 5 oranlarında LDPE eklenerek modifiye asfaltlar elde edilmiştir. Saf ve modifiye asfaltların ilk olarak fiziksel özellikleri penetrasyon, yumuşama noktası, düktilite ve dönel ince film etüvü (RTFO) gibi geleneksel testlerle belirlenmiştir. Ayrıca, asfalt bağlayıcıların sıcaklığa karşı hassasiyetlerinin bir ölçüsü olarak kabul edilen penetrasyon indeksi (PI) değerleri de hesaplanmıştır. Daha sonra, bağlayıcıların işlenebilirlik özellikleri dönel viskozimetre (RV) deneyi ile, kimyasal karakterizasyonu ise taramalı elektron mikroskobu (SEM) ve X- ışını kırınımı (XRD) analizleri ile belirlenmiştir. Geleneksel test sonuçlarına göre; LDPE katkı oranının artışıyla modifiye bağlayıcıların sertliğinin arttığı ve sıcaklık hassasiyetlerinin azaldığı görülmüştür. RV deney sonuçlarına göre, LDPE katkı artışıyla bağlayıcıların karıştırma ve sıkıştırma sıcaklıklarının artış gösterdiği görülmüştür. SEM ve XRD analiz sonuçlarına göre, asfalt ile atık LDPE arasında kimyasal bir etkileşimin sağlandığı ve elde edilen asfalt-TEOA-LDPE karışımının homojen ve tek fazlı bir yapıda olduğu görülmüştür.

Kaynakça

  • Ahmedzade, P., Fainleib, A., Günay, T. and Grygoryeva, O. (2014). Modification of bitumen by electron beam irradiated recycled low density polyethylene. Construction and Building Materials, 69, 1-9. https://doi.org/10.1016/j.conbuildmat.2014.07.027
  • Airey, G.D. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16(8), 473-487. https://doi.org/10.1016/S0950-0618(02)00103-4
  • Al-Hadidy, A.I. and Tan, Y. (2009). Evaluation of pyrolisis LDPE modified asphalt paving materials. Journal of Materials in Civil Engineering, 21(10), 618-623. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(618)
  • AlHumaidan F.S., Hauser, A., Rana, M.S., Lababidi, H.M.S. and Behbehanii M. (2015). Changes in asphaltene structure during thermal cracking of residual oils: XRD study. Fuel, 150, 558-564. https://doi.org/10.1016/j.fuel.2015.02.076
  • Almeida, A., Capitao, S., Bandeira, R., Fonseca, M. and Picado-Santos, L. (2020). Performance of AC mixtures containing flakes of LDPE plastic film collected from urban waste considering ageing. Construction and Building Materials, 232, 117253. https://doi.org/10.1016/j.conbuildmat.2019.117253
  • Awwab, M.T. and Shbeeb, L. (2007). The use of polyethylene in hot asphalt mixtures. American Journal of Applied Sciences, 4(6), 390-396.
  • Behl, A., Sharma, G. and Kumar, G. (2014). A sustainable approach: utilization of waste PVC in asphalting of roads. Construction and Building Materials 54, 113-117. https://doi.org/10.1016/j.conbuildmat.2013.12.050
  • Besergil, B. (2008). Polimer kimyası (ikinci baskı). Ankara: Gazi Kitapevi.
  • Duranay, N. ve Yılgın, M. (2016). Atık plastiğin kömür ve biokütle ile birlikte yakılarak değerlendirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 35-42.
  • Geçkil, T. (2008). Siyah karbonun bitümlü sıcak karışımların özelliklerine etkisinin araştırılması. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Geçkil, T. and Seloğlu, M. (2018). Performance properties of asphalt modified with reactive terpolymer. Construction and Building Materials, 173, 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
  • Geçkil, T., Önal, Y. ve İnce, C.B. (2020). Atık polietilen tereftalat (PET) ile Modifiye edilmiş saf bitümün fiziksel, morfolojik ve isıl özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(1), 157-166. https://doi.org/10.35234/fumbd.618218
  • Jasso, M., Hampl, R., Vacin, O., Bakos, D. and Zanzotto, L. (2015). Rheology of conventional asphalt modified with sbs, elvaloy and polyphosphoric acid. Fuel Processing Technology, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002
  • Jung, M.R., Horgen, F.D. and Orski, S.V. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061
  • Mazumder, M., Ahmed, R., Ali, A.W. and Lee, S.J. (2018). SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review. Construction and Building Materials, 186, 313-329. https://doi.org/10.1016/j.conbuildmat.2018.07.126
  • Nejres, M., Mustafa, Y.F. and Aldewachi, H.S. (2020). Evaluation of natural asphalt properties treated with egg shell waste and low density polyethylene. International Journal of Pavement Engineering, 1029-8436. https://doi.org/10.1080/10298436.2020.1728534
  • Njeru, J. (2006). The urban political ecology of plastic bag waste problem in Nairobi, Kenya. Geoforum, 37, 1046–1058.
  • Nkanga, U.J., Joseph, J.A., Adams, F.V. and Uche, O.U. (2017). Characterization of bitumen/plastic blends for flexible pavement application. Procedia Manufacturing, 7, 490-496. https://doi.org/10.1016/j.promfg.2016.12.051
  • Polacco, G., Filippi, S., Merusi, F. and Stastna, G. (2015). A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility. Advances in Colloid and Interface Science, 224, 72-112. https://doi.org/10.1016/j.cis.2015.07.010
  • Punith, V.S. and Veeraragavan. A. (2007). Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive. Journal of Materials in Civil Engineering, 19, 500-507. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(500)
  • Sen, S.K. and Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3, 462–473. https://doi.org/10.1016/j.jece.2015.01.003
  • Tunç, A. (2007). Yol Malzemeleri ve Uygulamaları. Ankara: Nobel Yayın Dağıtım.

Effect of waste LDPE on the physical and workability properties of asphalt

Yıl 2021, , 1103 - 1114, 15.10.2021
https://doi.org/10.17714/gumusfenbil.931151

Öz

In this study, the effect of LDPE, a type of waste plastic, on the physical and workability properties of asphalt was investigated. For this, Triethanolamine (TEOA) chemical up to 2.5% by weight of asphalt was added to B 70/100 pure asphalt to provide an interaction between asphalt and LDPE. Modified asphalts were obtained by adding LDPE in the ratios of 1, 2, 3, 4 and 5% of the asphalt weight to the obtained asphalt-TEOA blend. The physical properties of pure and modified asphalts were first determined by conventional tests such as penetration, softening point, ductility and rolling thin film oven (RTFO). In addition, penetration index (PI) values, which are considered as a measure of the sensitivity of asphalt binders to temperature, were also calculated. Then, the workability properties of the binders were determined by rotational viscometer (RV) test, and their chemical characterization was determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. According to traditional test result; It was observed that the hardness of the modified binders increased and their temperature sensitivity decreased with the increase of the LDPE additive ratio. According to the results of the RV test, it was observed that the mixing and compression temperatures of the binders increased with the increase of LDPE additive. According to the results of SEM and XRD analysis, it was observed that a chemical interaction between asphalt and waste LDPE was provided and the resulting asphalt-TEOA-LDPE mixture was homogeneous and single-phase.

Kaynakça

  • Ahmedzade, P., Fainleib, A., Günay, T. and Grygoryeva, O. (2014). Modification of bitumen by electron beam irradiated recycled low density polyethylene. Construction and Building Materials, 69, 1-9. https://doi.org/10.1016/j.conbuildmat.2014.07.027
  • Airey, G.D. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16(8), 473-487. https://doi.org/10.1016/S0950-0618(02)00103-4
  • Al-Hadidy, A.I. and Tan, Y. (2009). Evaluation of pyrolisis LDPE modified asphalt paving materials. Journal of Materials in Civil Engineering, 21(10), 618-623. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(618)
  • AlHumaidan F.S., Hauser, A., Rana, M.S., Lababidi, H.M.S. and Behbehanii M. (2015). Changes in asphaltene structure during thermal cracking of residual oils: XRD study. Fuel, 150, 558-564. https://doi.org/10.1016/j.fuel.2015.02.076
  • Almeida, A., Capitao, S., Bandeira, R., Fonseca, M. and Picado-Santos, L. (2020). Performance of AC mixtures containing flakes of LDPE plastic film collected from urban waste considering ageing. Construction and Building Materials, 232, 117253. https://doi.org/10.1016/j.conbuildmat.2019.117253
  • Awwab, M.T. and Shbeeb, L. (2007). The use of polyethylene in hot asphalt mixtures. American Journal of Applied Sciences, 4(6), 390-396.
  • Behl, A., Sharma, G. and Kumar, G. (2014). A sustainable approach: utilization of waste PVC in asphalting of roads. Construction and Building Materials 54, 113-117. https://doi.org/10.1016/j.conbuildmat.2013.12.050
  • Besergil, B. (2008). Polimer kimyası (ikinci baskı). Ankara: Gazi Kitapevi.
  • Duranay, N. ve Yılgın, M. (2016). Atık plastiğin kömür ve biokütle ile birlikte yakılarak değerlendirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 35-42.
  • Geçkil, T. (2008). Siyah karbonun bitümlü sıcak karışımların özelliklerine etkisinin araştırılması. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Geçkil, T. and Seloğlu, M. (2018). Performance properties of asphalt modified with reactive terpolymer. Construction and Building Materials, 173, 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
  • Geçkil, T., Önal, Y. ve İnce, C.B. (2020). Atık polietilen tereftalat (PET) ile Modifiye edilmiş saf bitümün fiziksel, morfolojik ve isıl özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(1), 157-166. https://doi.org/10.35234/fumbd.618218
  • Jasso, M., Hampl, R., Vacin, O., Bakos, D. and Zanzotto, L. (2015). Rheology of conventional asphalt modified with sbs, elvaloy and polyphosphoric acid. Fuel Processing Technology, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002
  • Jung, M.R., Horgen, F.D. and Orski, S.V. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061
  • Mazumder, M., Ahmed, R., Ali, A.W. and Lee, S.J. (2018). SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review. Construction and Building Materials, 186, 313-329. https://doi.org/10.1016/j.conbuildmat.2018.07.126
  • Nejres, M., Mustafa, Y.F. and Aldewachi, H.S. (2020). Evaluation of natural asphalt properties treated with egg shell waste and low density polyethylene. International Journal of Pavement Engineering, 1029-8436. https://doi.org/10.1080/10298436.2020.1728534
  • Njeru, J. (2006). The urban political ecology of plastic bag waste problem in Nairobi, Kenya. Geoforum, 37, 1046–1058.
  • Nkanga, U.J., Joseph, J.A., Adams, F.V. and Uche, O.U. (2017). Characterization of bitumen/plastic blends for flexible pavement application. Procedia Manufacturing, 7, 490-496. https://doi.org/10.1016/j.promfg.2016.12.051
  • Polacco, G., Filippi, S., Merusi, F. and Stastna, G. (2015). A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility. Advances in Colloid and Interface Science, 224, 72-112. https://doi.org/10.1016/j.cis.2015.07.010
  • Punith, V.S. and Veeraragavan. A. (2007). Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive. Journal of Materials in Civil Engineering, 19, 500-507. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(500)
  • Sen, S.K. and Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3, 462–473. https://doi.org/10.1016/j.jece.2015.01.003
  • Tunç, A. (2007). Yol Malzemeleri ve Uygulamaları. Ankara: Nobel Yayın Dağıtım.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tacettin Geçkil 0000-0001-8070-6836

Ceren Beyza İnce 0000-0002-6385-0964

Yayımlanma Tarihi 15 Ekim 2021
Gönderilme Tarihi 1 Mayıs 2021
Kabul Tarihi 16 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Geçkil, T., & İnce, C. B. (2021). Atık LDPE’nin asfaltın fiziksel ve işlenebilirlik özelliklerine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1103-1114. https://doi.org/10.17714/gumusfenbil.931151