Araştırma Makalesi
BibTex RIS Kaynak Göster

Ti45Nb Alaşımının Aşınma Davranışına Anodizasyon Potansiyelinin Etkisi

Yıl 2020, Cilt: 10 Sayı: 2, 395 - 403, 15.04.2020
https://doi.org/10.17714/gumusfenbil.569817

Öz

Titanyum ve alaşımları düşük yoğunluk yüksek dayanım oranı, mükemmel biyouyumluluk ve iyi korozif özelliklerinden dolayı endüstriyel birçok alanda kullanılmaktadır. Fakat titanyum ve alaşımları zayıf yüzey özelliklerine sahiptir. Titanyum ve alaşımlarına aşınma direnci ve malzemenin kullanım süresini artırmak amacıyla çeşitli yüzey işlemleri uygulanır. Bu çalışmada, Ti45Nb alaşımının yüzeyinde farklı anodizasyon şartları altında oksit film tabakası oluşturulmuştur. Titanyumun yüzeyinde oluşan oksit film kalınlığının ve sertliğinin kuru aşınma şartları altında etkisi araştırılmıştır. Numunelerin oksit film katmanının faz yapısı XRD, yapısal özellikleri ve kesit görüntüsü SEM ile incelenmiştir. Ayrıca numunelerin yüzey sertliği ise mikro sertlik cihazıyla ölçülmüştür. Elde edilen sonuçlar, Ti45Nb yüzeyinde anodizasyon potansiyelinin artmasıyla oksit film kalınlığının ve sertliğinin arttığı belirlenmiştir. Buna bağlı olarak anodize edilmiş Ti45Nb alaşımının aşınma dayanımının arttığı tespit edilmiştir. Ayrıca anodizasyon potansiyelinin artmasıyla malzemenin yüzey pürüzlülüğü ve porozitesi artmıştır.

Kaynakça

  • Alsaran, A.,Purcek, G., Hacisalihoglu, I., Vangolu, Y., Bayrak, Ö., Karaman, I., &Celik, A. (2011). Hydroxyapatite Production On Ultrafine-Grained Pure Titanium By Micro-Arc Oxidation And Hydrothermal Treatment. Surface and Coatings Technology, 205, S537-S542.
  • Archard, J.F., 1980. Wear Theory and Mechanisms. New York, NY, ASME. New York, NY.
  • Bloyce, A.,Qi, P. Y., Dong, H., &Bell, T. (1998). Surface Modification Of Titanium Alloys For Combined Improvements In Corrosion And Wear Resistance. Surface and CoatingsTechnology, 107(2-3), 125-132.
  • Çelik, İ.,Alsaran, A., &Purcek, G. (2014). Effect Of Different Surface Oxidation Treatments On Structural, Mechanical And Tribological Properties Of Ultrafine-Grained Titanium. Surface and Coatings Technology, 258, 842-848.
  • Dong, H., 2010. Surface Engineering Of Light Alloys Aluminium, Magnesium, Titanium Alloys, Woodhead Publishing Limited.
  • Dong, H.,Bell, T. 2000. Enhanced Wear Resistance Of Titanium Surfaces By A New Thermal Oxidation Treatment. Wear. 238, 131-137.
  • Godley, R., Starosvetsky, D., & Gotman, I. (2006). Corrosion Behavior Of A Low Modulus Β-Ti-45% Nb Alloy For Use In Medical Implants. Journal of Materials Science: Materials in Medicine, 17(1), 63-67.
  • Habazaki, H.,Onodera, T., Fushima, K., Konno, H., Toyotake, K. 2007. Spark Anodizing Of Β-Ti Alloy For Wear-Resistant Coating. Surface and Coatings Technology, 201(21), 8730-8737.
  • Hacisalioglu, I., Yildiz, F., Alsaran, A., & Purcek, G. (2017, February). Wear Behavior Of The Plasma And Thermal Oxidized Ti-15Mo And Ti-6Al-4V Alloys. In IOP Conference Series: Materials Science and Engineering (Vol. 174, No. 1, p. 012055). IOP Publishing.
  • Han, B., Zal Nezhad, E., Musharavati, F., Jaber, F., &Bae, S. (2018). Tribo-Mechanical Properties And Corrosion Behavior Investigation of Anodized Ti–V Alloy. Coatings, 8(12), 459.
  • Jang, S. H.,Choe, H. C., Ko, Y. M., &Brantley, W. A. (2009). Electrochemical Characteristics Of Nanotubes Formed On Ti–Nb Alloys. Thin Solid Films, 517(17), 5038-5043.
  • Kim, K., Lee, B. A., Piao, X. H., Chung, H. J., & Kim, Y. J. (2013). Surface Characteristics And Bioactivity Of An Anodized Titanium Surface. Journal of periodontal&implant science, 43(4), 198-205.
  • Krishna, D.S.R. Brama, Y.L., Sun, Y. 2007. Thick Rutile Layer On Titanium For Tribological Applications.Tribology International, 40(2), 329-334.
  • Kuromoto, N. K.,Simao, R. A. And Soares, G. A., 2007. Titanium Oxide Films Produced On Commercially Pure Titanium By Anodic Oxidation With Different Voltages. Materials Characterization, 58(2), 114-121.
  • Liu, X.,Chu, P. K. and Ding, C., 2004. Surface Modification Of Titanium, Titanium Alloys,And Related Materials For Biomedical Applications. Materials Science&Engineering R-Reports, 47, 49–121.
  • Macak, J. M.,Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., &Schmuki, P. (2007). TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties And Applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18.
  • Martins, G. V.,Silva, C. R. M., Nunes, C. A., Trava-Airoldi, V. J., Borges, L. A., &Machado, J. P. B. (2010). Beta Ti-45Nb and Ti-50Nb Alloys Produced By Powder Metallurgy For Aerospace Application. In Materials Science Forum (Vol. 660, pp. 405-409). Trans Tech Publications.
  • Minagar, S.,Berndt, C.C., Wang, J., Ivanova, E., Wen, C. 2012. A Review Of The Application Of Anodization For The Fabrication Of Nanotubes On Metal Implant Surfaces.Acta Biomaterialia, 8(8), 2875-2888.
  • Panigrahi, A.,Sulkowski, B., Waitz, T., Ozaltin, K., Chrominski, W., Pukenas, A., ... &Zehetbauer, M. (2016). Mechanical Properties, Structural And Texture Evolution Of Biocompatible Ti–45Nb Alloy Processed By Severe Plastic Deformation. Journal of the mechanical behavior of biomedical materials, 62, 93-105.
  • Völker, B.,Jäger, N., Calin, M., Zehetbauer, M., Eckert, J., &Hohenwarter, A. (2017). Influence Of Testing Orientation On Mechanical Properties Of Ti45Nb Deformed By High Pressure Torsion. Materials& Design, 114, 40-46.
  • Yavari, S. A.,Necula, B. S., Fratila-Apachitei, L. E., Duszczyk, J., &Apachitei, I. (2016). Biofunctional Surfaces By Plasma Electrolytic Oxidation On Titanium Biomedical Alloys. Surface Engineering, 32(6), 411-417.
  • Yetim, A. F. (2010). Investigation Of Wear Behavior Of Titanium Oxide Films, Produced By Anodic Oxidation, On Commercially Pure Titanium In Vacuum Conditions. Surface and CoatingsTechnology, 205(6), 1757-1763.
  • Zhao, X.,Xue, G., &Liu, Y. (2017). Dry Sliding Tribological Behavior of TC11 Titanium Alloy Subjected to the Ultrasonic Impacting and Rolling Process. Metals, 8(1), 13.
  • Zorn, G.,Gotman, I., Gutmanas, E. Y., Adadi, R., Salitra, G. And Sukenik, C. N., 2005. Surface Modification of Ti45Nb Alloy with an Alkylphosphonic Acid Self Assembled Monolayer. Chemistry of Materials. 17, 4218-4226.
  • Zorn, G.,Lesman, A. And Gotman, I., 2006. Oxide Formation On Low Modulus Ti45Nb Alloy By Anodic Versus Thermal Oxidation. Surface&CoatingsTechnology, 201, 612-618.

The Effect of Anodization Potential on Wear Behaviour of Ti45Nb Alloy

Yıl 2020, Cilt: 10 Sayı: 2, 395 - 403, 15.04.2020
https://doi.org/10.17714/gumusfenbil.569817

Öz

Titanium and its alloys are used in many industrial fields because of their low density-high strength ratio, excellent biocompatibility and good corrosion properties. Nevertheless, titanium and its alloys have poor surface properties. Titanium and its alloys are applied various surface treatments for increasing wear resistance and service life. In this study, the oxide layer was formed under different anodization conditions on the surface of Ti45Nb alloy. The effects of thickness and hardness of oxide layer was investigated under dry wear conditions. The TiO2 phase form of samples was obtained by XRD. Structural properties and cross-section view of samples examined with SEM. Also, the surface hardness of samples was measured by micro hardness. In conclusion, the thickness and hardness of oxide layer increased within increasing anodization potential on Ti45Nb surface. Accordingly, it was determined that wear resistance of anodized Ti45Nb alloy improved. In addition, the surface roughness and porosity of the material increased with increasing anodization potential.

Kaynakça

  • Alsaran, A.,Purcek, G., Hacisalihoglu, I., Vangolu, Y., Bayrak, Ö., Karaman, I., &Celik, A. (2011). Hydroxyapatite Production On Ultrafine-Grained Pure Titanium By Micro-Arc Oxidation And Hydrothermal Treatment. Surface and Coatings Technology, 205, S537-S542.
  • Archard, J.F., 1980. Wear Theory and Mechanisms. New York, NY, ASME. New York, NY.
  • Bloyce, A.,Qi, P. Y., Dong, H., &Bell, T. (1998). Surface Modification Of Titanium Alloys For Combined Improvements In Corrosion And Wear Resistance. Surface and CoatingsTechnology, 107(2-3), 125-132.
  • Çelik, İ.,Alsaran, A., &Purcek, G. (2014). Effect Of Different Surface Oxidation Treatments On Structural, Mechanical And Tribological Properties Of Ultrafine-Grained Titanium. Surface and Coatings Technology, 258, 842-848.
  • Dong, H., 2010. Surface Engineering Of Light Alloys Aluminium, Magnesium, Titanium Alloys, Woodhead Publishing Limited.
  • Dong, H.,Bell, T. 2000. Enhanced Wear Resistance Of Titanium Surfaces By A New Thermal Oxidation Treatment. Wear. 238, 131-137.
  • Godley, R., Starosvetsky, D., & Gotman, I. (2006). Corrosion Behavior Of A Low Modulus Β-Ti-45% Nb Alloy For Use In Medical Implants. Journal of Materials Science: Materials in Medicine, 17(1), 63-67.
  • Habazaki, H.,Onodera, T., Fushima, K., Konno, H., Toyotake, K. 2007. Spark Anodizing Of Β-Ti Alloy For Wear-Resistant Coating. Surface and Coatings Technology, 201(21), 8730-8737.
  • Hacisalioglu, I., Yildiz, F., Alsaran, A., & Purcek, G. (2017, February). Wear Behavior Of The Plasma And Thermal Oxidized Ti-15Mo And Ti-6Al-4V Alloys. In IOP Conference Series: Materials Science and Engineering (Vol. 174, No. 1, p. 012055). IOP Publishing.
  • Han, B., Zal Nezhad, E., Musharavati, F., Jaber, F., &Bae, S. (2018). Tribo-Mechanical Properties And Corrosion Behavior Investigation of Anodized Ti–V Alloy. Coatings, 8(12), 459.
  • Jang, S. H.,Choe, H. C., Ko, Y. M., &Brantley, W. A. (2009). Electrochemical Characteristics Of Nanotubes Formed On Ti–Nb Alloys. Thin Solid Films, 517(17), 5038-5043.
  • Kim, K., Lee, B. A., Piao, X. H., Chung, H. J., & Kim, Y. J. (2013). Surface Characteristics And Bioactivity Of An Anodized Titanium Surface. Journal of periodontal&implant science, 43(4), 198-205.
  • Krishna, D.S.R. Brama, Y.L., Sun, Y. 2007. Thick Rutile Layer On Titanium For Tribological Applications.Tribology International, 40(2), 329-334.
  • Kuromoto, N. K.,Simao, R. A. And Soares, G. A., 2007. Titanium Oxide Films Produced On Commercially Pure Titanium By Anodic Oxidation With Different Voltages. Materials Characterization, 58(2), 114-121.
  • Liu, X.,Chu, P. K. and Ding, C., 2004. Surface Modification Of Titanium, Titanium Alloys,And Related Materials For Biomedical Applications. Materials Science&Engineering R-Reports, 47, 49–121.
  • Macak, J. M.,Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., &Schmuki, P. (2007). TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties And Applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18.
  • Martins, G. V.,Silva, C. R. M., Nunes, C. A., Trava-Airoldi, V. J., Borges, L. A., &Machado, J. P. B. (2010). Beta Ti-45Nb and Ti-50Nb Alloys Produced By Powder Metallurgy For Aerospace Application. In Materials Science Forum (Vol. 660, pp. 405-409). Trans Tech Publications.
  • Minagar, S.,Berndt, C.C., Wang, J., Ivanova, E., Wen, C. 2012. A Review Of The Application Of Anodization For The Fabrication Of Nanotubes On Metal Implant Surfaces.Acta Biomaterialia, 8(8), 2875-2888.
  • Panigrahi, A.,Sulkowski, B., Waitz, T., Ozaltin, K., Chrominski, W., Pukenas, A., ... &Zehetbauer, M. (2016). Mechanical Properties, Structural And Texture Evolution Of Biocompatible Ti–45Nb Alloy Processed By Severe Plastic Deformation. Journal of the mechanical behavior of biomedical materials, 62, 93-105.
  • Völker, B.,Jäger, N., Calin, M., Zehetbauer, M., Eckert, J., &Hohenwarter, A. (2017). Influence Of Testing Orientation On Mechanical Properties Of Ti45Nb Deformed By High Pressure Torsion. Materials& Design, 114, 40-46.
  • Yavari, S. A.,Necula, B. S., Fratila-Apachitei, L. E., Duszczyk, J., &Apachitei, I. (2016). Biofunctional Surfaces By Plasma Electrolytic Oxidation On Titanium Biomedical Alloys. Surface Engineering, 32(6), 411-417.
  • Yetim, A. F. (2010). Investigation Of Wear Behavior Of Titanium Oxide Films, Produced By Anodic Oxidation, On Commercially Pure Titanium In Vacuum Conditions. Surface and CoatingsTechnology, 205(6), 1757-1763.
  • Zhao, X.,Xue, G., &Liu, Y. (2017). Dry Sliding Tribological Behavior of TC11 Titanium Alloy Subjected to the Ultrasonic Impacting and Rolling Process. Metals, 8(1), 13.
  • Zorn, G.,Gotman, I., Gutmanas, E. Y., Adadi, R., Salitra, G. And Sukenik, C. N., 2005. Surface Modification of Ti45Nb Alloy with an Alkylphosphonic Acid Self Assembled Monolayer. Chemistry of Materials. 17, 4218-4226.
  • Zorn, G.,Lesman, A. And Gotman, I., 2006. Oxide Formation On Low Modulus Ti45Nb Alloy By Anodic Versus Thermal Oxidation. Surface&CoatingsTechnology, 201, 612-618.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muharrem Taşdemir 0000-0003-3291-108X

Fatih Şenaslan 0000-0003-0498-6332

Ayhan Çelik 0000-0002-8096-0794

Yayımlanma Tarihi 15 Nisan 2020
Gönderilme Tarihi 24 Mayıs 2019
Kabul Tarihi 11 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 2

Kaynak Göster

APA Taşdemir, M., Şenaslan, F., & Çelik, A. (2020). Ti45Nb Alaşımının Aşınma Davranışına Anodizasyon Potansiyelinin Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(2), 395-403. https://doi.org/10.17714/gumusfenbil.569817