Konferans Bildirisi
BibTex RIS Kaynak Göster

Karayolu Kaplamalarının Sonlu Elemanlar Yöntemi İle Analizinde Gerilme-Birim Şekil Değiştirme Davranışına Etki Eden Parametrelerin İncelenmesi

Yıl 2018, CMES 2018 Ek Sayısı, 22 - 30, 30.11.2018
https://doi.org/10.17714/gumusfenbil.432302

Öz

Esnek
kaplamalar bitüm ve granüler malzemeler ile inşa edilen bir üst yapı türüdür.
Esnek üst yapıların projelendirilmesinde kullanılan yöntemler; ampirik
yöntemler, kayma göçmesi sınırlama yöntemi, deplasman sınırlama yöntemi,
regresyon yöntemi ve mekanistik ampirik yöntemler olarak beş kategoriye
ayrılabilir. Bu yöntemler arasından geleneksel ampirik yöntemlerden mekanistik
ampirik dizayn yöntemlerine doğru bir yönelme söz konusudur. Kaplama
tabakalarının heterojenliği, dinamik ve tekrarlı yükleme koşulları gibi
sebeplerle araştırmacılar çalışmalarını sonlu elemanlar yöntemi ile yapmayı
tercih etmektedir ancak sonlu elemanlar modelinin 2 veya 3 boyutlu olarak
tanımlanması, yükleme koşulları, tabakalar arası temas durumları ve
formülasyonları, ızgara boyutları, sınır koşulları ve model boyutları gibi parametreler
sonuçlar üzerinde önemli bir etkiye sahiptir. Bu çalışmada kaplama, temel ve alt
temel tabakalarından oluşan geleneksel bir üst yapı kesiti üzerinde statik
yükleme koşulları altında kaplama tepkilerini etkileyen parametreler
incelenmiştir.

Kaynakça

  • Abd Alla, E.M., 2006. The rational use of finite element method in the analysis of flexible pavements. Journal of Engineering Sciences, Assiut University, 34, 1185-1211.
  • Adhikari, S., Shen, S. ve You, Z., 2009. Evaluation of fatigue models of hot-mix asphalt through laboratory testing. Transportation Research Record Journal of the Transportation Research Board, 2127, 36-42.
  • Ahirwar, S.K. ve Mandal, J.N., 2017. Finite element analysis of flexible pavement with geogrids. Procedia Engineering, 189, 411-416.
  • Ahmed, A. ve Erlingsson, S., 2016. Viscoelastic response modelling of a pavement under moving load. Transportation Research Procedia, 14, 748-757.
  • Al-Azzawi, A.A., 2012. Finite element analysis of flexible pavements strenghted with geogrid. ARPN Journal of Engineering and Applied Sciences, 7, 1295-1299.
  • Ali, H.A. ve Tayabji, S.D., 1998. Mechanistic evaluation of test data from LTPP flexible pavement test sections, US Department of Transportation Federal Highway Administration, Report no. FHWA-RD-98-012
  • Ambassa, Z., Allou, F., Petit, C. ve Eko, R.M., 2013. Fatigue life prediction of an asphalt pavement subjected to multiple axle loadings with viscoelastic FEM. Constrğuction and Building Materials, 43, 443-452.
  • Beskou, N.D., Tsinopoulos, S.V. ve Theodorakopoulos, D.D., 2016. Dynamic elastic analysis of 3-D flexible pavements under moving vehicles: A unified FEM treatment. Soil Dynamics and Earthquake Engineering, 82, 63-72.
  • Chegenizadeh, A., Keramatikerman, M. ve Nikraz, H., 2016. Flexible pavemet modelling using Kenlayer. EJGE, 21, 2467-2479.
  • Ekwulo, E.O. ve Eme, D.B., 2009. Fatigue and rutting strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and Technology, 3, 412-421.
  • Hadi, M.N.S. ve Bodhinayake, B.C., 2003. Non-linear finite element analysis of flexible pavements. Advances in Engineering Software, 34, 657-662.
  • Hafeez, I., Shan, A., Ali, A. ve Ahmed, I., 2017. Flexible pavement design evaluation using mechanistic-empirical approaches. Technical Journal, University of Engineering and Technology, 22, 27-33.
  • Huang, Y.H., 2004. Pavement Analysis and Design, Pearson Prentice Hall, New Jersey.
  • Lu, P., Bratlien, A. ve Tolliver, D., 2014. North Dakota Implementation of Mechanistic-Empirical Pavement Design Guide (MEPDG), Mountain-Plains Consortium, North Dakota.
  • Muniandy, R., Aburkaba, E. ve Thamer, N., 2013. Comparison of flexible pavement performance using Kenlayer and Chev PC software program. Australian Journal of Basic and Applied Sciences, 7, 112-119.
  • Sarkar, A., 2016. Numerical comparison of flexible pavement dynamic response under different axles. International Journal of Pavement Engineering, 17, 377-387.
  • Yoo, P.J., Al-Qadi, L.L., Elseifi, M.A. ve Janajreh, I., 2006. Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces. The International Journal of Pavement Engineering, 7, 73-86.
  • Zheng, L., Hai-lin, Y., Wan-ping, W. ve Ping, C., 2012. Dynamic stres and deformation of a layered road structure under vehicle traffic loads: Experimental measurements and numerical calculations. Soil Dynamics and Earthquake Engineering, 39, 100-112.

Investigation of Finite Element Method Parameters Affecting the Displacement Behaviour of Highway Pavements

Yıl 2018, CMES 2018 Ek Sayısı, 22 - 30, 30.11.2018
https://doi.org/10.17714/gumusfenbil.432302

Öz

Flexible
pavements are a type of superstructure constructed using bitumen and granular materials.
The methods used in the design of flexible pavements can be examined in five categories.
Empirical methods, limiting shear failure methods, limiting deflection methods,
regression methods and mechanistic-empirical methods. There has been a dramatic
change in the design methods for flexible pavements from the early purely empirical
methods to the modern mechanistic-empirical methods. Due to the heterogeneous pavement
layers and dynamic and cycling loading instead of static loading, researchers diverted
their research to the finite element method, which provides a better solution
in the dynamic analysis of pavements while considering the heterogeneity.
However, in finite element method, parameters such as the definition of the
model as 2D or 3D, the loading condition, the types and formulation of contact between
layers, size of mesh, boundary conditions and dimensions of the model have a significant
effect on  the results. In this study,
finite element model parameters affecting the pavement responses under static loading
were investigated on a typical superstructure configuration consists pavement,
base and subgrade layers.

Kaynakça

  • Abd Alla, E.M., 2006. The rational use of finite element method in the analysis of flexible pavements. Journal of Engineering Sciences, Assiut University, 34, 1185-1211.
  • Adhikari, S., Shen, S. ve You, Z., 2009. Evaluation of fatigue models of hot-mix asphalt through laboratory testing. Transportation Research Record Journal of the Transportation Research Board, 2127, 36-42.
  • Ahirwar, S.K. ve Mandal, J.N., 2017. Finite element analysis of flexible pavement with geogrids. Procedia Engineering, 189, 411-416.
  • Ahmed, A. ve Erlingsson, S., 2016. Viscoelastic response modelling of a pavement under moving load. Transportation Research Procedia, 14, 748-757.
  • Al-Azzawi, A.A., 2012. Finite element analysis of flexible pavements strenghted with geogrid. ARPN Journal of Engineering and Applied Sciences, 7, 1295-1299.
  • Ali, H.A. ve Tayabji, S.D., 1998. Mechanistic evaluation of test data from LTPP flexible pavement test sections, US Department of Transportation Federal Highway Administration, Report no. FHWA-RD-98-012
  • Ambassa, Z., Allou, F., Petit, C. ve Eko, R.M., 2013. Fatigue life prediction of an asphalt pavement subjected to multiple axle loadings with viscoelastic FEM. Constrğuction and Building Materials, 43, 443-452.
  • Beskou, N.D., Tsinopoulos, S.V. ve Theodorakopoulos, D.D., 2016. Dynamic elastic analysis of 3-D flexible pavements under moving vehicles: A unified FEM treatment. Soil Dynamics and Earthquake Engineering, 82, 63-72.
  • Chegenizadeh, A., Keramatikerman, M. ve Nikraz, H., 2016. Flexible pavemet modelling using Kenlayer. EJGE, 21, 2467-2479.
  • Ekwulo, E.O. ve Eme, D.B., 2009. Fatigue and rutting strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and Technology, 3, 412-421.
  • Hadi, M.N.S. ve Bodhinayake, B.C., 2003. Non-linear finite element analysis of flexible pavements. Advances in Engineering Software, 34, 657-662.
  • Hafeez, I., Shan, A., Ali, A. ve Ahmed, I., 2017. Flexible pavement design evaluation using mechanistic-empirical approaches. Technical Journal, University of Engineering and Technology, 22, 27-33.
  • Huang, Y.H., 2004. Pavement Analysis and Design, Pearson Prentice Hall, New Jersey.
  • Lu, P., Bratlien, A. ve Tolliver, D., 2014. North Dakota Implementation of Mechanistic-Empirical Pavement Design Guide (MEPDG), Mountain-Plains Consortium, North Dakota.
  • Muniandy, R., Aburkaba, E. ve Thamer, N., 2013. Comparison of flexible pavement performance using Kenlayer and Chev PC software program. Australian Journal of Basic and Applied Sciences, 7, 112-119.
  • Sarkar, A., 2016. Numerical comparison of flexible pavement dynamic response under different axles. International Journal of Pavement Engineering, 17, 377-387.
  • Yoo, P.J., Al-Qadi, L.L., Elseifi, M.A. ve Janajreh, I., 2006. Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces. The International Journal of Pavement Engineering, 7, 73-86.
  • Zheng, L., Hai-lin, Y., Wan-ping, W. ve Ping, C., 2012. Dynamic stres and deformation of a layered road structure under vehicle traffic loads: Experimental measurements and numerical calculations. Soil Dynamics and Earthquake Engineering, 39, 100-112.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Murat Bostancıoğlu 0000-0001-6820-2213

Yayımlanma Tarihi 30 Kasım 2018
Gönderilme Tarihi 8 Haziran 2018
Kabul Tarihi 30 Kasım 2018
Yayımlandığı Sayı Yıl 2018 CMES 2018 Ek Sayısı

Kaynak Göster

APA Bostancıoğlu, M. (2018). Karayolu Kaplamalarının Sonlu Elemanlar Yöntemi İle Analizinde Gerilme-Birim Şekil Değiştirme Davranışına Etki Eden Parametrelerin İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi22-30. https://doi.org/10.17714/gumusfenbil.432302