BibTex RIS Kaynak Göster

-

Yıl 2015, , 1 - 23, 02.02.2015
https://doi.org/10.17714/gufbed.2015.05.001

Öz

In the scope of this study, a modeling on the fractal dimension which is a measure of the complexity in the occurrence process of earthquakes and intermediate-term forecasting for the location of expected earthquakes for the Eastern Anatolian region (Turkey) were accomplished. For this purpose, the most suitable and reliable statistical relation was firstly tried to be determined between the seismotectonic b-value and fractal dimension Dc-value for the earthquakes in Eastern Anatolian region. Four different methods were applied for this application as; (1) Least Squares Regression (L2 norm), (2) Least Sum of Absolute Deviations Regression (L1 norm), (3) Orthogonal Regression (Total Least Squares) and, (4) Robust Regression. Also, a composite forecast map by combining the maps of relative intensity and pattern informatics is generated for the forecasting the locations of expected strong earthquakes in the Eastern Anatolian region. Earthquake catalogue used for the analyses was compiled from the Kandilli Observatory and Earthquake Research Institute. Catalogue is homogeneous for duration magnitude, MD and consists of 30462 earthquakes with magnitudes between 1.0 and 6.6 in the period between January 1, 1970 and January 1, 2014. As the primary goal, it is intended to put forward the nature of seismicity which has a fractal structure in space, time and magnitude distributions, as quantified by the fractal dimension Dcvalue and seismotectonic parameter b-value for the Eastern Anatolian region. The Eastern Anatolian region was divided into 19 different seismotectonic sub-regions in order to make a detailed assessment on a regional scale. In order to calculate more up-to-date and reliable statistical relation between two seismotectonic parameters, four different regressions were used. Thus, the relationship of Dc3.070.53*b is computed with a strong negative correlation (r = 0.95) between b-value and Dc-value for the Western Anatolia earthquake distributions. For each regression, following linear relations with their correlation coefficients were estimated: Dc 2.490.34*b, for Robust Regression (r = -0.85) Dc 2.510.35*b, for Orthogonal Regression (r = - 0.89) Although the results are very close to each other, using the Least Sum of Absolute Deviations Regression method, the relationship of Dc2.520.36*b with a strong negative correlation (r=-0.91) is obtained between Dc-value and b-value for the Eastern Anatolian region. This negative relationship is important with respect to seismotectonic and an earthquake risk can be mentioned for the Eastern Anatolian region in intermediate-term. Also, this statistical relation is in accordance with the other regional relationships existing in literature and it can be suggested as more up-to-date and reliable. As the secondary purpose, it is intended to generate a composite forecast map based on the earthquake intensities and pattern informatics for the Eastern Anatolian region. For the analyses, the earthquakes with the cut-off magnitude Mc≥3.4 and with depths shallower than 40 km in time interval between 1990 and 2014 were used. For the regional imaging of the forecasting map, a regional grid of points with a grid of 0.075 by 0.075 was used and it is tried to forecast the locations of earthquakes with MD5.0. In the forecasting time interval between January 1, 1970 and January 1, 2024, the composite forecast map was prepared in order to detect the location of expected strong earthquakes in intermediate-term in the Eastern Anatolian region. In the result of analysis, some areas in the Eastern Anatolian region were detected as hazardous regions in terms of earthquake potential in the next. These regions are in and around Aşkale fault, the west of Van Lake (between Süphan fault and Erciş fault), around Yüksekova-Şemdinli fault zone, around and the north part of Ovacık fault, on and southwest end of the Eastern Anatolian fault and, a part of North Anatolian fault zone between Muş Thrust zone and Pülümür fault. Consequently, it is suggested that a special caution should be given to the anomalies in these regions and it must be evaluated with the other geophysical methods together by monitoring the earthquake activity

Kaynakça

  • Aki, K., 1965, Maximum likelihood estimate of b in the formula log N = a – bM and its confidence limits, Bulletin Earthquake Research Institute Tokyo University, 43, 237-239.
  • Aki, K., 1981, Earthquake prediction, American Geophysical Union, vol 4. Washington, pp 566-574.
  • Bayrak, Y. ve Öztürk, S., 2004, Spatial and temporal variations of the aftershock sequences of the 1999 İzmit and Düzce earthquake, Earth Planets Space, 56, 933-944.
  • Bayrak, Y., Öztürk, S., Çınar, H., Kalafat, D., Tsapanos, T.M., Koravos, G.Ch. ve Leventakis, G.A., 2009, Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey, Engineering Geology, 10, 200-210.
  • Blattberg, R.C., ve Sargent, T., 1971, Regression with non-Gaussian stable disturbances: Some sampling results, Econometrica, 39, 501-510.
  • Bozkurt, E., 2001, Neotectonics of Turkey – a synthesis, Geodinamica Acta, 14, 3-30.
  • Cadzow, J.A., 2002. Minimum and norm approximate solutions to an over determined system of linear equations, Digital Signal Processing, 12, 524-560.
  • Carrol, R.J. ve Ruppert, D., 1996, The use and misuse of orthogonal regression estimation in linear errors-in-variables models, The American Statistician, 50, 1-6.
  • Chen, C.-C., Rundle, J.B., Holliday, J.R., Nanjo, K.Z,. Turcotte, D.L,. Li, S.-C. ve Tiampo, K.F., 2005, The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence. Geophysical Research Letters, 32, L22315, doi:10.1029/2005GL023991.
  • Demirtaş, R. ve Yılmaz, R., 1996, Türkiye’nin sismotektonigi; Sismisitedeki uzun süreli değişim ve güncel sismisiteyi esas alarak deprem tahminine bir yaklaşım. T.C. Bayındırlık ve İskan Bakanlığı Yayını, 91 s., Ankara.
  • Durio, A., ve Isaia, E.D., 2003, Parametric Regression Models by Minimum L2 Criterion. A Study on the Risks of Fire and Electric Shocks of Electronic Transformers, Developments in Applied Statistics, 19, 69-83.
  • Erdik, M., Alpay, B.Y., Onur, T., Sesetyan, K. ve Birgoren, G., 1999, Assessment of earthquake hazard in Turkey and neighboring regions, Annali di Geofisica, 42, 1125-1138.
  • Frohlich, C. ve Davis, S., 1993. Teleseismic b-values: Or, much ado about 1.0, Journal of Geophysical Research, 98 (B1), 631-644.
  • Giloni, A. ve Padberg, M., 2002. Alternative methods of linear regression, Mathematical and Computer Modeling, 35, 361-374.
  • Giloni, A., Simonoff, J.S., ve Sengupta, B., 2006, Robust weighted LAD regression, Computational Statistics & Data Analysis, 50, 3124-3140.
  • Grassberger, P. ve Procaccia, I., 1983, Measuring the strangeness of strange attractors, Physica, 9(D), 189-208.
  • Greene, W.H., 1997, Econometric Analysis, 5th edn, pp. 1026, Prentice-Hall, Englewood Cliffs, NJ.
  • Gutenberg, R. ve Richter, C.F., 1944, Frequency of earthquakes in California, Bulletin. Seismological Society of America, 34: 185-188.
  • Gülkan, P., Koçyiğit, A., Yücemen, M.,S., Doyuran, V. ve Başöz, N., 1993, Earthquake zoning map of Turkey based on the most recent data (En son verilere göre hazırlanan Türkiye deprem bölgeleri haritası): METU Earthquake Engineering Research Center, Report No. 93-01, 156.
  • Hempton, M.R., 1987, Constraints on Arabian Plate motion and extensional history of the Red Sea, Tectonics, 6(6), 687-705.
  • Henderson, J., Main, I.G., Meredith, P.G. ve Sammonds, P.R., 1992. The evolution of seismicity-observation, experiment and a fracturemechanical interpretation. J. Struct. Geol., 14, 905-913.
  • Heo, J.H., Kho, Y.W., Shin, H., Kim, S. ve Kim, T., 2008. Regression equations of probability plot correlation coefficient test statistics from several probability distributions, Journal of Hydrology, 355, 1-15.
  • Hirata, T., 1989, Correlation between the b-value and the fractal dimension of earthquakes, Journal of Geophysical Research, 94, 7507-7514.
  • Holliday, J.R., Rundle, J.B.,, Tiampo, K.F., Klein, W. ve Donnellan, A., 2005, Modification of the pattern informatics method for forecasting large earthquake events using complex eigenvectors, Tectonophysics, 413, 87- 91.
  • Holliday, J.R., Rundle, J.B., Tiampo, K.F. ve Turcotte, D.L., 2006, Using earthquake intensities to forecast earthquake occurrence times, Nonelinear Processes in Geophysics, 13, 585-593.
  • Holliday, J.R., Chen, C.-C., Tiampo, K.F., Rundle, J.B.,, Turcotte, D.L. ve Donnellan, A., 2007, A RELM earthquake forecast based on Pattern Infformatics, Seismological Research. Letters, 78(1), 87-93.
  • Huber, P.J., 1964. Robust estimation of a location parameter, Annals of Mathematical Statistics, 35, 73-101.
  • Huber, P.J. 1987, The place of the L1 norm in robust estimation. In: Dodge, Y. (Ed.), Statistical Data Analysis Based on the L1 norm and Related Methods, North-Holland, Amsterdam.
  • Leng, L., Zhang, T., Kleinman, L., ve Zhu, W., 2007, Ordinary Least Square Regression, Orthogonal Regression, Geometric Mean Regression and their Applications in Aerosol Science, Journal of Physics, Conference Series 78, doi:10.1088/1742-6596/78/1/012084.
  • Mandelbrot, B.B., 1982. The fractal Geometry of Nature, Freeman Press, San Francisco.
  • Mckenzie, D.,P., 1978, Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophysical Journal of the Royal Astronomical Society, 55, 217-254.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Gergiev, I., Hamburger, M., Kahle, H., Kastens, K., Kekelidse, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadaria, M., Ouzounus, A., Paradisissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanlı, I., Seeger, H., Teableb, A., Toksöz, N. ve Veis, G., 2000, GPS constrains on crustal movements and deformations for plate dynamics, Journal of Geophysica Research, 105, 5695-5720.
  • Nanjo, K.Z., Holliday, J.R., Chen, C.-C., Rundle, J.B. ve Turcotte, D.L., 2006a, Application of a modified pattern informatics method to forecasting the locations of future large earthquakes in the central Japan, Tectonophysics, 424, 351-366.
  • Nanjo, K.Z., Rundle, J.B., Holliday, J.R. ve Turcotte, D.L., 2006b, Pattern informatics and its application for optimal forecasting of large earthquakes in Japan, Pure and Applied Geophysics, 163, 2417-2432.
  • Oral, M.,B., Reilinger, R.,E., Toksöz, M.,N., Kong, R.,W., Barka, A.,A., Kınık, I. ve Lenk, O., 1995, Global positioning system offersevidence of plate motions in eastern Mediterranean, EOS, Transactions American Geophysical Union , 76, 9.
  • Öncel, A.O., Alptekin, Ö. ve Main, I.G., 1995, Temporal variations of the fractal properties of seismicity in the western part of the North Anatolian fault zone: possible artifacts due to improvements in station coverage, Nonlinear Processes Geophys., 2, 147-157.
  • Öncel, A.O., Main, I.G., Alptekin, Ö. ve Cowie, P.A., 1996, Temporal variations of the fractal properties of seismicity in the north Anatolian fault zone between 31°E and 41°E, Pure and Applied Geophysics, 146, 148-159.
  • Öncel, A.O. ve Wilson, T.H., 2002, Space-time correlations of seismotectonic parameters: Examples from Japan and from Turkey preceding the Izmit earthquake, Bulletin. Seismological Society of America, 92(1), 339-349.
  • Öncel, A.O. ve Wilson, T.H., 2007, Anomalous seismicity preceding the 1999 Izmit event, NW Turkey, Geophysical Journal International, DOI: 10.1111/j.1365-246X.2006.03298.x.
  • Öztürk, S., 2009. Deprem Tehlikesi ve Artçışok Olasılığı Değerlendirme Yöntemlerinin Türkiye’deki Depremlere Bir Uygulaması, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 346s.
  • Öztürk, S., 2011, Characteristics of Seismic Activity in the Western, Central and Eastern Parts of the North Anatolian Fault Zone, Turkey: Temporal and Spatial Analysis, Acta Geophysica, 59 (2), 209-238.
  • Öztürk, S., 2012, Statistical correlation between b-value and fractal dimension regarding Turkish epicentre distribution , Earth Sciences Research Journal, 16 (2), 103-108.
  • Öztürk, S., 2014. Türkiye’nin Batı Anadolu bölgesi için deprem istatistiği ve olası güçlü depremlerin orta vadede bölgesel olarak tahmini üzerine bir çalışma, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(1), 75-93.
  • Polat, O., Gok, E.ve Yılmaz, D., 2008, Earthquake hazard of the Aegean extension region (West Turkey). Turkish Journal of Earth Sciences, 17, 593-614.
  • Roy, S., Ghosh, U., Hazra, S. ve Kayal, J.R., 2011, Fractal dimension and b-value mapping in the Andaman-Sumatra subduction zone, Natural Hazards, 57, 27–37.
  • Rundle, J.B., Tiampo, K.F., Klein, W. ve Martins, J.S.S., 2002, Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology and forecasting, Proceedings of the National Academy of Sciences of the United states of America, 99, 2514-2521, Supplement 1.
  • Rundle, J.B., Turcotte, D.L., Scherbakov R., Klein, W. ve Sammis, C., 2003, Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Review of Geophysics, 41(4), 1019.
  • Sykes, L.R. ve Jaumè, S.C., 1990, Seismic activity on neighboring faults as a long-term precursors to large earthquakes in the san Francisco area, Nature, 348, 595-599.
  • Şaroğlu, F., Emre ,O. ve Kuşcu, I., 1992, Active fault map of Turkey, General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Şengör, A.,M.,C. ve Yılmaz, Y., 1981, Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75, 181–241.
  • Tiampo, K.F., Rundle., J.B., McGinnis, S. ve Klein, W., 2002, Pattern dynamics and forecast methods in seismically active regions, Pure and Applied Geophysics, 159, 2429-2467.
  • Westaway, R., 1994, Present-day kinematics of the Middle East and Eastern Mediterranean, Journal of Geophysical Research, 99, B6, 12071-12090.
  • Wiemer, S. ve Wyss, M., 2000, Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, Bulletin. Seismological Society of America, 90(4), 859-869.
  • Wong, H.K., Degens, E.T., ve Finckh, P., 1978, Structures in modern Lake Van sediments as revealed by 3.5 KHz high resolution profiling. In: E.T. Degens and F. Kurtman (eds.), Geology of Lake Van, Publ. Inst. Miner. Res. Explor. 169, 11-19.

Depremselliğin Fraktal Boyutu ve Beklenen Güçlü Depremlerin Orta Vadede Bölgesel Olarak Tahmini Üzerine Bir Modelleme: Doğu Anadolu Bölgesi, Türkiye

Yıl 2015, , 1 - 23, 02.02.2015
https://doi.org/10.17714/gufbed.2015.05.001

Öz

Bu çalışma kapsamında, Doğu Anadolu bölgesi (Türkiye) için depremlerin oluş sürecindeki düzensizliklerinin bir ölçüsü olan fraktal boyut ile beklenen depremlerin orta vadede bölgesel olarak tahmini üzerine bir modelleme yapılmıştır. Bu amaçla, öncelikle Doğu Anadolu bölgesi depremleri için sismotektonik b-değeri ile fraktal boyut Dc-değeri arasında en uygun ve en güvenilir istatistiksel ilişki belirlenmeye çalışılmıştır. Bu uygulama için; (1) En Küçük Kareler Yöntemi (L2 Norm), (2) En Küçük Toplamlı Mutlak Sapma (L1 Norm), (3) Ortogonal Regresyon (Toplam En Küçük Kareler) ve (4) Robust Regresyon olmak üzere dört farklı regresyon yöntemi uygulanmıştır. Ayrıca, göreceli yoğunluk ve oluşum bilgisi haritalarının birleştirilmesi ile Doğu Anadolu bölgesinde beklenen güçlü depremlerin bölgesel olarak tahmini için birleşik tahmin haritası oluşturulmuştur. Analizler için kullanılan deprem kataloğu, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü’nden derlenmiştir. Katalog, süre magnitüdü MD için homojendir ve 1 Ocak 1970 ile 1 Ocak 2014 yılları arasında magnitüdü 1.0-6.6 arasında değişen 30462 depremi içermektedir.Birincil amaç olarak, Doğu Anadolu bölgesi için fraktal boyut Dc-değeri ve sismotektonik parametre b-değeri ile tanımlanan uzay, zaman ve magnitüd dağılımlarındaki fraktal bir yapıya sahip olan depremselliğin ortaya konması hedeflenmiştir. Bölgesel ölçekte detaylı bir değerlendirme yapabilmek için, Doğu Anadolu bölgesi 19 farklı sismotektonik alt bölgeye ayrılmıştır. İki sismotektonik parametre arasında daha güncel ve güvenilir bir istatistiksel ilişki hesaplayabilmek için, dört farklı regresyon kullanılmıştır. Her bir regresyon için, ilişki katsayıları ile birlikte aşağıdaki doğrusal ilişkiler elde edilmiştir: Dc=2.50-0.34*b, En Küçük Kareler (L2 Norm) için (r = -0.85)Dc=2.52-0.36*b, En Küçük Toplamlı Mutlak Sapma (L1 Norm) için (r = -0.91)Dc=2.49-0.34*b, Robust Regresyon için (r = -0.85)Dc=2.51-0.35*b, Ortogonal Regresyon için (r = -0.89)Sonuçlar birbirine çok yakın olmakla birlikte, En Küçük Toplamlı Mutlak Sapma yöntemi kullanılarak, Doğu Anadolu Bölgesi için Dc-değeri ile b-değeri arasında, güçlü bir negatif ilişkiye (r=-0.91) sahip  Dc=2.52-0.36*b ilişkisi elde edilmiştir. Bu negatif ilişki sismotektonik açıdan önemlidir ve Doğu Anadolu bölgesi için orta vadede bir deprem riskinden bahsedilebilir. Ayrıca bu istatistiksel ilişki literatürde mevcut olan diğer bölgesel ilişkilerle uyumludur ve daha güncel ve güvenilir olarak önerilebilir.İkincil amaç olarak, Doğu Anadolu bölgesi için depremlerin yoğunluğuna ve oluşum bilgilerine dayalı bir birleşik deprem tahmin haritası oluşturulması hedeflenmiştir. Analiz için, 1970-2014 yılları arasında 40 km’den daha sığ, kesme magnitüdü Mc≥3.4 magnitüdlü depremler kullanılmıştır. Tahmin haritasının bölgesel görünümü için, 0.075° x 0.075°’lik bir bölgesel grid aralığı kullanılmış ve olası MD≥5.0 olan depremler için bölgesel olarak bir tahmin yapılmaya çalışılmıştır. 1 Ocak 2014 ile 1 Ocak 2024 yılları arasında Doğu Anadolu bölgesinde beklenen güçlü depremlerin orta vadede bölgesel olarak tahmin edilebilmesi için birleşik tahmin haritası hazırlanmıştır. Analiz sonucunda, Doğu Anadolu bölgesinde bazı bölgeler gelecekteki deprem potansiyeli açısından tehlikeli bölgeler olarak belirlenmiştir. Bu bölgeler; Aşkale fayı ve civarı, Van Gölü’nün batısı (Süphan fayı ile Erciş fayı arası), Yüksekova-Şemdinli fay zonu civarı, Ovacık fayı civarında ve kuzey kesimleri, Doğu Anadolu fay zonu üzeri ve güney batı ucu, Kuzey Anadolu fay zonunun Muş Bindirme zonu ile Pülümür fayı arasında kalan kısmı. Sonuç olarak, anomalilerin gözlendiği bu bölgelere dikkat edilmesi ve deprem aktivitesinin takip edilerek farklı jeofiziksel parametrelerle birlikte değerlendirilmesi önerilir.

Kaynakça

  • Aki, K., 1965, Maximum likelihood estimate of b in the formula log N = a – bM and its confidence limits, Bulletin Earthquake Research Institute Tokyo University, 43, 237-239.
  • Aki, K., 1981, Earthquake prediction, American Geophysical Union, vol 4. Washington, pp 566-574.
  • Bayrak, Y. ve Öztürk, S., 2004, Spatial and temporal variations of the aftershock sequences of the 1999 İzmit and Düzce earthquake, Earth Planets Space, 56, 933-944.
  • Bayrak, Y., Öztürk, S., Çınar, H., Kalafat, D., Tsapanos, T.M., Koravos, G.Ch. ve Leventakis, G.A., 2009, Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey, Engineering Geology, 10, 200-210.
  • Blattberg, R.C., ve Sargent, T., 1971, Regression with non-Gaussian stable disturbances: Some sampling results, Econometrica, 39, 501-510.
  • Bozkurt, E., 2001, Neotectonics of Turkey – a synthesis, Geodinamica Acta, 14, 3-30.
  • Cadzow, J.A., 2002. Minimum and norm approximate solutions to an over determined system of linear equations, Digital Signal Processing, 12, 524-560.
  • Carrol, R.J. ve Ruppert, D., 1996, The use and misuse of orthogonal regression estimation in linear errors-in-variables models, The American Statistician, 50, 1-6.
  • Chen, C.-C., Rundle, J.B., Holliday, J.R., Nanjo, K.Z,. Turcotte, D.L,. Li, S.-C. ve Tiampo, K.F., 2005, The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence. Geophysical Research Letters, 32, L22315, doi:10.1029/2005GL023991.
  • Demirtaş, R. ve Yılmaz, R., 1996, Türkiye’nin sismotektonigi; Sismisitedeki uzun süreli değişim ve güncel sismisiteyi esas alarak deprem tahminine bir yaklaşım. T.C. Bayındırlık ve İskan Bakanlığı Yayını, 91 s., Ankara.
  • Durio, A., ve Isaia, E.D., 2003, Parametric Regression Models by Minimum L2 Criterion. A Study on the Risks of Fire and Electric Shocks of Electronic Transformers, Developments in Applied Statistics, 19, 69-83.
  • Erdik, M., Alpay, B.Y., Onur, T., Sesetyan, K. ve Birgoren, G., 1999, Assessment of earthquake hazard in Turkey and neighboring regions, Annali di Geofisica, 42, 1125-1138.
  • Frohlich, C. ve Davis, S., 1993. Teleseismic b-values: Or, much ado about 1.0, Journal of Geophysical Research, 98 (B1), 631-644.
  • Giloni, A. ve Padberg, M., 2002. Alternative methods of linear regression, Mathematical and Computer Modeling, 35, 361-374.
  • Giloni, A., Simonoff, J.S., ve Sengupta, B., 2006, Robust weighted LAD regression, Computational Statistics & Data Analysis, 50, 3124-3140.
  • Grassberger, P. ve Procaccia, I., 1983, Measuring the strangeness of strange attractors, Physica, 9(D), 189-208.
  • Greene, W.H., 1997, Econometric Analysis, 5th edn, pp. 1026, Prentice-Hall, Englewood Cliffs, NJ.
  • Gutenberg, R. ve Richter, C.F., 1944, Frequency of earthquakes in California, Bulletin. Seismological Society of America, 34: 185-188.
  • Gülkan, P., Koçyiğit, A., Yücemen, M.,S., Doyuran, V. ve Başöz, N., 1993, Earthquake zoning map of Turkey based on the most recent data (En son verilere göre hazırlanan Türkiye deprem bölgeleri haritası): METU Earthquake Engineering Research Center, Report No. 93-01, 156.
  • Hempton, M.R., 1987, Constraints on Arabian Plate motion and extensional history of the Red Sea, Tectonics, 6(6), 687-705.
  • Henderson, J., Main, I.G., Meredith, P.G. ve Sammonds, P.R., 1992. The evolution of seismicity-observation, experiment and a fracturemechanical interpretation. J. Struct. Geol., 14, 905-913.
  • Heo, J.H., Kho, Y.W., Shin, H., Kim, S. ve Kim, T., 2008. Regression equations of probability plot correlation coefficient test statistics from several probability distributions, Journal of Hydrology, 355, 1-15.
  • Hirata, T., 1989, Correlation between the b-value and the fractal dimension of earthquakes, Journal of Geophysical Research, 94, 7507-7514.
  • Holliday, J.R., Rundle, J.B.,, Tiampo, K.F., Klein, W. ve Donnellan, A., 2005, Modification of the pattern informatics method for forecasting large earthquake events using complex eigenvectors, Tectonophysics, 413, 87- 91.
  • Holliday, J.R., Rundle, J.B., Tiampo, K.F. ve Turcotte, D.L., 2006, Using earthquake intensities to forecast earthquake occurrence times, Nonelinear Processes in Geophysics, 13, 585-593.
  • Holliday, J.R., Chen, C.-C., Tiampo, K.F., Rundle, J.B.,, Turcotte, D.L. ve Donnellan, A., 2007, A RELM earthquake forecast based on Pattern Infformatics, Seismological Research. Letters, 78(1), 87-93.
  • Huber, P.J., 1964. Robust estimation of a location parameter, Annals of Mathematical Statistics, 35, 73-101.
  • Huber, P.J. 1987, The place of the L1 norm in robust estimation. In: Dodge, Y. (Ed.), Statistical Data Analysis Based on the L1 norm and Related Methods, North-Holland, Amsterdam.
  • Leng, L., Zhang, T., Kleinman, L., ve Zhu, W., 2007, Ordinary Least Square Regression, Orthogonal Regression, Geometric Mean Regression and their Applications in Aerosol Science, Journal of Physics, Conference Series 78, doi:10.1088/1742-6596/78/1/012084.
  • Mandelbrot, B.B., 1982. The fractal Geometry of Nature, Freeman Press, San Francisco.
  • Mckenzie, D.,P., 1978, Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophysical Journal of the Royal Astronomical Society, 55, 217-254.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Gergiev, I., Hamburger, M., Kahle, H., Kastens, K., Kekelidse, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadaria, M., Ouzounus, A., Paradisissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanlı, I., Seeger, H., Teableb, A., Toksöz, N. ve Veis, G., 2000, GPS constrains on crustal movements and deformations for plate dynamics, Journal of Geophysica Research, 105, 5695-5720.
  • Nanjo, K.Z., Holliday, J.R., Chen, C.-C., Rundle, J.B. ve Turcotte, D.L., 2006a, Application of a modified pattern informatics method to forecasting the locations of future large earthquakes in the central Japan, Tectonophysics, 424, 351-366.
  • Nanjo, K.Z., Rundle, J.B., Holliday, J.R. ve Turcotte, D.L., 2006b, Pattern informatics and its application for optimal forecasting of large earthquakes in Japan, Pure and Applied Geophysics, 163, 2417-2432.
  • Oral, M.,B., Reilinger, R.,E., Toksöz, M.,N., Kong, R.,W., Barka, A.,A., Kınık, I. ve Lenk, O., 1995, Global positioning system offersevidence of plate motions in eastern Mediterranean, EOS, Transactions American Geophysical Union , 76, 9.
  • Öncel, A.O., Alptekin, Ö. ve Main, I.G., 1995, Temporal variations of the fractal properties of seismicity in the western part of the North Anatolian fault zone: possible artifacts due to improvements in station coverage, Nonlinear Processes Geophys., 2, 147-157.
  • Öncel, A.O., Main, I.G., Alptekin, Ö. ve Cowie, P.A., 1996, Temporal variations of the fractal properties of seismicity in the north Anatolian fault zone between 31°E and 41°E, Pure and Applied Geophysics, 146, 148-159.
  • Öncel, A.O. ve Wilson, T.H., 2002, Space-time correlations of seismotectonic parameters: Examples from Japan and from Turkey preceding the Izmit earthquake, Bulletin. Seismological Society of America, 92(1), 339-349.
  • Öncel, A.O. ve Wilson, T.H., 2007, Anomalous seismicity preceding the 1999 Izmit event, NW Turkey, Geophysical Journal International, DOI: 10.1111/j.1365-246X.2006.03298.x.
  • Öztürk, S., 2009. Deprem Tehlikesi ve Artçışok Olasılığı Değerlendirme Yöntemlerinin Türkiye’deki Depremlere Bir Uygulaması, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 346s.
  • Öztürk, S., 2011, Characteristics of Seismic Activity in the Western, Central and Eastern Parts of the North Anatolian Fault Zone, Turkey: Temporal and Spatial Analysis, Acta Geophysica, 59 (2), 209-238.
  • Öztürk, S., 2012, Statistical correlation between b-value and fractal dimension regarding Turkish epicentre distribution , Earth Sciences Research Journal, 16 (2), 103-108.
  • Öztürk, S., 2014. Türkiye’nin Batı Anadolu bölgesi için deprem istatistiği ve olası güçlü depremlerin orta vadede bölgesel olarak tahmini üzerine bir çalışma, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(1), 75-93.
  • Polat, O., Gok, E.ve Yılmaz, D., 2008, Earthquake hazard of the Aegean extension region (West Turkey). Turkish Journal of Earth Sciences, 17, 593-614.
  • Roy, S., Ghosh, U., Hazra, S. ve Kayal, J.R., 2011, Fractal dimension and b-value mapping in the Andaman-Sumatra subduction zone, Natural Hazards, 57, 27–37.
  • Rundle, J.B., Tiampo, K.F., Klein, W. ve Martins, J.S.S., 2002, Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology and forecasting, Proceedings of the National Academy of Sciences of the United states of America, 99, 2514-2521, Supplement 1.
  • Rundle, J.B., Turcotte, D.L., Scherbakov R., Klein, W. ve Sammis, C., 2003, Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Review of Geophysics, 41(4), 1019.
  • Sykes, L.R. ve Jaumè, S.C., 1990, Seismic activity on neighboring faults as a long-term precursors to large earthquakes in the san Francisco area, Nature, 348, 595-599.
  • Şaroğlu, F., Emre ,O. ve Kuşcu, I., 1992, Active fault map of Turkey, General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Şengör, A.,M.,C. ve Yılmaz, Y., 1981, Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75, 181–241.
  • Tiampo, K.F., Rundle., J.B., McGinnis, S. ve Klein, W., 2002, Pattern dynamics and forecast methods in seismically active regions, Pure and Applied Geophysics, 159, 2429-2467.
  • Westaway, R., 1994, Present-day kinematics of the Middle East and Eastern Mediterranean, Journal of Geophysical Research, 99, B6, 12071-12090.
  • Wiemer, S. ve Wyss, M., 2000, Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, Bulletin. Seismological Society of America, 90(4), 859-869.
  • Wong, H.K., Degens, E.T., ve Finckh, P., 1978, Structures in modern Lake Van sediments as revealed by 3.5 KHz high resolution profiling. In: E.T. Degens and F. Kurtman (eds.), Geology of Lake Van, Publ. Inst. Miner. Res. Explor. 169, 11-19.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Serkan Öztürk

Yayımlanma Tarihi 2 Şubat 2015
Gönderilme Tarihi 8 Eylül 2014
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

APA Öztürk, S. (2015). Depremselliğin Fraktal Boyutu ve Beklenen Güçlü Depremlerin Orta Vadede Bölgesel Olarak Tahmini Üzerine Bir Modelleme: Doğu Anadolu Bölgesi, Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 5(1), 1-23. https://doi.org/10.17714/gufbed.2015.05.001