Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil sentez yoluyla mikrosistemlerde çinko oksit nanopartiküllerin üretimi ve karakterizasyonu

Yıl 2021, Cilt: 11 Sayı: 2, 315 - 324, 15.04.2021
https://doi.org/10.17714/gumusfenbil.819717

Öz

Birçok farklı alan ve amaç için üretilebilen nanopartiküller (NP); nanometreden milimetrenin binde biri kadar değişen boyutlara sahiptirler. Bu partiküller farklı kimyasal, fiziksel ve biyolojik yaklaşımlarla hazırlanabilir. Ancak yöntemler arasında biyolojik yaklaşım, basit olması ve çevre dostu koşulları nedeniyle en umut verici yaklaşımdır. Biyolojik yaklaşım ile nanoparçacık üretimi, yüksek sıcaklık, asidik / bazik koşullar ve tehlikeli kimyasallar gerektirmez. Bu nedenle, bu yöntemler “yeşil sentez” olarak adlandırılmaktadır. Mikroteknolojideki gelişmeler, ilaç keşfi, biyoloji, teşhis ve doku mühendisliği gibi birçok alanda derin etkiler yaratmıştır. Mikro ölçekli sistemlerde sıvıların işlenmesine odaklanan mikroakışkanlar, hassas kontrol ve hızlı karıştırma sayesinde nanopartiküllerin üretim sürecinde büyük ilgi görmüştür. Bu çalışmada temel amaç mikrosistemler ve yeşil sentez yöntemlerini birleştirilerek metal nanopartiküllerin üretimi ve karakterizasyonunu gerçekleştirmektir. Bu amaçla ilk adımda farklı fazlarını akışına uygun mikrosistemlerin tasarımı gerçekleştirilmiştir. İkinci adımda kırmızı lahana (Brassica oleracea var.capitata f. rubra) ekstreleri kullanılarak ZnO nanopartikülleri sentezi gerçekleştirilmiştir. Bitki ekstraktı: çinko oranı, çinko çözeltisi derişimi, mikrosistemde akış hızları ve akış hızları oranı ve sıcaklık gibi farklı parametreler optimize edilerek en uygun üretim koşulları belirlenmiştir. Sonuçlar, kırmızı lahana bileşenlerin ZnO nanopartiküllerin yeşil sentez yoluyla üretilebileceğini göstermiştir.

Kaynakça

  • Abdel-Shafi, S., Al-Mohammadi, A.-R., Sitohy, M., Mosa, B., Ismaiel, A., Enan, G., and Osman, A. (2019). Antimicrobial activity and chemical constitution of the crude, phenolic-rich extracts of hibiscus sabdariffa, brassica oleracea and Beta vulgaris. Molecules, 24(23), 4280. https://doi.org/10.3390/molecules24234280
  • Akay, S., Heils, R., Trieu, H. K., Smirnova, I., and Yesil-Celiktas, O. (2017). An injectable alginate-based hydrogel for microfluidic applications. Carbohydrate Polymers, 161, 228–234. https://doi.org/10.1016/j.carbpol.2017.01.004
  • Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N., and Kannadasan, N. (2015). Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 143, 304–308. https://doi.org/10.1016/j.saa.2015.01.124
  • Aslani, A. (2012). Organic materials in nanochemistry, In Dogan, F. (Ed), Polypropylene, IntechOpen, 219-260p https://doi.org/10.5772/34192
  • Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., and Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55–61. https://doi.org/10.1016/j.mssp.2014.12.053
  • Charron, C. S., Clevidence, B. A., Britz, S. J., and Novotny, J. A. (2007). Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. Var. capitata). Journal of Agricultural and Food Chemistry, 55(13), 5354–5362. https://doi.org/10.1021/jf0710736
  • Chintamani, R. B., Salunkhe, K. S., and Chavan, M. J. (2018). Emerging use of green synthesis silver nanoparticle: an updated review. International Journal of Pharmaceutical Sciences and Research, 9(10), 4029–4055. https://doi.org/10.13040/IJPSR.0975-8232.9(10).4029-55
  • Çöteli, E., and Karataş, F. (2016). Kırmızı ve koyu kırmızı bazı meyvelerdeki a, e vitamini, beta karoten ve likopen miktarlarının araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 61. (in Turkish). https://doi.org/10.17714/gufbed.2016.06.007
  • Demirbas, A., Welt, B. A., and Ocsoy, I. (2016). Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Materials Letters, 179, 20–23. https://doi.org/10.1016/j.matlet.2016.05.056
  • Deng, Z., Chen, M., Gu, A., and Wu, L. (2008). A facile method to fabricate ZnO hollow spheres and their photocatalytic property. Journal of Physical Chemistry B, 112(1), 16–22. https://doi.org/10.1021/jp077662w
  • Dyrby, M., Westergaard, N., and Stapelfeldt, H. (2001). Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chemistry, 72(4), 431–437. https://doi.org/10.1016/S0308-8146(00)00251-X
  • Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D., García Mendoza, E., Estrada, I., Toledano-Magaña, Y., Tiznado, H., Ovalle-Marroquin, M., Soto-Ramos, A. G., Blanco, A., Rodríguez, J. A., Romo, O. A., Chávez-Almazán, L. A., and Susarrey-Arce, A. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10(1), 12805. https://doi.org/10.1038/s41598-020-69606-7
  • Güzel, M. ve Akpınar, Ö. (2019). Meyve ve sebze kabuklarının fitokimyasal ve antioksidan özelliklerinin incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4), 768–780. (in Turkish). https://doi.org/10.17714/gumusfenbil.542458
  • Igwe, O. U., and Ejiako, C. M. (2018). Bioconstruction of copper nanoparticles using stem bark extract of Picralima nitida and their antibacterial potency. Research Journal of Chemical Sciences, 8(2), 10-15.
  • Jain, S., and Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-15724-8
  • Ji, X. H., Cheng, W., Guo, F., Liu, W., Guo, S. S., He, Z. K., and Zhao, X. Z. (2011). On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. Lab on a Chip, 11(15), 2561–2568. https://doi.org/10.1039/c1lc20150f
  • Katmıs, A., Fide, S., Karaismailoglu, S., and Derman, S. (2018). Synthesis and characterization methods of polymeric nanoparticles. Characterization and Application of Nanomaterials, 1(4). https://doi.org/10.24294/can.v1i4.791
  • Luan, W., Yang, H., Fan, N., and Tu, S. T. (2008). Synthesis of efficiently green luminescent CdSe/ZnS nanocrystals via microfluidic reaction. Nanoscale Research Letters, 3(4), 134–139. https://doi.org/10.1007/s11671-008-9125-5
  • Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., and Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1), 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  • Mittal, A. K., Chisti, Y., and Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Naseer, M., Aslam, U., Khalid, B., and Chen, B. (2020). Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 9055. https://doi.org/10.1038/s41598-020-65949-3
  • Ocsoy, I., Demirbas, A., McLamore, E. S., Altinsoy, B., Ildiz, N., and Baldemir, A. (2017). Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens. Journal of Molecular Liquids, 238, 263–269. https://doi.org/10.1016/j.molliq.2017.05.012
  • Padmavathy, N., and Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials, 9(3), 035004. https://doi.org/10.1088/1468-6996/9/3/035004
  • Pessoa, A. C. S. N., Sipoli, C. C., and de la Torre, L. G. (2017). Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles. Lab on a Chip, 17(13), 2281–2293. https://doi.org/10.1039/C7LC00291B
  • Sefaoğlu, M., (2020). Yeşil sentez yöntemiyle çinko nanopartiküllerin mikrosistemlerde üretimi ve karakterizasyonu. Yüksek Lisans Tezi, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü. Gümüşhane.
  • Shivaji, K., Mani, S., Ponmurugan, P., De Castro, C. S., Lloyd Davies, M., Balasubramanian, M. G., and Pitchaimuthu, S. (2018). Green-synthesis-derived cds quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Applied Nano Materials, 1(4), 1683–1693. https://doi.org/10.1021/acsanm.8b00147
  • Singh, A. K., Pal, P., Gupta, V., Yadav, T. P., Gupta, V., and Singh, S. P. (2018). Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Materials Chemistry and Physics, 203, 40–48. https://doi.org/10.1016/j.matchemphys.2017.09.049
  • Unal, I. S., Demirbas, A., Onal, I., Ildiz, N., and Ocsoy, I. (2020). One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. Journal of Photochemistry and Photobiology B: Biology, 204, 111800. https://doi.org/10.1016/j.jphotobiol.2020.111800
  • Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., and Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the united states and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075. https://doi.org/10.1021/jf060300l
  • Xu, Z. P., Zeng, Q. H., Lu, G. Q., and Yu, A. B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61(3), 1027–1040. https://doi.org/10.1016/j.ces.2005.06.019

Production and characterization of zinc oxide nanoparticles in microsystems via green synthesis

Yıl 2021, Cilt: 11 Sayı: 2, 315 - 324, 15.04.2021
https://doi.org/10.17714/gumusfenbil.819717

Öz

Nanoparticles (NP), which can be produced for many different fields and purposes; are at size vary from nanometer to a micrometer. These particles can be prepared by different approaches such as chemical, physical and biological methods. However, the biological approach is the most promising approach among other methods due to its simplicity and environmentally friendly conditions. The production of the nanoparticle by means of a biological approach does not require any high temperature, acidic/basic conditions and hazardous chemicals. Therefore, this method is named “green synthesis”. Development in microtechnology has had profound effects in many areas such as drug discovery, biology, diagnosis, and tissue engineering. Microfluidics which focuses on the processing of liquids in microscale systems has attracted wide attention in the production process of nanoparticles due to precise control and fast mixing. The main purpose of this study is to produce and characterize metal nanoparticles by combining microsystems and green synthesis approaches. For this purpose, in the first step, the design of microsystems that suitable for the flow of different phases was performed. In the second step, ZnO nanoparticle synthesis was carried out using the red cabbage (Brassica oleracea var.capitata f. Rubra) extracts. The synthesis of nanoparticles achieved by optimizing different parameters such as; extract: zinc ratio, zinc solution concentration, flow rates, and flow rates ratio in the microsystem and temperature. The results showed that the herbal red cabbage components can be used for the green synthesis of ZnO nanoparticles.

Kaynakça

  • Abdel-Shafi, S., Al-Mohammadi, A.-R., Sitohy, M., Mosa, B., Ismaiel, A., Enan, G., and Osman, A. (2019). Antimicrobial activity and chemical constitution of the crude, phenolic-rich extracts of hibiscus sabdariffa, brassica oleracea and Beta vulgaris. Molecules, 24(23), 4280. https://doi.org/10.3390/molecules24234280
  • Akay, S., Heils, R., Trieu, H. K., Smirnova, I., and Yesil-Celiktas, O. (2017). An injectable alginate-based hydrogel for microfluidic applications. Carbohydrate Polymers, 161, 228–234. https://doi.org/10.1016/j.carbpol.2017.01.004
  • Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N., and Kannadasan, N. (2015). Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 143, 304–308. https://doi.org/10.1016/j.saa.2015.01.124
  • Aslani, A. (2012). Organic materials in nanochemistry, In Dogan, F. (Ed), Polypropylene, IntechOpen, 219-260p https://doi.org/10.5772/34192
  • Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., and Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55–61. https://doi.org/10.1016/j.mssp.2014.12.053
  • Charron, C. S., Clevidence, B. A., Britz, S. J., and Novotny, J. A. (2007). Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. Var. capitata). Journal of Agricultural and Food Chemistry, 55(13), 5354–5362. https://doi.org/10.1021/jf0710736
  • Chintamani, R. B., Salunkhe, K. S., and Chavan, M. J. (2018). Emerging use of green synthesis silver nanoparticle: an updated review. International Journal of Pharmaceutical Sciences and Research, 9(10), 4029–4055. https://doi.org/10.13040/IJPSR.0975-8232.9(10).4029-55
  • Çöteli, E., and Karataş, F. (2016). Kırmızı ve koyu kırmızı bazı meyvelerdeki a, e vitamini, beta karoten ve likopen miktarlarının araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 61. (in Turkish). https://doi.org/10.17714/gufbed.2016.06.007
  • Demirbas, A., Welt, B. A., and Ocsoy, I. (2016). Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Materials Letters, 179, 20–23. https://doi.org/10.1016/j.matlet.2016.05.056
  • Deng, Z., Chen, M., Gu, A., and Wu, L. (2008). A facile method to fabricate ZnO hollow spheres and their photocatalytic property. Journal of Physical Chemistry B, 112(1), 16–22. https://doi.org/10.1021/jp077662w
  • Dyrby, M., Westergaard, N., and Stapelfeldt, H. (2001). Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chemistry, 72(4), 431–437. https://doi.org/10.1016/S0308-8146(00)00251-X
  • Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D., García Mendoza, E., Estrada, I., Toledano-Magaña, Y., Tiznado, H., Ovalle-Marroquin, M., Soto-Ramos, A. G., Blanco, A., Rodríguez, J. A., Romo, O. A., Chávez-Almazán, L. A., and Susarrey-Arce, A. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10(1), 12805. https://doi.org/10.1038/s41598-020-69606-7
  • Güzel, M. ve Akpınar, Ö. (2019). Meyve ve sebze kabuklarının fitokimyasal ve antioksidan özelliklerinin incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4), 768–780. (in Turkish). https://doi.org/10.17714/gumusfenbil.542458
  • Igwe, O. U., and Ejiako, C. M. (2018). Bioconstruction of copper nanoparticles using stem bark extract of Picralima nitida and their antibacterial potency. Research Journal of Chemical Sciences, 8(2), 10-15.
  • Jain, S., and Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-15724-8
  • Ji, X. H., Cheng, W., Guo, F., Liu, W., Guo, S. S., He, Z. K., and Zhao, X. Z. (2011). On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. Lab on a Chip, 11(15), 2561–2568. https://doi.org/10.1039/c1lc20150f
  • Katmıs, A., Fide, S., Karaismailoglu, S., and Derman, S. (2018). Synthesis and characterization methods of polymeric nanoparticles. Characterization and Application of Nanomaterials, 1(4). https://doi.org/10.24294/can.v1i4.791
  • Luan, W., Yang, H., Fan, N., and Tu, S. T. (2008). Synthesis of efficiently green luminescent CdSe/ZnS nanocrystals via microfluidic reaction. Nanoscale Research Letters, 3(4), 134–139. https://doi.org/10.1007/s11671-008-9125-5
  • Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., and Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1), 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  • Mittal, A. K., Chisti, Y., and Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Naseer, M., Aslam, U., Khalid, B., and Chen, B. (2020). Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 9055. https://doi.org/10.1038/s41598-020-65949-3
  • Ocsoy, I., Demirbas, A., McLamore, E. S., Altinsoy, B., Ildiz, N., and Baldemir, A. (2017). Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens. Journal of Molecular Liquids, 238, 263–269. https://doi.org/10.1016/j.molliq.2017.05.012
  • Padmavathy, N., and Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials, 9(3), 035004. https://doi.org/10.1088/1468-6996/9/3/035004
  • Pessoa, A. C. S. N., Sipoli, C. C., and de la Torre, L. G. (2017). Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles. Lab on a Chip, 17(13), 2281–2293. https://doi.org/10.1039/C7LC00291B
  • Sefaoğlu, M., (2020). Yeşil sentez yöntemiyle çinko nanopartiküllerin mikrosistemlerde üretimi ve karakterizasyonu. Yüksek Lisans Tezi, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü. Gümüşhane.
  • Shivaji, K., Mani, S., Ponmurugan, P., De Castro, C. S., Lloyd Davies, M., Balasubramanian, M. G., and Pitchaimuthu, S. (2018). Green-synthesis-derived cds quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Applied Nano Materials, 1(4), 1683–1693. https://doi.org/10.1021/acsanm.8b00147
  • Singh, A. K., Pal, P., Gupta, V., Yadav, T. P., Gupta, V., and Singh, S. P. (2018). Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Materials Chemistry and Physics, 203, 40–48. https://doi.org/10.1016/j.matchemphys.2017.09.049
  • Unal, I. S., Demirbas, A., Onal, I., Ildiz, N., and Ocsoy, I. (2020). One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. Journal of Photochemistry and Photobiology B: Biology, 204, 111800. https://doi.org/10.1016/j.jphotobiol.2020.111800
  • Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., and Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the united states and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075. https://doi.org/10.1021/jf060300l
  • Xu, Z. P., Zeng, Q. H., Lu, G. Q., and Yu, A. B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61(3), 1027–1040. https://doi.org/10.1016/j.ces.2005.06.019
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şeref Akay 0000-0001-6829-1279

Melike Sefaoğlu Bu kişi benim

Yayımlanma Tarihi 15 Nisan 2021
Gönderilme Tarihi 2 Kasım 2020
Kabul Tarihi 21 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Akay, Ş., & Sefaoğlu, M. (2021). Production and characterization of zinc oxide nanoparticles in microsystems via green synthesis. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 315-324. https://doi.org/10.17714/gumusfenbil.819717