Araştırma Makalesi
BibTex RIS Kaynak Göster

Konfokal Raman Mikroskobu ile Bilinmeyen Polimer Tabanlı Bir Kompozit Malzemenin Tanımlanması ve Kemometrik Yöntem Kullanarak Karışım Oranlarının Belirlenmesi

Yıl 2020, Cilt: 10 Sayı: 1, 217 - 223, 15.01.2020
https://doi.org/10.17714/gumusfenbil.573887

Öz

Bu çalışmada tersine
mühendislik uygulamalarında yaygın olarak kullanılan ve bilinmeyen
analizlerinde güçlü bir analiz metodu olan, Eş Odaklı Raman mikroskopisi
yöntemi kullanılarak türü bilinmeyen bir Polimerik kompozit malzemenin
moleküler yapısından yola çıkarak polimer türü ve dolgu malzemeleri
tanımlanmaya çalışılmıştır. İleri araştırmalarda kullanılan kemometrik
yöntemler ile yapısı analiz edilen kompozit malzemenin, yapısını oluşturan her
bir bileşiğin, kompozit yapısı içindeki miktarsal oranı araştırılmıştır.
Kompozit malzemenin kullanım alanı dışında hiçbir veriye sahip olunmadığı için
içeriğindeki malzemeler ile ilgili hiçbir yakınsama yapılmayarak sadece analizi
yapılan kompozitin mikroskop görüntüsü altında her bir farklı kısmından elde
edilen Raman spektrumları kütüphane taraması ile eşleştirilmiştir. Yapılan
eşleştirmelerde en yüksek eşleşme oranına sahip malzeme olduğu varsayılarak
analizler ve hesaplamalar bu doğrultuda devam ettirilmiştir. Eş Odaklı Raman
mikroskobu ile kompoziti oluşturan üç ana bileşik üzerine yoğunlaşılarak
malzeme yüzeyinde haritalandırma yapılmıştır. Kompoziti oluşturan üç ana
bileşenin sırası ile polipropilen (PP), silisyum karbür (SiC) ve karbon fiber
(KF) olduğu anlaşılmıştır. Bu üç bileşenin, kompozit içindeki hacimce oranları
20X optik büyütme altında, sırası ile %60, %26, ve %14 olarak hesaplanmıştır.
Eş Odaklı Raman mikroskopu tekniği kompozit malzemelerin içine katılan ve
kompozite artı özellik katan tüm malzemelerin tanımlanmasında kullanılabilecek
ileri bir enstrümantal analiz yöntemi olduğu görülmüştür.

Kaynakça

  • Ball, D. W. 2001. Theory of Raman spectroscopy. Spectroscopy, 16(11), 32–34.
  • Banwell, C.N . ve McCash, E. . 1994. Fundamentals of Molecular-Spectroscopy. New York: McGraw-Hill.
  • Belu, A., Mahoney, C., Wormuth, K. 2008. Chemical imaging of drug eluting coatings: combining surface analysis and confocal Raman microscopy. Journal of Controlled Release, 126(2), 111–121.
  • Breitenbach, J., Schrof, W., Neumann, J. 1999. Confocal Raman-spectroscopy: analytical approach to solid dispersions and mapping of drugs. Pharmaceutical research, 16(7), 1109–1113.
  • Cai, W. B., Ren, B., Li, X. Q., She, C. X., Liu, F. M., Cai, X. W., Tian, Z.-Q. 1998. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surface Science, 406(1–3), 9–22.
  • Caspers, P. J., Lucassen, G. W., Puppels, G. J. 2003. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophysical journal, 85(1), 572–580.
  • Chance, K. V, Spurr, R. J. D. 1997. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Applied optics, 36(21), 5224–5230.
  • Colthup, N. 2012. Introduction to infrared and Raman spectroscopy. Elsevier.
  • Dieing, T., Hollricher, O., Toporski, J. 2011. Confocal raman microscopy, (C. 158). Springer.
  • Gierlinger, N., Schwanninger, M. 2006. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant physiology, 140(4), 1246–1254.
  • Hartschuh, A., Sánchez, E. J., Xie, X. S., Novotny, L. 2003. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Physical Review Letters, 90(9), 95503.
  • Hollas, J. M. 1984. Fundamentals of molecular spectroscopy-banwell, CNT". Royal Soc. Chemistry Thomas Garham House, Science Park, Milton Road.
  • Keren, S., Zavaleta, C., Cheng, Z. dl, de La Zerda, A., Gheysens, O., Gambhir, S. S. 2008. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proceedings of the National Academy of Sciences, 105(15), 5844–5849.
  • Keresztury, G. 2006. Raman Spectroscopy: Theory, Handbook of vibrational spectroscopy.
  • Klein, K., Gigler, A. M., Aschenbrenner, T., Monetti, R., Bunk, W., Jamitzky, F., … Schlegel, J. 2012. Label-free live-cell imaging with confocal Raman microscopy. Biophysical journal, 102(2), 360–368.
  • Moerner, W. E., Fromm, D. P. 2003. Methods of single-molecule fluorescence spectroscopy and microscopy. Review of Scientific instruments, 74(8), 3597–3619.
  • Nielsen, A. S., Batchelder, D. N., Pyrz, R. 2002. Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer, 43(9), 2671–2676.
  • Okumura, H., Sakuma, E., Lee, J. H., Mukaida, H., Misawa, S., Endo, K., Yoshida, S. 1987. Raman scattering of SiC: application to the identification of heteroepitaxy of SiC polytypes. Journal of applied physics, 61(3), 1134–1136.
  • Qian, X., Wang, X., Zhong, J., Zhi, J., Heng, F., Zhang, Y., Song, S. 2019. Effect of fiber microstructure studied by Raman spectroscopy upon the mechanical properties of carbon fibers. Journal of Raman Spectroscopy.
  • Raman, C. V., & Krishnan, K. S. 1928. A new type of secondary radiation. Nature, 121(3048), 501.
  • Stuart, B. 2000. Infrared spectroscopy. Kirk Othmer Encyclopedia of Chemical Technology, 1–18.
  • Uzunbajakava, N., Lenferink, A., Kraan, Y., Volokhina, E., Vrensen, G., Greve, J., Otto, C. 2003. Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophysical journal, 84(6), 3968–3981.
  • Vardeny, Z., Ehrenfreund, E., Brafman, O., Horovitz, B. 1983. Resonant Raman scattering from amplitude modes in trans-(CH) x and-(CD) x. Physical review letters, 51(25), 2326.

Defining an Unknown Polymer Based Composite Material by Confocal Raman Microscopy and Determination of Mixing Ratios Using Chemometric Method

Yıl 2020, Cilt: 10 Sayı: 1, 217 - 223, 15.01.2020
https://doi.org/10.17714/gumusfenbil.573887

Öz

 In this study, it has been tried to define polymer type and filler materials based on the molecular structure of an unknown type of Polymeric composite material by using the Confocal Raman Microscopy method which is a powerful method of analysis used in reverse engineering applications. The amount of the composites in the composite structure of the composite material, whose structure was analyzed by the chemometric methods used in advanced research, was investigated. Since there is no data other than the usage area of ​​the composite material, no convergence is made about the materials in its content and only the Raman spectra obtained from each different part of the composite under the microscope image of the analyzed composite were matched with the library survey. Assuming that the material with the highest match ratio was matched, the analyzes and calculations were continued in this direction. The Confocal Raman Microscope was focused on the three main compounds that were polypropylene (PP), silicon carbide (SiC) and carbon fiber (CF), mapped on the surface of the material. The ratios of these main components of the composite were calculated as 60%, 26%, and 14% under 20X optical magnification, respectively. Confocal Raman microscopy technique has been seen an advanced instrumental analysis method which can be used to identify all the materials that are incorporated into composite materials.

Kaynakça

  • Ball, D. W. 2001. Theory of Raman spectroscopy. Spectroscopy, 16(11), 32–34.
  • Banwell, C.N . ve McCash, E. . 1994. Fundamentals of Molecular-Spectroscopy. New York: McGraw-Hill.
  • Belu, A., Mahoney, C., Wormuth, K. 2008. Chemical imaging of drug eluting coatings: combining surface analysis and confocal Raman microscopy. Journal of Controlled Release, 126(2), 111–121.
  • Breitenbach, J., Schrof, W., Neumann, J. 1999. Confocal Raman-spectroscopy: analytical approach to solid dispersions and mapping of drugs. Pharmaceutical research, 16(7), 1109–1113.
  • Cai, W. B., Ren, B., Li, X. Q., She, C. X., Liu, F. M., Cai, X. W., Tian, Z.-Q. 1998. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surface Science, 406(1–3), 9–22.
  • Caspers, P. J., Lucassen, G. W., Puppels, G. J. 2003. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophysical journal, 85(1), 572–580.
  • Chance, K. V, Spurr, R. J. D. 1997. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Applied optics, 36(21), 5224–5230.
  • Colthup, N. 2012. Introduction to infrared and Raman spectroscopy. Elsevier.
  • Dieing, T., Hollricher, O., Toporski, J. 2011. Confocal raman microscopy, (C. 158). Springer.
  • Gierlinger, N., Schwanninger, M. 2006. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant physiology, 140(4), 1246–1254.
  • Hartschuh, A., Sánchez, E. J., Xie, X. S., Novotny, L. 2003. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Physical Review Letters, 90(9), 95503.
  • Hollas, J. M. 1984. Fundamentals of molecular spectroscopy-banwell, CNT". Royal Soc. Chemistry Thomas Garham House, Science Park, Milton Road.
  • Keren, S., Zavaleta, C., Cheng, Z. dl, de La Zerda, A., Gheysens, O., Gambhir, S. S. 2008. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proceedings of the National Academy of Sciences, 105(15), 5844–5849.
  • Keresztury, G. 2006. Raman Spectroscopy: Theory, Handbook of vibrational spectroscopy.
  • Klein, K., Gigler, A. M., Aschenbrenner, T., Monetti, R., Bunk, W., Jamitzky, F., … Schlegel, J. 2012. Label-free live-cell imaging with confocal Raman microscopy. Biophysical journal, 102(2), 360–368.
  • Moerner, W. E., Fromm, D. P. 2003. Methods of single-molecule fluorescence spectroscopy and microscopy. Review of Scientific instruments, 74(8), 3597–3619.
  • Nielsen, A. S., Batchelder, D. N., Pyrz, R. 2002. Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer, 43(9), 2671–2676.
  • Okumura, H., Sakuma, E., Lee, J. H., Mukaida, H., Misawa, S., Endo, K., Yoshida, S. 1987. Raman scattering of SiC: application to the identification of heteroepitaxy of SiC polytypes. Journal of applied physics, 61(3), 1134–1136.
  • Qian, X., Wang, X., Zhong, J., Zhi, J., Heng, F., Zhang, Y., Song, S. 2019. Effect of fiber microstructure studied by Raman spectroscopy upon the mechanical properties of carbon fibers. Journal of Raman Spectroscopy.
  • Raman, C. V., & Krishnan, K. S. 1928. A new type of secondary radiation. Nature, 121(3048), 501.
  • Stuart, B. 2000. Infrared spectroscopy. Kirk Othmer Encyclopedia of Chemical Technology, 1–18.
  • Uzunbajakava, N., Lenferink, A., Kraan, Y., Volokhina, E., Vrensen, G., Greve, J., Otto, C. 2003. Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophysical journal, 84(6), 3968–3981.
  • Vardeny, Z., Ehrenfreund, E., Brafman, O., Horovitz, B. 1983. Resonant Raman scattering from amplitude modes in trans-(CH) x and-(CD) x. Physical review letters, 51(25), 2326.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nusret Kaya 0000-0003-1727-3155

Yayımlanma Tarihi 15 Ocak 2020
Gönderilme Tarihi 6 Haziran 2019
Kabul Tarihi 25 Kasım 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 1

Kaynak Göster

APA Kaya, N. (2020). Konfokal Raman Mikroskobu ile Bilinmeyen Polimer Tabanlı Bir Kompozit Malzemenin Tanımlanması ve Kemometrik Yöntem Kullanarak Karışım Oranlarının Belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 217-223. https://doi.org/10.17714/gumusfenbil.573887