Araştırma Makalesi
BibTex RIS Kaynak Göster

Sabit Fuzzy Nokta Teoremleri

Yıl 2020, Cilt: 10 Sayı: 3, 641 - 650, 15.07.2020
https://doi.org/10.17714/gumusfenbil.621967

Öz

Bu çalışmada, fuzzy alt kümeler ailesi üzerinde verilmiş olan Hausdorrf fuzzy metrik
uzaylarda, uzaklığı değiştiren fonksiyonlar yardımıyla ilk olarak fuzzy
fonksiyonları için sabit fuzzy nokta teoremi ispatlanmış ve teorem örneklerle
desteklenmiştir. Daha sonra, ana teoremin bir uygulaması olarak ortak sabit
fuzzy nokta teoremi ve ispatı verilmiştir.



 

Kaynakça

  • Abbas, M., Ali, B. and Vetro, C., 2015. Fixed Fuzzy Points of Fuzzy Mappings in Hausdorff Fuzzy Metric Spaces with Application. Iranian Journal of Fuzzy Systems, 12(3), 31-45.
  • Alaca, C., 2009. On Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces. Communications of the Korean Mathematical Society, 24(4), 565-579.
  • Ali, B. and Abbas, M., 2013. Suzuki Type Fixed Point Theorem for Fuzzy Mappings in Ordered Metric Spaces. Fixed Point Theory and Applications, 2013:19, 1-19.
  • Chang, C. L., 1968. Fuzzy Topological Space. Journal of Mathematical Analysis and Applications, 24, 182-190.
  • Chitra, A. and Subrahmanyam P. V., 1987. Fuzzy Sets and Fixed Points. Journal of Mathematical Analysis and Applications, 124, 584-590.
  • Dosenovic, T., Rakic, D., Brdar, M., 2014. Fixed Point Theorems in Fuzzy Metric Spaces Using Altering Distance. Filomat, 28(7), 1517-1524.
  • Estruch, V. D. and Vidal, A., 2001. A Note on Fixed Fuzzy Points for Fuzzy Mappings. Rendiconti dell’Istituto di Matematica dell’Universita di Trieste, 32, 39-45.
  • George, A. and Veeramani, P.,1994. On Some Results in Fuzzy Metric Spaces. Fuzzy Sets and Systems, 64, 395-399.
  • Grabiec, M., 1988. Fixed Points in Fuzzy Metric Spaces. Fuzzy Sets and Systems, 27, 385-389.
  • Gregori, V., Morillas, S. and Sapena, A., 2011. Examples of Fuzzy Metrics and Applications. Fuzzy Sets and Systems, 170, 95-111.
  • Haghi, R. H., Rezapour, Sh.and Shahzad, N., 2011. Some Fixed Point Generalizations are not Real Generalizations. Nonlinear Analysis, 74(5), 1799-1803.
  • Heilpern, S., 1981. Fuzzy Mappings and Fixed Point Theorem. Journal of Mathematical Analysis and Applications, 83(2), 566-569.
  • Khan, M.S., Swaleh, M. and Sessa, S., 1984. Fixed Point Theorems by Altering Distances Between the Points. Bulletin of the Australian Mathematical Society, 30(1), 1-9.
  • Kramosil, O. and Michalek, J., 1975. Fuzzy Metric and Statistical Metric Spaces. Kybernetica, 11, 326-334.
  • Lowen, R., 1976. Fuzzy Topological Spaces and Fuzzy Compactness. Journal of Mathematical Analysis and Applications, 56, 621-633.
  • Mihet, D., 2004. A Banach Contraction Theorem in Fuzzy Metric Spaces. Fuzzy Sets and Systems, 144, 431-439.
  • Nadler, S. B., 1969. Multivalued Contraction Mappings. Pacific Journal of Mathematics, 30(2), 475-488.
  • Naidu, S. V. R., 2003. Some Fixed Point Theorems in Metric Spaces by Altering Distances. Czechoslovak Mathematical Journal, 53(128), 205-212.
  • Nashine H. K. and Aydi, H., 2013. Coupled Fixed Point Theorems for Conctractions Involving Altering Distances in Ordered Metric Spaces. Mathematical Sciences, 7(20), 2013.
  • Pao-Ming, P. and Ying-Ming, L., 1980. Fuzzy Topology: II. Product and Quotient Spaces. Journal of Mathematical Analysis and Applications, 77, 20-37.
  • Phiangsungnoen, S., Sintunavarat, W. and Kumam, P., 2014. Fuzzy Fixed Point Theorems in Hausdorff Fuzzy Metric Spaces. Journal of Inequalities and Applications, 2014(201), 1-10.
  • Popa, V. and Mocanu, M., 2009. Altering Distance and Common Fixed Points Under Implicit Relations. Hacettepe Journal of Mathematics and Statistics, 38(3), 329-337.
  • Rhoades, B. E., 2001. Some Theorems on Weakly Contractive Maps. Nonlinear Analysis: Theory, Methods and Applications, 47(4), 2683-2693.
  • Rodriguez-Lopez, J. and Romaguera, S., 2004. The Hausdorff Fuzzy Metric on Compact Sets. Fuzzy Sets and Systems, 147, 273-283.
  • Schweizer, B. and Sklar, A., 1960. Statistical Metric Spaces. Pacific Journal of Mathematics, 10, 314-334.
  • Shen, Y., Qiu, D., Chen, W., 2012. Fixed Point Theorems in Fuzzy Metric Spaces. Applied Mathematics Letters, 25, 138-141.
  • Türkoğlu, D., Alaca, C., Cho, Y. J., Yıldız, C., 2006. Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces. Journal of Applied Mathematics and Computing, 22, 411-424.
  • Veeramani, P., 2001. Best Approximation in Fuzzy Metric Spaces. Journal of Fuzzy Mathematics, 9, 75-80.
  • Wong, C. K., 1974. Fuzzy Topology: Product and Quotient Theorems. Journal of Mathematical Analysis and Applications, 45, 512-521.
  • Zadeh, L. A., 1965. Fuzzy Sets. Information and Control, 8, 338-353.

Fixed Fuzzy Point Theorems

Yıl 2020, Cilt: 10 Sayı: 3, 641 - 650, 15.07.2020
https://doi.org/10.17714/gumusfenbil.621967

Öz

In this
study, firstly, fuzzy fixed point theorem was proved for fuzzy mappings by
altering distance functions in Hausdorff fuzzy metric spaces which are given on
family of fuzzy subsets and the theorem was supported by examples. After that,
common fuzzy fixed point theorem  and its
proof were given as an application of main theorem.

Kaynakça

  • Abbas, M., Ali, B. and Vetro, C., 2015. Fixed Fuzzy Points of Fuzzy Mappings in Hausdorff Fuzzy Metric Spaces with Application. Iranian Journal of Fuzzy Systems, 12(3), 31-45.
  • Alaca, C., 2009. On Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces. Communications of the Korean Mathematical Society, 24(4), 565-579.
  • Ali, B. and Abbas, M., 2013. Suzuki Type Fixed Point Theorem for Fuzzy Mappings in Ordered Metric Spaces. Fixed Point Theory and Applications, 2013:19, 1-19.
  • Chang, C. L., 1968. Fuzzy Topological Space. Journal of Mathematical Analysis and Applications, 24, 182-190.
  • Chitra, A. and Subrahmanyam P. V., 1987. Fuzzy Sets and Fixed Points. Journal of Mathematical Analysis and Applications, 124, 584-590.
  • Dosenovic, T., Rakic, D., Brdar, M., 2014. Fixed Point Theorems in Fuzzy Metric Spaces Using Altering Distance. Filomat, 28(7), 1517-1524.
  • Estruch, V. D. and Vidal, A., 2001. A Note on Fixed Fuzzy Points for Fuzzy Mappings. Rendiconti dell’Istituto di Matematica dell’Universita di Trieste, 32, 39-45.
  • George, A. and Veeramani, P.,1994. On Some Results in Fuzzy Metric Spaces. Fuzzy Sets and Systems, 64, 395-399.
  • Grabiec, M., 1988. Fixed Points in Fuzzy Metric Spaces. Fuzzy Sets and Systems, 27, 385-389.
  • Gregori, V., Morillas, S. and Sapena, A., 2011. Examples of Fuzzy Metrics and Applications. Fuzzy Sets and Systems, 170, 95-111.
  • Haghi, R. H., Rezapour, Sh.and Shahzad, N., 2011. Some Fixed Point Generalizations are not Real Generalizations. Nonlinear Analysis, 74(5), 1799-1803.
  • Heilpern, S., 1981. Fuzzy Mappings and Fixed Point Theorem. Journal of Mathematical Analysis and Applications, 83(2), 566-569.
  • Khan, M.S., Swaleh, M. and Sessa, S., 1984. Fixed Point Theorems by Altering Distances Between the Points. Bulletin of the Australian Mathematical Society, 30(1), 1-9.
  • Kramosil, O. and Michalek, J., 1975. Fuzzy Metric and Statistical Metric Spaces. Kybernetica, 11, 326-334.
  • Lowen, R., 1976. Fuzzy Topological Spaces and Fuzzy Compactness. Journal of Mathematical Analysis and Applications, 56, 621-633.
  • Mihet, D., 2004. A Banach Contraction Theorem in Fuzzy Metric Spaces. Fuzzy Sets and Systems, 144, 431-439.
  • Nadler, S. B., 1969. Multivalued Contraction Mappings. Pacific Journal of Mathematics, 30(2), 475-488.
  • Naidu, S. V. R., 2003. Some Fixed Point Theorems in Metric Spaces by Altering Distances. Czechoslovak Mathematical Journal, 53(128), 205-212.
  • Nashine H. K. and Aydi, H., 2013. Coupled Fixed Point Theorems for Conctractions Involving Altering Distances in Ordered Metric Spaces. Mathematical Sciences, 7(20), 2013.
  • Pao-Ming, P. and Ying-Ming, L., 1980. Fuzzy Topology: II. Product and Quotient Spaces. Journal of Mathematical Analysis and Applications, 77, 20-37.
  • Phiangsungnoen, S., Sintunavarat, W. and Kumam, P., 2014. Fuzzy Fixed Point Theorems in Hausdorff Fuzzy Metric Spaces. Journal of Inequalities and Applications, 2014(201), 1-10.
  • Popa, V. and Mocanu, M., 2009. Altering Distance and Common Fixed Points Under Implicit Relations. Hacettepe Journal of Mathematics and Statistics, 38(3), 329-337.
  • Rhoades, B. E., 2001. Some Theorems on Weakly Contractive Maps. Nonlinear Analysis: Theory, Methods and Applications, 47(4), 2683-2693.
  • Rodriguez-Lopez, J. and Romaguera, S., 2004. The Hausdorff Fuzzy Metric on Compact Sets. Fuzzy Sets and Systems, 147, 273-283.
  • Schweizer, B. and Sklar, A., 1960. Statistical Metric Spaces. Pacific Journal of Mathematics, 10, 314-334.
  • Shen, Y., Qiu, D., Chen, W., 2012. Fixed Point Theorems in Fuzzy Metric Spaces. Applied Mathematics Letters, 25, 138-141.
  • Türkoğlu, D., Alaca, C., Cho, Y. J., Yıldız, C., 2006. Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces. Journal of Applied Mathematics and Computing, 22, 411-424.
  • Veeramani, P., 2001. Best Approximation in Fuzzy Metric Spaces. Journal of Fuzzy Mathematics, 9, 75-80.
  • Wong, C. K., 1974. Fuzzy Topology: Product and Quotient Theorems. Journal of Mathematical Analysis and Applications, 45, 512-521.
  • Zadeh, L. A., 1965. Fuzzy Sets. Information and Control, 8, 338-353.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ferhan Şola Erduran 0000-0002-9433-1016

Yayımlanma Tarihi 15 Temmuz 2020
Gönderilme Tarihi 19 Eylül 2019
Kabul Tarihi 13 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 3

Kaynak Göster

APA Şola Erduran, F. (2020). Sabit Fuzzy Nokta Teoremleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 641-650. https://doi.org/10.17714/gumusfenbil.621967