Araştırma Makalesi
BibTex RIS Kaynak Göster

Atık Baraj Yerindeki Kaya Kütlelerinin Mühendislik Özelliklerinin Değerlendirilmesi: Gümüşhane Örneği

Yıl 2020, Cilt: 10 Sayı: 3, 569 - 580, 15.07.2020
https://doi.org/10.17714/gumusfenbil.689750

Öz

Bu çalışmada Gümüştaş Atık Depolama Barajı II eksen yeri kaya
kütlelerinin kazılabilirlik, taşıma kapasitesi ve geçirimlilik özellikleri
değerlendirilmiştir. Atık depolama alanı hacminin arttırılmasına yönelik
yapılacak kazı için, kaya kütlelerinin kazılabilirlik sınıfları andezitik breş
için kırma yöntemi, andezit için ise kırma ve patlatma yöntemi olarak
belirlenmiştir. Baraj eksen yeri temel kayası olan andezitlerin taşıma
kapasitesi ampirik eşitlikler yardımıyla belirlenmiş olup, nihai taşıma kapasitesi
31.07MPa, izin verilebilir taşıma kapasitesi ise
10.44MPa olarak belirlenmiştir.
Andezit ve andezitik breş kaya kütlelerinde
açılmış olan temel sondaj kuyularında yapılan basınçlı su deneyleri ve sonlu
elemanlar yöntemi kullanılarak yapılan sızıntı analizi ile geçirimlilik
değerlendirmesi yapılmış olup, temel kaya kütlesinin az geçirimli özellikte
olduğu belirlenmiştir. Bu durum atık barajı rezervuar alanında biriktirilecek
kimyasal atıkların yeraltı suyuna karışmasına sebep olacaktır. Bu sızmayı
önlemek için baraj eksen yeri ve rezervuar alanına 35-40cm kalınlığında
geçirimsiz doğal kil malzeme serilip sıkıştırılacaktır. Yapılan bu uygulama
sonlu elemanlar yöntemi kullanılarak modellenmiş ve rezervuar alanı tamamen
atık su ile dolduğu durum için yapılan sızma analizi sonucunda geçirimlilik
değeri
5x10-11m/s olarak belirlenmiştir.
Ayrıca, temel kazısından 10m derinlikte belirlenen deşarj kesitinde meydana
gelen su kaçakları 1.69x10-17m3/s ile 3.44x10-16m3/s
arasında değişmektedir. Bu değerler oldukça küçük değerler olup, yine de olası
bir sızmanın olabileceğini göstermektedir. Bu muhtemel sızmayı ortadan
kaldırmak için serilecek doğal kil tabakanın üzerine, jeotekstil malzemeler (
jeosentetik kil membran,
jeomembran ve drenaj jeokompozit) serilerek rezervuar alanı tamamen geçirimsiz
duruma getirilmelidir. Böylece atık barajı rezervuar alanında flotasyon sonrası
biriktirilecek olan kimyasal atık suyun yeraltı suyuna karışması önlenmiş
olacaktır.

Destekleyen Kurum

Gümüştaş Madencilik A.Ş.

Teşekkür

Yazarlar, bu çalışmayı destekleyen, çalışma süresince bütün olanaklarından yararlandığı Gümüştaş Madencilik A.Ş.’ye, yardımlarını esirgemeyen Genel Koordinatör Erdal Güldoğan’a, Uğur Ölgen ve Korhan Çubukçu’ya teşekkür eder.

Kaynakça

  • Alemdag, S., Gurocak, Z., Solanki, P., Zaman, M., 2008. Estimation of Bearing Capacity of Basalts at Atasu Dam Site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 79–85.
  • Alemdag, S., 2015. Assessment of Bearing Capacity and Permeability of Foundation Rocks at the Gumustas Waste Dam Site, (NE Turkey) Using Empirical and Numerical Analysis, Arabian Journal of Geosciences, 8, 1099–1110.
  • Arslan, M., Aliyazıcıoğlu, I., 2001. Geochemical and Petrological Characteristics of the Kale (Gumushane) Volcanic Rocks: Implications for the Eocene Evolution of Eastern Pontide Arc Volcanism, Northeast Turkey. International Geology Review, 43, 595–610.
  • Bostanci, H.T., Alemdag, S., Gurocak, Z. ve Gokceoglu, C., 2018. Combination of Discontinuity Characteristics and GIS for Regional Assessment of Natural Rock Slopes in a Mountainous Area (NE Turkey), CATENA, 165, 487-502.
  • Bowles, J.E., 1996. Foundation Analysis and Design, Fifth Ed. New York, McGraw-Hill Inc. 1230p
  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classification. New York: Wiley Interscience, 251p
  • Ersoy, H., Bulut, F., Ersoy, A.F., Berkün, M., 2008. Municipal Solid Waste Management and Practices in Coastal Cities of the Eastern Black Sea: A Case Study of Trabzon City, NE Turkey. Bulletin of Engineering Geology and the Environment, 67(3), 321–333.
  • Ersoy, H., Karahan, M., Gelişli, K., Akgün, A., Anılan, T., Sünnetci, M. O. ve Yahşi B. K., 2019. Modelling of the Landslide-Induced Impulse Waves in the Artvin Dam Reservoir by Empirical Approach and 3D Numerical Simulation. Engineering Geology, 249, 112–128.
  • Foyo, A., Sanchez, M. A., Tomillo, C., 2005. A Proposal for a Secondary Permeability Index Obtained from Water Pressure Tests in Dam Foundations. Engineering Geology, 77, 69–82.
  • Gurocak, Z., Alemdag, S., Zaman, M., 2008. Rock Slope Stability and Excavatability Assessment of Rocks at the Kapikaya Dam Site, Eastern Turkey. Engineering Geology, 96, (1-2), 17-27.
  • Gurocak, Z. ve Alemdag, S., 2012. Assessment of Permeability and Injection Depth at the Atasu Dam Site (Turkey) Based on Experimental and Numerical Analyses. Bulletin of Engineering Geology and the Environment, 71, 221–229.
  • Gurocak, Z., Alemdag, S., Bostanci, H.T. ve Gokceoglu, C., 2017. Discontinuity Controlled Slope Failure Zoning for a Granitoid Complex: A fuzzy Approach. Rock Mechanics and Engineering, Volume 5: Surface and Underground Projects, CRC Press Taylor & Francis Group, eBook ISBN: 978-1-317-48188-1, Pages 1-25.
  • Hoek, E., Carranza-Torres, C. T. ve Corkum, B., 2002. Hoek–Brown Failure Criterion-2002 Edition. In: Proceedings of the 5th North American Rock Mechanics Symposium. Toronto, Canada 1:267–273.
  • Hoek, E., Carter, T. G. ve Diederichs, M. S., 2013. Quantification of the Geological Strength Index Chart. 47th US Rock Mechanics and Geomechanics Symposium, San Francisco, USA.
  • ISRM (International Society for Rock Mechanics), 2007. In: Ulusay R, Hudson JA (eds) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. Kazan Offset Pres, Ankara 628 s.
  • Kanik, M. ve Ersoy, H., 2019. Evaluation of the Engineering Geological Investigation of the Ayvali Dam Site (NE Turkey). Arabian Journal of Geosciences, 12(3), 89.
  • Karaguzel, R. ve Kilic, R., 2000. The Effect of the Alteration Degree of Ophiolitic Melange on Permeability and Grouting. Engineering Geology, 57, 1–12.
  • Kaya, A., Bulut, F., Alemdag, S., 2011. Applicability of Excavatability Classification Systems in Underground Excavations: An Example of Konakönü Tunnel, Trabzon, Turkey, Scientific Research and Essays, 6 (25), 5331-5341.
  • Kaygusuz, A., Arslan, M., Siebel, W. ve Şen, C., 2011. Geochemical and Sr-Nd Isotopic Characteristics of Post-Collisional Calc-Alkaline Volcanics in the Eastern Pontides (NE Turkey). Turkish Journal of Sciences, 20, 137–159.
  • Kulhawy, F. H. ve Carter, J. P., 1992. Settlement and Bearing Capacity of Foundations on Rock Masses and Socketed Foundations in Rock Masses. In: Bell F.G. (ed) Engineering in Rock Masses. Butterworth–Heinemann, Oxford, s. 231–245.
  • Lugeon, M., 1933. Barrages et Geologic Methods de Recherche Terrasement et un Permeabilisation. Litrairedes Universite, Paris.
  • Maden Atıkları Yönetmeliği, 2015. T.C. Resmi Gazete, Sayı: 29417, 15 Temmuz 2015.
  • Moosavi, S.A., Goshtasbi, K., Kazemzadeh, E., Aloki Bakhtiari, H., Esfahani, M. R. ve Vali, J., 2012. Relationship Between Porosity and Permeability with Stress Using Pore Volume Compressibility Characteristic of Reservoir Rocks. Arabian Journal of Geosciences, 7(1), 231-239.
  • Noorzad, R. ve Manavirad E., 2012. Bearing Capacity of Two Close Strip Footings on Soft Clay Reinforced with Geotextile. Arabian Journal of Geosciences, 7(2), 623-639.
  • Rad, H. S., Mohitazar M. ve Dizadji M., 2013. Distinct Element Simulation of Ultimate Bearing Capacity in Jointed Rock Foundations. Arabian Journal of Geosciences, 6(11), 4427–4434.
  • Rocscience, 2007. Roclab v1.03 Rock Mass Strength Analysis Using the Generalized Hoek-Brown Failure Criterion, Rocscience Inc., Toronto, Ontario, Canada.
  • Rocscience, 2019. RS2 9.0 Finite Element Groundwater Seepage, Geomech Software and Res. Rocsci, Toronto
  • Türkmen, S., Tağa, H., Özgüler, E., 2013. Effect of Construction Material on Dam Type Selection of the Büyük Karaçay Dam (Hatay, Turkey). Geotechnical and Geological Engineering, 31, 1137–1149.
  • Tsiambaos, G. ve Saroglou, H., 2010. Excavatability Assessment of Rock Masses Using the Geological Strength Index (GSI). Bulletin of Engineering Geology and the Environmental, 69 (1), 13-27.
  • Wang, J. S. Y., Trautz, R. C., Cook, P. J., Finsterle, S., James, A. L. ve Birkholzer, J., 1999. Field Tests and Model Analyses of Seepage into Drift. Journal of Contaminant Hydrology, 38(1–3), 323–347.
  • Wyllie, D. C., 1992. Foundations on Rock. London, Chapman and Hall, 457p

Evaluation of Engineering Properties of Rock Masses in Waste Dam Site: The Example of Gumushane

Yıl 2020, Cilt: 10 Sayı: 3, 569 - 580, 15.07.2020
https://doi.org/10.17714/gumusfenbil.689750

Öz

In this study, excavatability, bearing capacity and
permeability characteristics of rock masses along the Gümüştaş Waste Storage
Dam II site were evaluated. For the excavations to be carried out to increase
the volume of the waste storage area, the excavation classes of the rock masses
were determined as “Hammer “for andesitic breccia and “Hammer&Blasting” for
andesite.  The bearing capacity of
andesite (bedrock) has been determined with the help of empirical equations and,
allowable bearing capacity and ultimate bearing capacity were calculated as
10.44MPa and 31.07MPa, respectively. The permeability has been assessed by the
Lugeon Tests conducted in the geotechnical drill holes located in the andesite
and andesitic breccia rock masses and with the aid of the seepage analysis
based on the finite element method and, the bedrock mass has been defined as
low permeable. Low permeable rock masses would possibly cause the chemical
wastes to be collected in the waste dam reservoir area to pollute the
groundwater. To prevent the seepage, impermeable natural clay material of 35-40cm
thickness should be laid and compressed along the dam axis and reservoir area.
This suggestion was modeled with the aid of the finite element method, for the
case that the reservoir area was completely filled with wastewater and, the
permeability value was determined as 5x10-11m/s as a result of the seepage
analysis. In addition, seepage values in the discharge section at a depth of
10m from the foundation vary between 1.69x10-17m3/s and
3.44x10-16m3/s. These values ​​are quite small but, are
indicators of a possible seepage. To eliminate this possible seepage, the
geotextile materials (geosynthetic clay membrane, Geomembrane, and drainage
geocomposite) should be laid over the compressed natural clay layer, and thus mixing
of the chemical wastewater, which collected after flotation, into the
groundwater will be prevented.

Kaynakça

  • Alemdag, S., Gurocak, Z., Solanki, P., Zaman, M., 2008. Estimation of Bearing Capacity of Basalts at Atasu Dam Site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 79–85.
  • Alemdag, S., 2015. Assessment of Bearing Capacity and Permeability of Foundation Rocks at the Gumustas Waste Dam Site, (NE Turkey) Using Empirical and Numerical Analysis, Arabian Journal of Geosciences, 8, 1099–1110.
  • Arslan, M., Aliyazıcıoğlu, I., 2001. Geochemical and Petrological Characteristics of the Kale (Gumushane) Volcanic Rocks: Implications for the Eocene Evolution of Eastern Pontide Arc Volcanism, Northeast Turkey. International Geology Review, 43, 595–610.
  • Bostanci, H.T., Alemdag, S., Gurocak, Z. ve Gokceoglu, C., 2018. Combination of Discontinuity Characteristics and GIS for Regional Assessment of Natural Rock Slopes in a Mountainous Area (NE Turkey), CATENA, 165, 487-502.
  • Bowles, J.E., 1996. Foundation Analysis and Design, Fifth Ed. New York, McGraw-Hill Inc. 1230p
  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classification. New York: Wiley Interscience, 251p
  • Ersoy, H., Bulut, F., Ersoy, A.F., Berkün, M., 2008. Municipal Solid Waste Management and Practices in Coastal Cities of the Eastern Black Sea: A Case Study of Trabzon City, NE Turkey. Bulletin of Engineering Geology and the Environment, 67(3), 321–333.
  • Ersoy, H., Karahan, M., Gelişli, K., Akgün, A., Anılan, T., Sünnetci, M. O. ve Yahşi B. K., 2019. Modelling of the Landslide-Induced Impulse Waves in the Artvin Dam Reservoir by Empirical Approach and 3D Numerical Simulation. Engineering Geology, 249, 112–128.
  • Foyo, A., Sanchez, M. A., Tomillo, C., 2005. A Proposal for a Secondary Permeability Index Obtained from Water Pressure Tests in Dam Foundations. Engineering Geology, 77, 69–82.
  • Gurocak, Z., Alemdag, S., Zaman, M., 2008. Rock Slope Stability and Excavatability Assessment of Rocks at the Kapikaya Dam Site, Eastern Turkey. Engineering Geology, 96, (1-2), 17-27.
  • Gurocak, Z. ve Alemdag, S., 2012. Assessment of Permeability and Injection Depth at the Atasu Dam Site (Turkey) Based on Experimental and Numerical Analyses. Bulletin of Engineering Geology and the Environment, 71, 221–229.
  • Gurocak, Z., Alemdag, S., Bostanci, H.T. ve Gokceoglu, C., 2017. Discontinuity Controlled Slope Failure Zoning for a Granitoid Complex: A fuzzy Approach. Rock Mechanics and Engineering, Volume 5: Surface and Underground Projects, CRC Press Taylor & Francis Group, eBook ISBN: 978-1-317-48188-1, Pages 1-25.
  • Hoek, E., Carranza-Torres, C. T. ve Corkum, B., 2002. Hoek–Brown Failure Criterion-2002 Edition. In: Proceedings of the 5th North American Rock Mechanics Symposium. Toronto, Canada 1:267–273.
  • Hoek, E., Carter, T. G. ve Diederichs, M. S., 2013. Quantification of the Geological Strength Index Chart. 47th US Rock Mechanics and Geomechanics Symposium, San Francisco, USA.
  • ISRM (International Society for Rock Mechanics), 2007. In: Ulusay R, Hudson JA (eds) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring. Kazan Offset Pres, Ankara 628 s.
  • Kanik, M. ve Ersoy, H., 2019. Evaluation of the Engineering Geological Investigation of the Ayvali Dam Site (NE Turkey). Arabian Journal of Geosciences, 12(3), 89.
  • Karaguzel, R. ve Kilic, R., 2000. The Effect of the Alteration Degree of Ophiolitic Melange on Permeability and Grouting. Engineering Geology, 57, 1–12.
  • Kaya, A., Bulut, F., Alemdag, S., 2011. Applicability of Excavatability Classification Systems in Underground Excavations: An Example of Konakönü Tunnel, Trabzon, Turkey, Scientific Research and Essays, 6 (25), 5331-5341.
  • Kaygusuz, A., Arslan, M., Siebel, W. ve Şen, C., 2011. Geochemical and Sr-Nd Isotopic Characteristics of Post-Collisional Calc-Alkaline Volcanics in the Eastern Pontides (NE Turkey). Turkish Journal of Sciences, 20, 137–159.
  • Kulhawy, F. H. ve Carter, J. P., 1992. Settlement and Bearing Capacity of Foundations on Rock Masses and Socketed Foundations in Rock Masses. In: Bell F.G. (ed) Engineering in Rock Masses. Butterworth–Heinemann, Oxford, s. 231–245.
  • Lugeon, M., 1933. Barrages et Geologic Methods de Recherche Terrasement et un Permeabilisation. Litrairedes Universite, Paris.
  • Maden Atıkları Yönetmeliği, 2015. T.C. Resmi Gazete, Sayı: 29417, 15 Temmuz 2015.
  • Moosavi, S.A., Goshtasbi, K., Kazemzadeh, E., Aloki Bakhtiari, H., Esfahani, M. R. ve Vali, J., 2012. Relationship Between Porosity and Permeability with Stress Using Pore Volume Compressibility Characteristic of Reservoir Rocks. Arabian Journal of Geosciences, 7(1), 231-239.
  • Noorzad, R. ve Manavirad E., 2012. Bearing Capacity of Two Close Strip Footings on Soft Clay Reinforced with Geotextile. Arabian Journal of Geosciences, 7(2), 623-639.
  • Rad, H. S., Mohitazar M. ve Dizadji M., 2013. Distinct Element Simulation of Ultimate Bearing Capacity in Jointed Rock Foundations. Arabian Journal of Geosciences, 6(11), 4427–4434.
  • Rocscience, 2007. Roclab v1.03 Rock Mass Strength Analysis Using the Generalized Hoek-Brown Failure Criterion, Rocscience Inc., Toronto, Ontario, Canada.
  • Rocscience, 2019. RS2 9.0 Finite Element Groundwater Seepage, Geomech Software and Res. Rocsci, Toronto
  • Türkmen, S., Tağa, H., Özgüler, E., 2013. Effect of Construction Material on Dam Type Selection of the Büyük Karaçay Dam (Hatay, Turkey). Geotechnical and Geological Engineering, 31, 1137–1149.
  • Tsiambaos, G. ve Saroglou, H., 2010. Excavatability Assessment of Rock Masses Using the Geological Strength Index (GSI). Bulletin of Engineering Geology and the Environmental, 69 (1), 13-27.
  • Wang, J. S. Y., Trautz, R. C., Cook, P. J., Finsterle, S., James, A. L. ve Birkholzer, J., 1999. Field Tests and Model Analyses of Seepage into Drift. Journal of Contaminant Hydrology, 38(1–3), 323–347.
  • Wyllie, D. C., 1992. Foundations on Rock. London, Chapman and Hall, 457p
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Selçuk Alemdağ 0000-0003-2893-3681

Mustafa Kanık 0000-0002-1019-5249

Yayımlanma Tarihi 15 Temmuz 2020
Gönderilme Tarihi 15 Şubat 2020
Kabul Tarihi 21 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 3

Kaynak Göster

APA Alemdağ, S., & Kanık, M. (2020). Atık Baraj Yerindeki Kaya Kütlelerinin Mühendislik Özelliklerinin Değerlendirilmesi: Gümüşhane Örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 569-580. https://doi.org/10.17714/gumusfenbil.689750