Araştırma Makalesi
BibTex RIS Kaynak Göster

Lif boyunun ve içeriğinin geopolimer betonların asit direncine etkisi

Yıl 2021, Cilt: 11 Sayı: 2, 424 - 437, 15.04.2021
https://doi.org/10.17714/gumusfenbil.866094

Öz

Çimento üretimi beraberinde birçok ekonomik ve çevresel sorunu getirerek yıldan yıla artışını sürdürmektedir. Çimentoya alternatif bağlayıcı arayışları 21. yüzyılın en popüler araştırma konuları arasında yer almaktadır. Yapılan çalışmalarda alkali aktive edilmiş bağlayıcılar olarak da adlandırılan “geopolimer” bağlayıcılar öne çıkmaktadır. Geopolimerler yüksek silis ve alümin içeriğine sahip doğal ve atık puzolanların yüksek alkali ortamlarda aktive edilmesiyle elde edilen yeni nesil üç boyutlu bağlayıcılardır. Geopolimer bağlayıcılar normal Portland çimentolu bağlayıcılar ile kıyaslandığında dayanım, dayanıklılık ve ekonomik açıdan oldukça önemli avantajlara sahiptirler. Ancak geopolimer betonların yaygın kullanımının önündeki en önemli engel, üretiminde ihtiyaç duyulan ısıl kür işlemidir. Lif boyunun ve içeriğinin lifli geopolimer betonların asit direncine etkisi üzerine ise literatürde çalışma bulunmamaktadır. Bu çalışmada, lif boyunun ve lif içeriğinin ısıl kür işlemi uygulanmadan üretilmiş geopolimer betonların asit direncine etkisi ortaya çıkarılmıştır. Bu amaçla 6 ve 12 mm boylarında polipropilen (PP) lif, hacimce %0.5, %1.0 ve %1.5 oranlarında ilave edilmiştir. Alüminosilikat kaynağı olarak yüksek fırın cürufu (YFC) kullanılmıştır. Laboratuar koşullarında 28 gün kür edilen geopolimer beton numuneleri daha sonra 14 ve 28 gün boyunca %5 HCl çözeltisine maruz bırakılmıştır. Asit etkisi sonrasında, geopolimer betonların basınç dayanımı, ağırlık, ultra ses hızı (UPV), dış görünüş gibi fiziksel ve mekanik özelliklerindeki değişimler araştırılmıştır. Ayrıca SEM analizleri ile mikro yapıları incelenmeleri gerçekleştirilmiştir. Yapılan deneysel çalışmalar neticesinde, PP lif katkısının köprüleme etkisiyle çatlak oluşumunu engellediği için geopolimer betonların asit direncini önemli ölçüde iyileştirdiği tespit edilmiştir.

Kaynakça

  • Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Tahir, M. M. and Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and building materials, 43, 80-86. https://doi.org/10.1016/j.conbuildmat.2013.01.018
  • Assi, L.N., Deaver, E.E. and Ziehl, P. (2018). Effect of source and particle size distribution on the mechanical and microstructural properties of fly ash-based geopolymer concrete. Construction and Building Materials, 167, 372–380. https://doi.org/10.1016/j.conbuildmat.2018.01.193
  • ASTM C109. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International, West Conshohocken, PA.
  • ASTM C267-20. (2020). Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International, West Conshohocken, PA.
  • ASTM C597-16. (2016). Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA.
  • Aswani, E. and Karthi, L. (2017). A literature review on fiber reinforced geopolymer concrete. International Journal of Scientific & Engineering Research, 8(2), 408-411.
  • Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and concrete research, 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
  • Bakharev, T., Sanjayan, J. G. and Cheng, Y. B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete research, 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X
  • Beddoe, R. E. And Dorner, H. W. (2005). Modelling acid attack on concrete: Part I. The essential mechanisms. Cement and concrete research, 35(12), 2333-2339. https://doi.org/10.1016/j.cemconres.2005.04.002
  • Bhutta, M. A. R., Hussin, W. M., Azreen, M. and Tahir, M. M. (2014). Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. Journal of Materials in Civil Engineering, 26(11), 04014080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001030
  • Comrie, D.C. and Davidovits, J. (1988). Long Term Durability of Hazardous Toxic and Nuclear Waste Disposals, Proceedings of Geopolymer88; First European Conference on Soft Mineralurgy, Compiegne.
  • Damilola, O.M. (2013). Syntheses, characterization and binding strength of geopolymers: a review. International Journal of Materials Science and Applications, 2(6), 185–193. doi: 10.11648/j.ijmsa.20130206.14
  • Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and calorimetry, 37(8), 1633-1656. https://doi.org/10.1007/bf01912193
  • Davidovits, J. (1993). Geopolymer cements to minimise carbon-dioxide greenhousewarming. Ceramic Transactions, 37, 165–182.
  • Davidovits, J. (1994). High-Alkali Cements for 21st Century Concretes. ACI Special Publication, 144, 383-398.
  • Davidovits, J. (2008). Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin,.
  • Davidovits, J. (2011). Geopolymer Chemistry and Applications, third ed. Institute of Geopolymere.
  • Davidovits, J., Comrie, D.C., Paterson, J.H. and Ritcey, D.J. (1990). Geopolymeric concretes for environmental protection, Concrete International, 12(7), 30–40.
  • Dawood, E. T. and Ramli, M. (2011). Contribution of hybrid fibers on the properties of high strength concrete having high workability. Procedia Engineering, 14, 814-820. https://doi.org/10.1016/j.proeng.2011.07.103
  • Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K. and Kumar, S. (2016). Mechanical properties and durability of volcanic ash based geopolymer mortars. Construction and Building Materials, 124, 606-614. https://doi.org/10.1016/j.conbuildmat.2016.07.141
  • Duxson, P., Provis, J. L., Lukey, G. C. and Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  • El-Gamal, S.M.A. and Selim, F.A. (2017). Utilization of some industrial wastes for eco-friendly cement production. Sustainable Materials and Technologies, 12, 9–17. https://doi.org/10.1016/j.susmat.2017.03.001
  • Ganesan, N., Abraham, R. and Raj, S. D. (2015). Durability characteristics of steel fibre reinforced geopolymer concrete. Construction and Building Materials, 93, 471-476. https://doi.org/10.1016/j.conbuildmat.2015.06.014
  • Ganesh, A.C. and Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, 124543. https://doi.org/10.1016/j.jclepro.2020.124543
  • Ghosh, R., Sagar, S. P., Kumar, A., Gupta, S. K. and Kumar, S. (2018). Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. Journal of building engineering, 16, 39-44. https://doi.org/10.1016/j.jobe.2017.12.009
  • Guo, C. M., Wang, K. T., Liu, M. Y., Li, X. H. and Cui, X. M. (2016). Preparation and characterization of acid-based geopolymer using metakaolin and disused polishing liquid. Ceramics International, 42(7), 9287-9291. https://doi.org/10.1016/j.ceramint.2016.02.073
  • Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K. and Hussein, A. A. (2017). Geopolymer mortars as sustainable repair material: A comprehensive review. Renewable and Sustainable Energy Reviews, 80, 54-74. https://doi.org/10.1016/j.rser.2017.05.076
  • Kajaste, R. and Hurme, M. (2016). Cement industry greenhouse gas emissions-management options and abatement cost. Journal of Cleaner Production, 112, 4041-4052. https://doi.org/10.1016/j.jclepro.2015.07.055
  • Kantarcı, F., Türkmen, İ. and Ekinci, E. (2019). Optimization of production parameters of geopolymer mortar and concrete: A comprehensive experimental study. Construction and Building Materials, 228, 116770. https://doi.org/10.1016/j.conbuildmat.2019.116770
  • Kim, Y. Y., Lee, B. J., Saraswathy, V. and Kwon, S. J. (2014). Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/209584
  • Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A. and Cleland, D.J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537-553. https://doi.org/10.1016/j.conbuildmat.2018.01.129
  • Li, Z., Zhang, Y. And Zhou, X. (2005). Short fiber reinforced geopolymer composites manufactured by extrusion. Journal of materials in civil engineering, 17(6), 624-631. DOI:10.1061/(ASCE)0899-1561(2005)17:6(624)
  • Malhotra, V.M. (1999). Making Concrete “Greener” With Fly Ash. Concrete International, 21(5), 61-66.
  • Martinie, L., Rossi, P. and Roussel, N. (2010). Rheology of fiber reinforced cementitious materials: classification and prediction. Cement and concrete research, 40(2), 226-234. https://doi.org/10.1016/j.cemconres.2009.08.032
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Mohseni, E. (2018). Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Construction and Building Materials, 186, 904-911. https://doi.org/10.1016/j.conbuildmat.2018.08.032
  • Moradikhou, A.B., Esparham, A. and Avanaki, M.J. (2020). Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Construction and Building Materials, 25,118965 https://doi.org/10.1016/j.conbuildmat.2020.118965
  • Noushini, A. and Castel, A. (2016). The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Construction and Building Materials, 112, 464-477. https://doi.org/10.1016/j.conbuildmat.2016.02.210
  • Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T. and Grutzeck, M. W. (1999). Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 29(7), 997-1004. https://doi.org/10.1016/S0008-8846(99)00074-5
  • Ranjbar, N., and Zhang, M. (2020). Fiber-reinforced geopolymer composites: A review. Cement and Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Reed, M., Lokuge, W. and Karunasena, W. (2014). Fibre-reinforced geopolymer concrete with ambient curing for in situ applications. Journal of materials science, 49(12), 4297-4304. https://doi.org/10.1007/s10853-014-8125-3
  • Sabu, A. and Karthi, L. (2018). A review on strength properties of fibre and hybrid fibre reinforced geopolymer concrete. International Research Journal of Engineering and Technology, 5, 1686-1690.
  • Sata, V., Sathonsaowaphak, A. and Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700-708. https://doi.org/10.1016/j.cemconcomp.2012.01.010
  • Scrivener, K.L., John, V.M. and Gartner, E.M. (2018). Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015
  • Shi, X.S., Wang, Q.Y., Zhao, X.L. and Collins, F. (2012). Discussion on properties and microstructure of geopolymer concrete containing fly ash and recycled aggregate. Advanced Materials Research, 450-451, 1577-1583. https://doi.org/10.4028/www.scientific.net/AMR.450-451.1577
  • Singh, N.B. (2018). Fly ash-based geopolymer binder: A future construction material. Minerals, 8(7), 299. https://doi.org/10.3390/min8070299
  • Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P. and Songpiriyakij, S. (2018). Flexural performance and toughness of hybrid steel and polypropylene fiber reinforced geopolymer. Construction and Building Materials, 161, 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122
  • TS 706 EN 12620+A1. (2009). Aggregates for concrete. Turkish Standards Institution, Ankara-Turkey. TS 802. (2016). Design of concrete mixes. Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1008. (2003). Mixing water for concrete-Specifications for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete, Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1097–6. (2013). Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1744–1:2009+A1. (2013). Tests for chemical properties of aggregates - Part 1: Chemical analysis. Turkish Standards Institution, Ankara-Turkey.
  • Vaidya, S. and Allouche, E. N. (2011). Strain sensing of carbon fiber reinforced geopolymer concrete. Materials and structures, 44(8), 1467-1475. https://doi.org/10.1617/s11527-011-9711-3
  • Wang, Y., Zheng, T., Zheng, X., Liu, Y., Darkwa, J. and Zhou, G. (2020). Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Construction and Building Materials, 251, 118960. https://doi.org/10.1016/j.conbuildmat.2020.118960
  • Worrell, E., Price, L., Martin, N., Hendriks, C. and Meida, L.O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26(1), 303-329. https://doi.org/10.1146/annurev.energy.26.1.303
  • Yadollahi, M. M., Benli, A. and Demirboğa, R. (2015). The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Construction and Building Materials, 94, 767-774. https://doi.org/10.1016/j.conbuildmat.2015.07.052
  • Yunsheng, Z., Wei, S., Zongjin, L., Xiangming, Z. and Chungkong, C. (2008). Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Construction and Building Materials, 22(3), 370-383. https://doi.org/10.1016/j.conbuildmat.2006.08.006
  • Zhang, H., Wang, L., Zheng, K., Bakura, T. J. and Totakhil, P. G. (2018). Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete. Construction and Building Materials, 187, 584-595. https://doi.org/10.1016/j.conbuildmat.2018.07.164
  • Zivica, V. and Bajza, A. (2002). Acidic attack of cement-based materials—a review Part 2. Factors of rate of acidic attack and protective measures. Construction and building materials, 16(4), 215-222. https://doi.org/10.1016/S0950-0618(02)00011-9
  • Zollo, R. F. (1997). Fiber-reinforced concrete: an overview after 30 years of development. Cement and concrete composites, 19(2), 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7

The effect of fiber length and content on acid resistance of geopolymer concrete

Yıl 2021, Cilt: 11 Sayı: 2, 424 - 437, 15.04.2021
https://doi.org/10.17714/gumusfenbil.866094

Öz

Cement production continues to increase year by year, bringing many economic and environmental problems. The search for alternative binders to cement is among the most popular research topics of the 21st century. In the studies conducted, "geopolymer" binders, also called alkali activated binders, stand out. Geopolymers are the new generation three-dimensional binders obtained by activating natural and waste pozzolans with high silica and alumina content in high alkaline environments. Geopolymer binders have quite important advantages in terms of strength, durability and economy when compared to normal Portland cement binders. However, the most important obstacle to the widespread use of geopolymer concretes is the thermal curing process required in its production. There is no study in the literature on the effect of fiber length and content on acid resistance of fiber reinforced geopolymer concretes. In this study, the effect of fiber length and fiber content on acid resistance of geopolymer concretes produced without heat curing was revealed. For this purpose, 6 and 12 mm length polypropylene (PP) fiber was added at the rate of 0.5%, 1.0% and 1.5% by volume. Blast furnace slag (BFS) was used as an aluminosilicate source. Geopolymer concrete samples cured for 28 days in laboratory conditions were then exposed to 5% HCl solution for 14 and 28 days. The changes in the physical and mechanical properties of geopolymer concrete such as compressive strength, weight, ultrasonic pulse velocity (UPV), visual appearance after acid effect were investigated. In addition, microstructures were examined with SEM analyzes. As a result of the experimental studies, it has been determined that the PP fiber additive significantly improves the acid resistance of geopolymer concretes as it prevents the formation of cracks with the bridging effect.

Kaynakça

  • Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Tahir, M. M. and Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and building materials, 43, 80-86. https://doi.org/10.1016/j.conbuildmat.2013.01.018
  • Assi, L.N., Deaver, E.E. and Ziehl, P. (2018). Effect of source and particle size distribution on the mechanical and microstructural properties of fly ash-based geopolymer concrete. Construction and Building Materials, 167, 372–380. https://doi.org/10.1016/j.conbuildmat.2018.01.193
  • ASTM C109. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International, West Conshohocken, PA.
  • ASTM C267-20. (2020). Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International, West Conshohocken, PA.
  • ASTM C597-16. (2016). Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA.
  • Aswani, E. and Karthi, L. (2017). A literature review on fiber reinforced geopolymer concrete. International Journal of Scientific & Engineering Research, 8(2), 408-411.
  • Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and concrete research, 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
  • Bakharev, T., Sanjayan, J. G. and Cheng, Y. B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete research, 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X
  • Beddoe, R. E. And Dorner, H. W. (2005). Modelling acid attack on concrete: Part I. The essential mechanisms. Cement and concrete research, 35(12), 2333-2339. https://doi.org/10.1016/j.cemconres.2005.04.002
  • Bhutta, M. A. R., Hussin, W. M., Azreen, M. and Tahir, M. M. (2014). Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. Journal of Materials in Civil Engineering, 26(11), 04014080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001030
  • Comrie, D.C. and Davidovits, J. (1988). Long Term Durability of Hazardous Toxic and Nuclear Waste Disposals, Proceedings of Geopolymer88; First European Conference on Soft Mineralurgy, Compiegne.
  • Damilola, O.M. (2013). Syntheses, characterization and binding strength of geopolymers: a review. International Journal of Materials Science and Applications, 2(6), 185–193. doi: 10.11648/j.ijmsa.20130206.14
  • Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis and calorimetry, 37(8), 1633-1656. https://doi.org/10.1007/bf01912193
  • Davidovits, J. (1993). Geopolymer cements to minimise carbon-dioxide greenhousewarming. Ceramic Transactions, 37, 165–182.
  • Davidovits, J. (1994). High-Alkali Cements for 21st Century Concretes. ACI Special Publication, 144, 383-398.
  • Davidovits, J. (2008). Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin,.
  • Davidovits, J. (2011). Geopolymer Chemistry and Applications, third ed. Institute of Geopolymere.
  • Davidovits, J., Comrie, D.C., Paterson, J.H. and Ritcey, D.J. (1990). Geopolymeric concretes for environmental protection, Concrete International, 12(7), 30–40.
  • Dawood, E. T. and Ramli, M. (2011). Contribution of hybrid fibers on the properties of high strength concrete having high workability. Procedia Engineering, 14, 814-820. https://doi.org/10.1016/j.proeng.2011.07.103
  • Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K. and Kumar, S. (2016). Mechanical properties and durability of volcanic ash based geopolymer mortars. Construction and Building Materials, 124, 606-614. https://doi.org/10.1016/j.conbuildmat.2016.07.141
  • Duxson, P., Provis, J. L., Lukey, G. C. and Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  • El-Gamal, S.M.A. and Selim, F.A. (2017). Utilization of some industrial wastes for eco-friendly cement production. Sustainable Materials and Technologies, 12, 9–17. https://doi.org/10.1016/j.susmat.2017.03.001
  • Ganesan, N., Abraham, R. and Raj, S. D. (2015). Durability characteristics of steel fibre reinforced geopolymer concrete. Construction and Building Materials, 93, 471-476. https://doi.org/10.1016/j.conbuildmat.2015.06.014
  • Ganesh, A.C. and Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, 124543. https://doi.org/10.1016/j.jclepro.2020.124543
  • Ghosh, R., Sagar, S. P., Kumar, A., Gupta, S. K. and Kumar, S. (2018). Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. Journal of building engineering, 16, 39-44. https://doi.org/10.1016/j.jobe.2017.12.009
  • Guo, C. M., Wang, K. T., Liu, M. Y., Li, X. H. and Cui, X. M. (2016). Preparation and characterization of acid-based geopolymer using metakaolin and disused polishing liquid. Ceramics International, 42(7), 9287-9291. https://doi.org/10.1016/j.ceramint.2016.02.073
  • Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K. and Hussein, A. A. (2017). Geopolymer mortars as sustainable repair material: A comprehensive review. Renewable and Sustainable Energy Reviews, 80, 54-74. https://doi.org/10.1016/j.rser.2017.05.076
  • Kajaste, R. and Hurme, M. (2016). Cement industry greenhouse gas emissions-management options and abatement cost. Journal of Cleaner Production, 112, 4041-4052. https://doi.org/10.1016/j.jclepro.2015.07.055
  • Kantarcı, F., Türkmen, İ. and Ekinci, E. (2019). Optimization of production parameters of geopolymer mortar and concrete: A comprehensive experimental study. Construction and Building Materials, 228, 116770. https://doi.org/10.1016/j.conbuildmat.2019.116770
  • Kim, Y. Y., Lee, B. J., Saraswathy, V. and Kwon, S. J. (2014). Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/209584
  • Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A. and Cleland, D.J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537-553. https://doi.org/10.1016/j.conbuildmat.2018.01.129
  • Li, Z., Zhang, Y. And Zhou, X. (2005). Short fiber reinforced geopolymer composites manufactured by extrusion. Journal of materials in civil engineering, 17(6), 624-631. DOI:10.1061/(ASCE)0899-1561(2005)17:6(624)
  • Malhotra, V.M. (1999). Making Concrete “Greener” With Fly Ash. Concrete International, 21(5), 61-66.
  • Martinie, L., Rossi, P. and Roussel, N. (2010). Rheology of fiber reinforced cementitious materials: classification and prediction. Cement and concrete research, 40(2), 226-234. https://doi.org/10.1016/j.cemconres.2009.08.032
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Mohseni, E. (2018). Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Construction and Building Materials, 186, 904-911. https://doi.org/10.1016/j.conbuildmat.2018.08.032
  • Moradikhou, A.B., Esparham, A. and Avanaki, M.J. (2020). Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Construction and Building Materials, 25,118965 https://doi.org/10.1016/j.conbuildmat.2020.118965
  • Noushini, A. and Castel, A. (2016). The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Construction and Building Materials, 112, 464-477. https://doi.org/10.1016/j.conbuildmat.2016.02.210
  • Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T. and Grutzeck, M. W. (1999). Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 29(7), 997-1004. https://doi.org/10.1016/S0008-8846(99)00074-5
  • Ranjbar, N., and Zhang, M. (2020). Fiber-reinforced geopolymer composites: A review. Cement and Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Reed, M., Lokuge, W. and Karunasena, W. (2014). Fibre-reinforced geopolymer concrete with ambient curing for in situ applications. Journal of materials science, 49(12), 4297-4304. https://doi.org/10.1007/s10853-014-8125-3
  • Sabu, A. and Karthi, L. (2018). A review on strength properties of fibre and hybrid fibre reinforced geopolymer concrete. International Research Journal of Engineering and Technology, 5, 1686-1690.
  • Sata, V., Sathonsaowaphak, A. and Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700-708. https://doi.org/10.1016/j.cemconcomp.2012.01.010
  • Scrivener, K.L., John, V.M. and Gartner, E.M. (2018). Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015
  • Shi, X.S., Wang, Q.Y., Zhao, X.L. and Collins, F. (2012). Discussion on properties and microstructure of geopolymer concrete containing fly ash and recycled aggregate. Advanced Materials Research, 450-451, 1577-1583. https://doi.org/10.4028/www.scientific.net/AMR.450-451.1577
  • Singh, N.B. (2018). Fly ash-based geopolymer binder: A future construction material. Minerals, 8(7), 299. https://doi.org/10.3390/min8070299
  • Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P. and Songpiriyakij, S. (2018). Flexural performance and toughness of hybrid steel and polypropylene fiber reinforced geopolymer. Construction and Building Materials, 161, 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122
  • TS 706 EN 12620+A1. (2009). Aggregates for concrete. Turkish Standards Institution, Ankara-Turkey. TS 802. (2016). Design of concrete mixes. Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1008. (2003). Mixing water for concrete-Specifications for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete, Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1097–6. (2013). Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1744–1:2009+A1. (2013). Tests for chemical properties of aggregates - Part 1: Chemical analysis. Turkish Standards Institution, Ankara-Turkey.
  • Vaidya, S. and Allouche, E. N. (2011). Strain sensing of carbon fiber reinforced geopolymer concrete. Materials and structures, 44(8), 1467-1475. https://doi.org/10.1617/s11527-011-9711-3
  • Wang, Y., Zheng, T., Zheng, X., Liu, Y., Darkwa, J. and Zhou, G. (2020). Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Construction and Building Materials, 251, 118960. https://doi.org/10.1016/j.conbuildmat.2020.118960
  • Worrell, E., Price, L., Martin, N., Hendriks, C. and Meida, L.O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26(1), 303-329. https://doi.org/10.1146/annurev.energy.26.1.303
  • Yadollahi, M. M., Benli, A. and Demirboğa, R. (2015). The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Construction and Building Materials, 94, 767-774. https://doi.org/10.1016/j.conbuildmat.2015.07.052
  • Yunsheng, Z., Wei, S., Zongjin, L., Xiangming, Z. and Chungkong, C. (2008). Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Construction and Building Materials, 22(3), 370-383. https://doi.org/10.1016/j.conbuildmat.2006.08.006
  • Zhang, H., Wang, L., Zheng, K., Bakura, T. J. and Totakhil, P. G. (2018). Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete. Construction and Building Materials, 187, 584-595. https://doi.org/10.1016/j.conbuildmat.2018.07.164
  • Zivica, V. and Bajza, A. (2002). Acidic attack of cement-based materials—a review Part 2. Factors of rate of acidic attack and protective measures. Construction and building materials, 16(4), 215-222. https://doi.org/10.1016/S0950-0618(02)00011-9
  • Zollo, R. F. (1997). Fiber-reinforced concrete: an overview after 30 years of development. Cement and concrete composites, 19(2), 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Kantarcı 0000-0001-6863-995X

Yayımlanma Tarihi 15 Nisan 2021
Gönderilme Tarihi 21 Ocak 2021
Kabul Tarihi 28 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Kantarcı, F. (2021). Lif boyunun ve içeriğinin geopolimer betonların asit direncine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 424-437. https://doi.org/10.17714/gumusfenbil.866094