Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of phenolic component, antioxidant capacity, and antidiabetic properties of Sisymbrium altissimum leaves

Yıl 2022, , 68 - 77, 15.01.2022
https://doi.org/10.17714/gumusfenbil.935653

Öz

Diabetes Mellitus is characterized by high blood glucose (hyperglycemia) and is among the most suffering diseases all over the world. Hyperglycemia plays a role in the pathogenesis of many diseases by triggering the mechanisms of oxidative stress. Phytotherapy is one of the alternative ways to cope with these diseases. Medicinal, aromatic and wild edible plants have nutraceutically protective effects against various diseases as well as nutritional and dietetic value due to the phytochemicals. Sisymbrium species are among the wild edible plants and traditionally used to treatment of various diseases. In this study, it was aimed to investigate the phenolic components of Sisymbrium altissimum leaves as well as their antioxidant capacity and antidiabetic properties. For this purpose, phenolic component was determined in S. altissimum leaf extract (SAE) by high performance liquid chromatography (HPLC). In addition, total phenolic and total flavonoid content measurement, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis- (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging activity analyzes were performed to determine the antioxidant capacity. The antidiabetic effect of the leaves was measured by α-amylase and α-glucosidase inhibition activity assay. In the results obtained, it was determined that SAE showed a significant antioxidant activity. It was determined that the most abundant phenolic component in leaves was rutin, also quercetin and protocatechuic acid were the other dominant phenolic components in leaves. On the other hand, it was found that the α-amylase and α-glucosidase inhibition activities of the leaves were lower compared to acarbose. As a result, it can be concluded that S. altissimum can strengthen the antioxidant status with its important phenolic compounds and also prevent nutraceutically postprandial hyperglycemia due to its partial α-amylase and α-glucosidase inhibition activities.

Kaynakça

  • Abdelli, I., Benariba, N., Adjdir, S., Fekhikher, Z., Daoud, I., Terki, M., Benramdane, H. and Ghalem, S. (2021). In silico evaluation of phenolics compounds as inhibitors of α-amylase and α-glucosidase. Journal of Biomolecular Structure and Dynamics, 39(3), 816-822. https://doi.org/10.1080/07391102.2020.1718553
  • Al-Jaber, N.A. (2011). Phytochemical and biological studies of Sisymbrium irio L. growing in Saudi Arabia. Journal of Saudi Chemical Society, 15, 345-350. https://doi.org/10.1016/j.jscs.2011.04.010
  • Al-Taie, G.R.I., Al-Mashea, R.A., Saddon, N. and Al-Anbari, A.K. (2018). A comparative study of the phenolic compounds of some Brassicaceae taxa by high-performance liquid chromatography (HPLC) technique. Tikrit Journal of Pure Science, 23(2), 45-48. https://doi.org/10.25130/tjps.23.2018.027
  • Al-Qudah, M.A. and Abu Zarga, M.H. (2009). Chemical constituents of Sisymbrium irio L. from Jordan. Natural Product Research, 24(5), 448-456. https://doi.org/10.1080/14786410903388025
  • Amin, G.H., Al-Gendy, A.A., El-Ayouty, Y.M. and Abdel-Motteleb, A. (2009). Effect of Spirulina platensis extract on growth, phenolic compounds and antioxidant activities of Sisymbrium Irio callus and cell suspension cultures. Australian Journal of Basic and Applied Sciences, 3(3), 2097-2110.
  • Amodeo, V., Marrelli, M., Pontieri, V., Cassano, R., Trombino, S., Conforti, F. and Statti, G. (2019). Chenopodium album L. and Sisymbrium officinale (L.) Scop.: Phytochemical content and in vitro antioxidant and anti-inflammatory potential. Plants, 8, 505-519. https://doi.org/10.3390/plants8110505
  • Ayepola, O.R., Brooks, N.L. and Oguntibeju, O.O. (2014). Antioxidant-antidiabetic agents and human health (Vol. 1). London: Intech Open. https://doi.org/10.5772/57282
  • Bainard, L.D., Brown, P.D. and Upadhyaya, M.K. (2009). Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and Arbuscular Mycorrhizal fungi. Weed Science, 57(4), 386-393. https://doi.org/10.1614/WS-08-151.1
  • Borgonovo, G., Zimbaldi, N., Guarise, M., De Nisi, P., De Petrocellis, L., Moriello, A.S. and Bassoli, A. (2019). Isothiocyanates and glucosinolates from Sisymbrium officinale (L.) Scop. (“the Singers’ Plant”): Isolation and in vitro assays on the somatosensory and pain receptor TRPA1 channel. Molecules, 24, 949-960. https://doi.org/10.3390/molecules24050949
  • El-Meligy, R.M., Awaad, A.S., Soliman, G.A., Kenawy, S.A. and Alqasoumi, S.I. (2017). Prophylactic and curative anti-ulcerogenic activity and the possible mechanisms of action of some desert plants. Saudi Pharmaceutical Journal, 25, 387-396. https://doi.org/10.1016/j.jsps.2016.10.008
  • Chepel, V., Lisun, V. and Skrypnik, L. (2020). Changes in the content of some groups of phenolic compounds and biological activity of extracts of various parts of heather (Calluna vulgaris (L.) Hull) at different growth stages. Plants, 9(926), 1-19. https://doi.org/10.3390/plants9080926
  • Christopher, N. (2017). Foraging Washington: Finding, Identifying, and Preparing Edible Wild Foods (Vol. 1). Guilford: Falcon Guides.
  • Di Sotto, A., Di Giacomo, S., Toniolo, C., Nicoletti, M. and Mazzanti, G. (2016). Sisymbrium Officinale (L.) Scop. and its polyphenolic fractions ınhibit the mutagenicity of tert-butylhydroperoxide in Escherichia coli WP2uvrAR strain. Phytotherapy Research, 30, 829–834. https://doi.org/10.1002/ptr.5588
  • Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N. and Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants, 8(237), 1-15. https://doi.org/10.3390/antiox8070237
  • Ferrier, D.R. (2017). Lippincott Illustrated Reviews: Biochemistry (7th ed.). China: Wolters Kluwer.
  • Ghasemzadeh, A. and Ghasemzadeh, N. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research, 5(31), 6697-6703. https://doi.org/10.5897/JMPR11.1404
  • Hailu, T., Gupta, R.K. and Rani, A. (2021). Phytochemicals and antioxidant activity of Sisymbrium irio L. seeds. Indian Journal of Traditional Knowledge, 20(1), 26-32.
  • Hawash, M., Jaradat, N., Elaraj, J., Hamdan, A., Lebdeh, S.A. and Halawa, T. (2019). Evaluation of the hypoglycemic effect of seven wild folkloric edible plants from Palestine. Journal of Complementary and Integrative Medicine, 17(1), 1-10. https://doi.org/10.1515/jcim-2019-0032
  • Kargıoğlu, M., Cenkci, S., Serteser, A., Konuk, M. and Vural, G. (2010). Traditional uses of wild plants in the middle aegean region of Turkey. Human Ecology, 38, 429-450. https://doi.org/10.1007/s10745-010-9318-2
  • Kim, Y.M., Jeong, Y.K., Wang, V.W., Lee, Y. and Rhee, H.I. (2005). Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21, 756-761. https://doi.org/10.1016/j.nut.2004.10.014
  • Mehrnia, M., Akaberi, M., Amiri, M.S., Nadaf, M. and Emami, S.A. (2021). Ethnopharmacological studies of medicinal plants in central Zagros, Lorestan province, Iran. Journal of Ethnopharmacology, https://doi.org/10.1016/j.jep.2021.114080
  • Milella, L., Bader, A., De Tommasi, N., Russo, D. and Braca, A. (2014). Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species. Food Chemistry, 160, 298-304. https://doi.org/10.1016/j.foodchem.2014.03.097
  • Mutlu, B. and Karakuş, Ş. (2015). A new species of Sisymbrium (Brassicaceae) from Turkey: morphological and molecular evidence. Turkish Journal of Botany, 39, 325-333. https://doi.org/10.3906/bot-1404-28
  • Nengroo, Z.R. and Rauf, A. (2019). Fatty acid composition and antioxidant activities of five medicinal plants from Kashmir. Industrial Crops & Products, 140, 111596. https://doi.org/10.1016/j.indcrop.2019.111596
  • Niki, E. (2010). Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology & Medicine, 49, 503-515. https://doi.org/10.1016/j.freeradbiomed.2010.04.016
  • Pyo, Y.H., Lee, T.C., Logendra, L. and Rosen, R.T. (2004). Antioxidant activity and phenolic compounds of swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem., 85, 19-26. https://doi.org/10.1016/S0308-8146(03)00294-2
  • Rahman, M., Khatun, A., Liu, L. and Barkla, B.J. (2018). Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules, 23, 1-18. https://doi.org/10.3390/molecules23010231
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang M. and Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med., 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Ríos, J.L., Francini, F. and Schinella, G.T. (2015). Natural products for the treatment of type 2 diabetes mellitus. Planta Medica, 81, 975-994. https://doi.org/10.1055/s-0035-1546131
  • Sekeroglu, N., Ozkutlu, F., Deveci, M., Dede, O. and Yilmaz, N. (2006). Evaluation of some wild plants aspect of their nutritional values used as vegetable in Eastern Black Sea region of Turkey. Asian Journal of Plant Sciences, 5(2), 185-189.
  • Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol., 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  • Şenkardeş, İ. and Tuzlaci, E. (2016). Wild edible plants of southern part of Nevşehir in Turkey. Marmara Pharmaceutical Journal, 20, 34-43.
  • Temiz, M.A. (2021a). Antioxidant and antihyperglycemic activities of Scorzonera cinerea radical leaves in streptozocin-induced diabetic rats. Acta Pharmaceutica, 71(4), 603–617. https://doi.org/10.2478/acph-2021-0045
  • Temiz, M.A. (2021b). Investigation of Phenolic composition, antioxidant capacity, and antidiabetic effect of Ornithogalum lanceolatum L.: An in vitro study. International Journal of Secondary Metabolite, 8(2), 91-100. https://doi.org/10.21448/ijsm.861904
  • Temizi M.A. and Temur, A. (2017). Effect of Solvent Variation on Polyphenolic Profile and Total Phenolic Content of Olive Leaf Extract. Yuzuncu Yil University Journal of Agricultural Sciences, 27(1): 43-50.
  • Temiz, M.A. and Temur, A. (2019). The effect of olive leaf extract on digestive enzyme inhibition and insulin production in streptozotocin-induced diabetic rats. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 66, 163-169. https://doi.org/10.33988/auvfd.423491
  • WHO (World Health Organization) (2016). Global report on diabetes, Geneva: WHO press. Erişim adresi https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=38A1F1A6F019A1BB8C0A219810048AE2?sequence=1
  • WHO (World Health Organization) (2020). World health statistics 2020: monitoring health for the SDGs, sustainable development goals, Geneva: WHO press. Erişim adresi https://apps.who.int/iris/bitstream/handle/10665/332070/9789240005105-eng.pdf
  • Yang, K., Hashemi, Z., Han, W., Jin, A., Yang, H., Ozga, J., Li, L. and Chan, C.B. (2015). Hydrolysis enhances bioavailability of proanthocyanidin-derived metabolites and improves β-cell function in glucose intolerant rats. The Journal of Nutritional Biochemistry, 26, 850-859. https://doi.org/10.1016/j.jnutbio.2015.03.002
  • Yeşil, Y. and İnal, İ. (2019). Traditional knowledge of wild edible plants in Hasankeyf (Batman Province, Turkey). Acta Societatis Botanicorum Poloniae, 88(3), 3633-3655. https://doi.org/10.5586/asbp.3633
  • Zhang, P., Li, T., Wu, X., Nice, E.C., Huang, C. and Zhang, Y. (2020). Oxidative stress and diabetes: antioxidative strategies. Frontiers Medicine, 14(5), 583 600. https://doi.org/10.1007/s11684-019-0729-1
  • Zhishen, J., Mengcheng, T. and Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Sisymbrium altissimum yapraklarının fenolik bileşen, antioksidan kapasite ve antidiyabetik özelliklerinin tespiti

Yıl 2022, , 68 - 77, 15.01.2022
https://doi.org/10.17714/gumusfenbil.935653

Öz

Diabetes Mellitus (Şeker hastalığı), yüksek kan glukozu (hiperglisemi) ile karakterize edilen ve tüm dünyada en çok muzdarip olunan hastalıklar arasındadır. Hiperglisemi oksidatif stresin oluşum mekanizmalarını tetikleyerek pek çok hastalığın patogenezinde rol oynar. Fitoterapi bu hastalıklar ile başa çıkmada alternatif yollardan biridir. Tıbbi, aromatik ve yabani yenilebilir bitkiler içerdikleri fitokimyasallar sayesinde nutrasötik olarak çeşitli hastalıklara karşı koruyucu etki göstermelerinin yanı sıra besleyici ve diyetetik özelliklere sahiptirler. Sisymbrium türleri yabani yenilebilir bitkiler arasında olup geleneksel olarak çeşitli hastalıkların tedavisinde kullanılmaktadır. Bu çalışmada, Sisymbrium altissimum yapraklarının fenolik bileşiminin yanı sıra antioksidan kapasitesinin ve antidiyabetik özelliklerinin araştırılması amaçlanmıştır. Bu maksatla S. altissimum yaprak ekstraktında (SAE) yüksek performanslı sıvı kromatografisi (HPLC) ile fenolik bileşen tespiti yapıldı. Ayrıca, antioksidan kapasitesini belirlemek amacıyla toplam fenolik ve toplam flavonoid madde tayini ile 2,2-difenil-1-pikrilhidrazil (DPPH) ve 2,2′-Azino-bis (3-etilbenzotiazolin-6-sülfonik asit) (ABTS) serbest radikal temizleme aktivite analizleri gerçekleştirildi. Yaprakların antidiyabetik etkisi, α-amilaz ve α-glukozidaz inhibisyon aktivite tayini ile ölçüldü. Elde edilen sonuçlarda, SAE’nin önemli düzeyde antioksidan aktivite gösterdiği belirlendi. Yapraklarda en çok bulunan fenolik bileşenin rutin olduğu ayrıca, kuersetin ve protokateşuik asidin ise yapraklardaki diğer baskın fenolik bileşenler olduğu saptandı. Diğer taraftan yaprakların α-amilaz ve α-glukozidaz inhibisyon aktivitelerinin akarboz ile karşılaştırıldığında daha düşük olduğu tespit edildi. Sonuç olarak, S. altissimum’um önemli fenolik bileşen içeriğiyle antioksidan durumu güçlendirebileceği ve ayrıca kısmi α-amilaz ve α-glukozidaz inhibisyon aktiviteleri sayesinde nutrasötik olarak yemek sonrası hiperglisemiyi önleyebileceği sonucuna varılabilir.

Kaynakça

  • Abdelli, I., Benariba, N., Adjdir, S., Fekhikher, Z., Daoud, I., Terki, M., Benramdane, H. and Ghalem, S. (2021). In silico evaluation of phenolics compounds as inhibitors of α-amylase and α-glucosidase. Journal of Biomolecular Structure and Dynamics, 39(3), 816-822. https://doi.org/10.1080/07391102.2020.1718553
  • Al-Jaber, N.A. (2011). Phytochemical and biological studies of Sisymbrium irio L. growing in Saudi Arabia. Journal of Saudi Chemical Society, 15, 345-350. https://doi.org/10.1016/j.jscs.2011.04.010
  • Al-Taie, G.R.I., Al-Mashea, R.A., Saddon, N. and Al-Anbari, A.K. (2018). A comparative study of the phenolic compounds of some Brassicaceae taxa by high-performance liquid chromatography (HPLC) technique. Tikrit Journal of Pure Science, 23(2), 45-48. https://doi.org/10.25130/tjps.23.2018.027
  • Al-Qudah, M.A. and Abu Zarga, M.H. (2009). Chemical constituents of Sisymbrium irio L. from Jordan. Natural Product Research, 24(5), 448-456. https://doi.org/10.1080/14786410903388025
  • Amin, G.H., Al-Gendy, A.A., El-Ayouty, Y.M. and Abdel-Motteleb, A. (2009). Effect of Spirulina platensis extract on growth, phenolic compounds and antioxidant activities of Sisymbrium Irio callus and cell suspension cultures. Australian Journal of Basic and Applied Sciences, 3(3), 2097-2110.
  • Amodeo, V., Marrelli, M., Pontieri, V., Cassano, R., Trombino, S., Conforti, F. and Statti, G. (2019). Chenopodium album L. and Sisymbrium officinale (L.) Scop.: Phytochemical content and in vitro antioxidant and anti-inflammatory potential. Plants, 8, 505-519. https://doi.org/10.3390/plants8110505
  • Ayepola, O.R., Brooks, N.L. and Oguntibeju, O.O. (2014). Antioxidant-antidiabetic agents and human health (Vol. 1). London: Intech Open. https://doi.org/10.5772/57282
  • Bainard, L.D., Brown, P.D. and Upadhyaya, M.K. (2009). Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and Arbuscular Mycorrhizal fungi. Weed Science, 57(4), 386-393. https://doi.org/10.1614/WS-08-151.1
  • Borgonovo, G., Zimbaldi, N., Guarise, M., De Nisi, P., De Petrocellis, L., Moriello, A.S. and Bassoli, A. (2019). Isothiocyanates and glucosinolates from Sisymbrium officinale (L.) Scop. (“the Singers’ Plant”): Isolation and in vitro assays on the somatosensory and pain receptor TRPA1 channel. Molecules, 24, 949-960. https://doi.org/10.3390/molecules24050949
  • El-Meligy, R.M., Awaad, A.S., Soliman, G.A., Kenawy, S.A. and Alqasoumi, S.I. (2017). Prophylactic and curative anti-ulcerogenic activity and the possible mechanisms of action of some desert plants. Saudi Pharmaceutical Journal, 25, 387-396. https://doi.org/10.1016/j.jsps.2016.10.008
  • Chepel, V., Lisun, V. and Skrypnik, L. (2020). Changes in the content of some groups of phenolic compounds and biological activity of extracts of various parts of heather (Calluna vulgaris (L.) Hull) at different growth stages. Plants, 9(926), 1-19. https://doi.org/10.3390/plants9080926
  • Christopher, N. (2017). Foraging Washington: Finding, Identifying, and Preparing Edible Wild Foods (Vol. 1). Guilford: Falcon Guides.
  • Di Sotto, A., Di Giacomo, S., Toniolo, C., Nicoletti, M. and Mazzanti, G. (2016). Sisymbrium Officinale (L.) Scop. and its polyphenolic fractions ınhibit the mutagenicity of tert-butylhydroperoxide in Escherichia coli WP2uvrAR strain. Phytotherapy Research, 30, 829–834. https://doi.org/10.1002/ptr.5588
  • Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N. and Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants, 8(237), 1-15. https://doi.org/10.3390/antiox8070237
  • Ferrier, D.R. (2017). Lippincott Illustrated Reviews: Biochemistry (7th ed.). China: Wolters Kluwer.
  • Ghasemzadeh, A. and Ghasemzadeh, N. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research, 5(31), 6697-6703. https://doi.org/10.5897/JMPR11.1404
  • Hailu, T., Gupta, R.K. and Rani, A. (2021). Phytochemicals and antioxidant activity of Sisymbrium irio L. seeds. Indian Journal of Traditional Knowledge, 20(1), 26-32.
  • Hawash, M., Jaradat, N., Elaraj, J., Hamdan, A., Lebdeh, S.A. and Halawa, T. (2019). Evaluation of the hypoglycemic effect of seven wild folkloric edible plants from Palestine. Journal of Complementary and Integrative Medicine, 17(1), 1-10. https://doi.org/10.1515/jcim-2019-0032
  • Kargıoğlu, M., Cenkci, S., Serteser, A., Konuk, M. and Vural, G. (2010). Traditional uses of wild plants in the middle aegean region of Turkey. Human Ecology, 38, 429-450. https://doi.org/10.1007/s10745-010-9318-2
  • Kim, Y.M., Jeong, Y.K., Wang, V.W., Lee, Y. and Rhee, H.I. (2005). Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21, 756-761. https://doi.org/10.1016/j.nut.2004.10.014
  • Mehrnia, M., Akaberi, M., Amiri, M.S., Nadaf, M. and Emami, S.A. (2021). Ethnopharmacological studies of medicinal plants in central Zagros, Lorestan province, Iran. Journal of Ethnopharmacology, https://doi.org/10.1016/j.jep.2021.114080
  • Milella, L., Bader, A., De Tommasi, N., Russo, D. and Braca, A. (2014). Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species. Food Chemistry, 160, 298-304. https://doi.org/10.1016/j.foodchem.2014.03.097
  • Mutlu, B. and Karakuş, Ş. (2015). A new species of Sisymbrium (Brassicaceae) from Turkey: morphological and molecular evidence. Turkish Journal of Botany, 39, 325-333. https://doi.org/10.3906/bot-1404-28
  • Nengroo, Z.R. and Rauf, A. (2019). Fatty acid composition and antioxidant activities of five medicinal plants from Kashmir. Industrial Crops & Products, 140, 111596. https://doi.org/10.1016/j.indcrop.2019.111596
  • Niki, E. (2010). Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology & Medicine, 49, 503-515. https://doi.org/10.1016/j.freeradbiomed.2010.04.016
  • Pyo, Y.H., Lee, T.C., Logendra, L. and Rosen, R.T. (2004). Antioxidant activity and phenolic compounds of swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem., 85, 19-26. https://doi.org/10.1016/S0308-8146(03)00294-2
  • Rahman, M., Khatun, A., Liu, L. and Barkla, B.J. (2018). Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules, 23, 1-18. https://doi.org/10.3390/molecules23010231
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang M. and Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med., 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Ríos, J.L., Francini, F. and Schinella, G.T. (2015). Natural products for the treatment of type 2 diabetes mellitus. Planta Medica, 81, 975-994. https://doi.org/10.1055/s-0035-1546131
  • Sekeroglu, N., Ozkutlu, F., Deveci, M., Dede, O. and Yilmaz, N. (2006). Evaluation of some wild plants aspect of their nutritional values used as vegetable in Eastern Black Sea region of Turkey. Asian Journal of Plant Sciences, 5(2), 185-189.
  • Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol., 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  • Şenkardeş, İ. and Tuzlaci, E. (2016). Wild edible plants of southern part of Nevşehir in Turkey. Marmara Pharmaceutical Journal, 20, 34-43.
  • Temiz, M.A. (2021a). Antioxidant and antihyperglycemic activities of Scorzonera cinerea radical leaves in streptozocin-induced diabetic rats. Acta Pharmaceutica, 71(4), 603–617. https://doi.org/10.2478/acph-2021-0045
  • Temiz, M.A. (2021b). Investigation of Phenolic composition, antioxidant capacity, and antidiabetic effect of Ornithogalum lanceolatum L.: An in vitro study. International Journal of Secondary Metabolite, 8(2), 91-100. https://doi.org/10.21448/ijsm.861904
  • Temizi M.A. and Temur, A. (2017). Effect of Solvent Variation on Polyphenolic Profile and Total Phenolic Content of Olive Leaf Extract. Yuzuncu Yil University Journal of Agricultural Sciences, 27(1): 43-50.
  • Temiz, M.A. and Temur, A. (2019). The effect of olive leaf extract on digestive enzyme inhibition and insulin production in streptozotocin-induced diabetic rats. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 66, 163-169. https://doi.org/10.33988/auvfd.423491
  • WHO (World Health Organization) (2016). Global report on diabetes, Geneva: WHO press. Erişim adresi https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=38A1F1A6F019A1BB8C0A219810048AE2?sequence=1
  • WHO (World Health Organization) (2020). World health statistics 2020: monitoring health for the SDGs, sustainable development goals, Geneva: WHO press. Erişim adresi https://apps.who.int/iris/bitstream/handle/10665/332070/9789240005105-eng.pdf
  • Yang, K., Hashemi, Z., Han, W., Jin, A., Yang, H., Ozga, J., Li, L. and Chan, C.B. (2015). Hydrolysis enhances bioavailability of proanthocyanidin-derived metabolites and improves β-cell function in glucose intolerant rats. The Journal of Nutritional Biochemistry, 26, 850-859. https://doi.org/10.1016/j.jnutbio.2015.03.002
  • Yeşil, Y. and İnal, İ. (2019). Traditional knowledge of wild edible plants in Hasankeyf (Batman Province, Turkey). Acta Societatis Botanicorum Poloniae, 88(3), 3633-3655. https://doi.org/10.5586/asbp.3633
  • Zhang, P., Li, T., Wu, X., Nice, E.C., Huang, C. and Zhang, Y. (2020). Oxidative stress and diabetes: antioxidative strategies. Frontiers Medicine, 14(5), 583 600. https://doi.org/10.1007/s11684-019-0729-1
  • Zhishen, J., Mengcheng, T. and Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mehmet Ali Temiz 0000-0002-4680-3023

Yayımlanma Tarihi 15 Ocak 2022
Gönderilme Tarihi 10 Mayıs 2021
Kabul Tarihi 27 Ekim 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Temiz, M. A. (2022). Sisymbrium altissimum yapraklarının fenolik bileşen, antioksidan kapasite ve antidiyabetik özelliklerinin tespiti. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 68-77. https://doi.org/10.17714/gumusfenbil.935653