Araştırma Makalesi
BibTex RIS Kaynak Göster

PbO-Grafen Elektrot Yüzeyinde Askorbik Asit ile Dopaminin Eşzamanlı Elektrokimyasal Tespiti

Yıl 2019, Cilt: 9 Sayı: 4, 742 - 750, 15.10.2019
https://doi.org/10.17714/gumusfenbil.520362

Öz

Bu çalışmada, kurşun oksit-grafen (PbO-G) nanokompozitlerinin
Au elektrot yüzeyinde katodik elektrodepozisyonu; yeni bir elektrokimyasal
metot kullanılarak Pb+2 ve grafen oksit ihtiva eden aynı çözelti içerisinde,
sabit tek bir potansiyelde gerçekleştirildi. Elde edilen kompozit malzemenin
morfolojik ve yapısal özelliklerini analiz etmek için XRD, XPS, SEM ve EDS
spektroskopisi teknikleri kullanıldı. PbO-G nanokompoziti askorbik asit (AA) ile
dopaminin (DA) eşzamanlı elektrokimyasal tespiti için çıplak Au ve PbO-modifiye
edilmiş Au elektrotlardan daha yüksek bir akım yoğunluğu ve daha düşük
oksidasyon potansiyeli gösterdi. Ayrıca DA’in PbO-G elektrot yüzeyinde
amperometrik tayini incelendi ve 0.5 µM
ile 100 µM arasındaki doğrusal aralıkta tayin sınırı (sinyal/gürültü oranı=3 için) 0.001±0.00028 µM olarak hesaplandı. PbO-G
nanokompozit modifiye elektrot, AA varlığında DA’in elektrokimyasal tespiti ve
amperometrik tayini için yeni, basit ve düşük maliyetli bir analiz yöntemi sağlamaktadır.

Kaynakça

  • Abdelwahab, A.A. ve Shim, Y.B., 2015. Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensors and Actuators B: Chemical, 221, 659–665.
  • Chen, M., Park, C., Choi, J. ve Oh, W., 2011. Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. J.Korean Ceramic Soc., 48, 147-151.
  • Dan, Y.Y., Lin, H.B., Liu, X.L., Lu, H.Y., Zhao, J.Z., Shi, Z. ve Guo, Y.P., 2012. Porous quasi three-dimensional nano-Mn3O4+PbO2 composite as supercapacitor electrode material. Electrochim Acta, 83, 175-182.
  • Gopalan, A.I., Lee, K., Manesh, K.M., Santhosh, P., Kim, J.H. ve Kang, J.S., 2007. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta, 71, 1774-1781.
  • Hu, G., Guo, Y. ve Shao, S., 2009. Simultaneous determination of dopamine and ascorbic acid using the nano‐gold self‐assembled glassy carbon electrode. Electroanalysis, 21, 1200-1206.
  • Hu, S., Huang, Q., Lin, Y., Wei, C., Zhang, H., Zhang, W., Guo, Z., Bao, X., Shi, J. ve Hao, A., 2014. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochimica Acta, 130, 805–809.
  • Kim, Y., Bong, S., Kang, Y., Yang, Y., Kumar, R., Jong, M., Kim, S. ve Kim, H., 2010. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron., 25, 2366-2369.
  • Konstantinov, K., Ng, S.H., Wang, J.Z., Wang, G.X., Wexler, D. ve Liu, H.K., 2006. Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. J. Power Sources, 159, 241-244.
  • Kwon, Y., Lee, H. ve Lee, J., 2011. Autonomous interfacial creation of nanostructured lead oxide. Nanoscale, 3, 4984-4988.
  • Li, C.H., Sengodu, P., Wang, D.Y., Kuo, T.R. ve Chen, C.C., 2015. Highly stable cycling of a lead oxide/copper nanocomposite as an anode material in lithium ion batteries. Rsc Adv 5, 50245-50252.
  • Li, L., Zhu, X.F., Yang, D.N., Gao, L.X., Liu, J.W., Kumar, R.V. ve Yang, J.K., 2012. Preparation and characterization of nano-structured lead oxide from spent lead acid battery paste. J. Hazard. Mater. 203, 274-282.
  • Liu, Y., She, P., Gong, J., Wu, W., Xu, S., Li, J., Zhao, K. ve Deng, A., 2015. A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors and Actuators B: Chemical, 221, 1542–1553.
  • Mizoguchi, H., Kawazoe, H. ve Hosono, H., 1996. Enhancement of electrical conductivity of polycrystalline beta-PbO by exposure to ozone gas at room temperature. Chem. Mater, 8, 2769-2773.
  • Ng, S.H., Wang, J., Konstantinov, K., Wexler, D., Chen, J. ve Liu, H.K., 2006. Spray pyrolyzed PbO-carbon nanocomposites as anode for lithium-ion batteries. J. Electrochem. Soc., 153, A787-A793.
  • Palanisamy, S., Ku, S. ve Chen, S., 2013. Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchimica Acta, 180, 1037–1042.
  • Pan, Q.M., Wang, Z.J., Liu, J., Yin, G.P. ve Gu, M., 2009. PbO@C core-shell nanocomposites as an anode material of lithium-ion batteries. Electrochem. Commun., 11, 917-920.
  • Parveen, A., Dashpande, R., Ahmed, S. ve Roy, A.S., 2013. Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites. Chem. Pap., 67, 350-356.
  • Ramesha, G.K. ve Sampath, S., 2011. In-situ formation of graphene-lead oxide composite and its use in trace arsenic detection. Sensor.Actuat.B-Chem., 160, 306-311.
  • Sajadi, S.A.A., 2011. A comparative investigation of lead sulfate and lead oxide sulfate study of morphology and thermal decomposition. American Journal of Analytical Chemistry, 2, 206-211.
  • Shahid, M., Hamid, M., Mazhar, M., Akhtar, J., Zeller, M. ve Hunter, A.D., 2011. Crystalline Cu-PbO ceramic composite thin films from Pb-2(OAc)(4)(mu-O)(3)Cu-6 (dmae)(4)Cl-4 center dot(C7H8)center dot 1.7(H2O). Inorg. Chem. Commun., 14, 288-291.
  • Stillman, R., Robins, R. ve Skyllas-Kazacos, M., 1984. Quantitative X-Ray-Diffraction Analysis of Alpha-Pbo Beta-Pbo in Lead Acid Battery Primary Oxide. J. Power Sources 13, 171-180.
  • Sun, C., Lee, H., Yang, J. ve Wu, C., 2011. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron., 26, 3450-3455.
  • Teymourian, H., Salimi, A. ve Khezrian, S., 2013. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 49, 1–8.
  • Velayutham, D. ve Noel M., 1992. Preparation of a Polypyrrole Lead Dioxide Composite Electrode for Electroanalytical Applications. Talanta, 39, 481-486.
  • Wang, C., Du, J., Wang, H., Zou, C., Jiang, F., Yang, P. ve Du, Y., 2014. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuat. B: Chem., 204, 302-309.
  • Wang, Y., Li, Y., Tang, L., Lu, J. ve Li, J., 2009. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun., 11, 889-892.
  • Wang, Y., Wen, Z., Zhang, H., Cao, G., Sun, Q. ve Cao, J., 2016. CuO Nanorods-Decorated Reduced Graphene Oxide Nanocatalysts for Catalytic Oxidation of CO. Catalysts, 6, 214-222.
  • Wang, Y.J., Panzik, J.E., Kiefer, B.ve Lee, K.K.M., 2012. Crystal structure of graphite under room-temperature compression and decompression. Sci Rep-Uk, 2, 520.
  • Zhang, F., Li, Y., Gu, Y., Wang, Z. ve Wang, C., 2011. One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta, 173,103–109.
  • Zhitomirsky, I., Galor, L., Kohn, A. ve Hennicke, H.W., 1995. Electrochemical Preparation of PbO Films, J. Mater. Sci. Lett., 14, 807-810.

Simultaneous Electrochemical Detection of Ascorbic Acid and Dopamine on PbO-Graphene Electrode

Yıl 2019, Cilt: 9 Sayı: 4, 742 - 750, 15.10.2019
https://doi.org/10.17714/gumusfenbil.520362

Öz

In this study, cathodic electrodeposition of lead oxide-graphene (PbO-G)
nanocomposites on Au electrode surface was carried out by a new one-pot
electrochemical method in the same solution containing Pb+2 and
graphene oxide. XRD, XPS, SEM, and EDS spectroscopy techniques were employed to
analyze the morphological and structural characteristics of the composite
materials.
For
simultaneous electrochemical detection of ascorbic acid (AA) and dopamine (DA),
the PbO-G nanocomposite exhibited a higher current density and lower oxidation
potential than the bare Au and PbO-modified Au electrodes. Also,
the amperometric detection of dopamine on PbO-G electrode surface was
investigated and the limit of detection was
estimated as 0.001 µM
in the linear range from 0.5 µM to 100
µM
(at a signal-to-noise ratio of 3.0). This PbO-G nanocomposite-modified electrode
provided a novel, simple, and low-cost route for the electrochemical detection
and amperometric sensing of DA in the presence of AA.

Kaynakça

  • Abdelwahab, A.A. ve Shim, Y.B., 2015. Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensors and Actuators B: Chemical, 221, 659–665.
  • Chen, M., Park, C., Choi, J. ve Oh, W., 2011. Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. J.Korean Ceramic Soc., 48, 147-151.
  • Dan, Y.Y., Lin, H.B., Liu, X.L., Lu, H.Y., Zhao, J.Z., Shi, Z. ve Guo, Y.P., 2012. Porous quasi three-dimensional nano-Mn3O4+PbO2 composite as supercapacitor electrode material. Electrochim Acta, 83, 175-182.
  • Gopalan, A.I., Lee, K., Manesh, K.M., Santhosh, P., Kim, J.H. ve Kang, J.S., 2007. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta, 71, 1774-1781.
  • Hu, G., Guo, Y. ve Shao, S., 2009. Simultaneous determination of dopamine and ascorbic acid using the nano‐gold self‐assembled glassy carbon electrode. Electroanalysis, 21, 1200-1206.
  • Hu, S., Huang, Q., Lin, Y., Wei, C., Zhang, H., Zhang, W., Guo, Z., Bao, X., Shi, J. ve Hao, A., 2014. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochimica Acta, 130, 805–809.
  • Kim, Y., Bong, S., Kang, Y., Yang, Y., Kumar, R., Jong, M., Kim, S. ve Kim, H., 2010. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron., 25, 2366-2369.
  • Konstantinov, K., Ng, S.H., Wang, J.Z., Wang, G.X., Wexler, D. ve Liu, H.K., 2006. Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. J. Power Sources, 159, 241-244.
  • Kwon, Y., Lee, H. ve Lee, J., 2011. Autonomous interfacial creation of nanostructured lead oxide. Nanoscale, 3, 4984-4988.
  • Li, C.H., Sengodu, P., Wang, D.Y., Kuo, T.R. ve Chen, C.C., 2015. Highly stable cycling of a lead oxide/copper nanocomposite as an anode material in lithium ion batteries. Rsc Adv 5, 50245-50252.
  • Li, L., Zhu, X.F., Yang, D.N., Gao, L.X., Liu, J.W., Kumar, R.V. ve Yang, J.K., 2012. Preparation and characterization of nano-structured lead oxide from spent lead acid battery paste. J. Hazard. Mater. 203, 274-282.
  • Liu, Y., She, P., Gong, J., Wu, W., Xu, S., Li, J., Zhao, K. ve Deng, A., 2015. A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors and Actuators B: Chemical, 221, 1542–1553.
  • Mizoguchi, H., Kawazoe, H. ve Hosono, H., 1996. Enhancement of electrical conductivity of polycrystalline beta-PbO by exposure to ozone gas at room temperature. Chem. Mater, 8, 2769-2773.
  • Ng, S.H., Wang, J., Konstantinov, K., Wexler, D., Chen, J. ve Liu, H.K., 2006. Spray pyrolyzed PbO-carbon nanocomposites as anode for lithium-ion batteries. J. Electrochem. Soc., 153, A787-A793.
  • Palanisamy, S., Ku, S. ve Chen, S., 2013. Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchimica Acta, 180, 1037–1042.
  • Pan, Q.M., Wang, Z.J., Liu, J., Yin, G.P. ve Gu, M., 2009. PbO@C core-shell nanocomposites as an anode material of lithium-ion batteries. Electrochem. Commun., 11, 917-920.
  • Parveen, A., Dashpande, R., Ahmed, S. ve Roy, A.S., 2013. Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites. Chem. Pap., 67, 350-356.
  • Ramesha, G.K. ve Sampath, S., 2011. In-situ formation of graphene-lead oxide composite and its use in trace arsenic detection. Sensor.Actuat.B-Chem., 160, 306-311.
  • Sajadi, S.A.A., 2011. A comparative investigation of lead sulfate and lead oxide sulfate study of morphology and thermal decomposition. American Journal of Analytical Chemistry, 2, 206-211.
  • Shahid, M., Hamid, M., Mazhar, M., Akhtar, J., Zeller, M. ve Hunter, A.D., 2011. Crystalline Cu-PbO ceramic composite thin films from Pb-2(OAc)(4)(mu-O)(3)Cu-6 (dmae)(4)Cl-4 center dot(C7H8)center dot 1.7(H2O). Inorg. Chem. Commun., 14, 288-291.
  • Stillman, R., Robins, R. ve Skyllas-Kazacos, M., 1984. Quantitative X-Ray-Diffraction Analysis of Alpha-Pbo Beta-Pbo in Lead Acid Battery Primary Oxide. J. Power Sources 13, 171-180.
  • Sun, C., Lee, H., Yang, J. ve Wu, C., 2011. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron., 26, 3450-3455.
  • Teymourian, H., Salimi, A. ve Khezrian, S., 2013. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 49, 1–8.
  • Velayutham, D. ve Noel M., 1992. Preparation of a Polypyrrole Lead Dioxide Composite Electrode for Electroanalytical Applications. Talanta, 39, 481-486.
  • Wang, C., Du, J., Wang, H., Zou, C., Jiang, F., Yang, P. ve Du, Y., 2014. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuat. B: Chem., 204, 302-309.
  • Wang, Y., Li, Y., Tang, L., Lu, J. ve Li, J., 2009. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun., 11, 889-892.
  • Wang, Y., Wen, Z., Zhang, H., Cao, G., Sun, Q. ve Cao, J., 2016. CuO Nanorods-Decorated Reduced Graphene Oxide Nanocatalysts for Catalytic Oxidation of CO. Catalysts, 6, 214-222.
  • Wang, Y.J., Panzik, J.E., Kiefer, B.ve Lee, K.K.M., 2012. Crystal structure of graphite under room-temperature compression and decompression. Sci Rep-Uk, 2, 520.
  • Zhang, F., Li, Y., Gu, Y., Wang, Z. ve Wang, C., 2011. One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta, 173,103–109.
  • Zhitomirsky, I., Galor, L., Kohn, A. ve Hennicke, H.W., 1995. Electrochemical Preparation of PbO Films, J. Mater. Sci. Lett., 14, 807-810.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hülya Öztürk Doğan 0000-0002-4072-7744

Bingül Kurt Urhan Bu kişi benim 0000-0002-8742-6789

Tuba Öznülüer Özer 0000-0001-5148-2984

Yayımlanma Tarihi 15 Ekim 2019
Gönderilme Tarihi 31 Ocak 2019
Kabul Tarihi 4 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 4

Kaynak Göster

APA Öztürk Doğan, H., Kurt Urhan, B., & Öznülüer Özer, T. (2019). PbO-Grafen Elektrot Yüzeyinde Askorbik Asit ile Dopaminin Eşzamanlı Elektrokimyasal Tespiti. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(4), 742-750. https://doi.org/10.17714/gumusfenbil.520362