Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of secondary fluid flow rate on cooling performance of vapor compression systems

Yıl 2022, Cilt: 12 Sayı: 1, 12 - 22, 15.01.2022
https://doi.org/10.17714/gumusfenbil.891882

Öz

The vapor compression cooling devices operate on the same principle as heat pumps. In these types of machines thermal energy is transferred from the cold environment to the warmer side using provided power by the compressor. In this study, the effect of air flow rate on the cooling performance of vapor compression cooling devices has been investigated by simulating a designed system in AVL CRUISE™ M program. The simulated model is air-to-air cooling machine and refrigerant R134a was used as circulated gas inside the system. COP value of the system has been calculated in different working conditions and obtained results have been fully discussed. Accordingly, enthalpy variation in every element of the heat pump has been calculated in different working conditions and discussed on P-h diagram. This study presents a simulation method that is a practical solution method in the field of heat pumps, cooling machines and refrigerators which can be considered before installing device in order to have a proper prediction of the system performance.

Kaynakça

  • Afshari, F., Comakli, O., Adiguzel, N., and Karagoz, S. (2016). Optimal charge amount for different refrigerants in air-to-water heat pumps. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 40(4), 325–335. https://doi.org/10.1007/s40997-016-0028-2
  • Afshari, F., Sahin, B., Khanlari, A., and Manay, E. (2020). Experimental optimization and investigation of compressor cooling fan in an air-to-water heat pump. Heat Transfer Research, 51(4). https://doi.org/ 10.1615/HeatTransRes.2019030709
  • Afshari, F., Karagoz, S., Comakli, O., and Zavaragh, H. G. (2019). Thermodynamic analysis of a system converted from heat pump to refrigeration device. Heat and Mass Transfer, 55(2), 281-291. https://doi.org/10.1007/s00231-018-2412-5
  • Al-Nadawi, A. K. (2021). Irreversibility Analysis of R407C, R404A, and R134A as an Alternatives of R22 in Vapor Compression Chiller under Cycling Conditions. International Journal of Thermodynamics, 24(1), 24-29. http://doi.org/10.5541/ijot.797614
  • Ameen, A., and Bari, S. (2004). Investigation into the effectiveness of heat pump assisted clothes dryer for humid tropics. Energy Conversion and Management, 45(9–10), 1397–1405. https://doi.org/10.1016/j.enconman.2003.09.001
  • Bansal, P., Fothergill, D., and Fernandes, R. (2010). Thermal analysis of the defrost cycle in a domestic freezer. International Journal of Refrigeration, 33(3), 589–599. http://doi.org/10.1016/j.ijrefrig.2009.11.012
  • Biaou, A. L., and Bernier, M. A. (2008). Achieving total domestic hot water production with renewable energy. Building and Environment, 43(4), 651-660. https://doi.org/10.1016/j.buildenv.2006.06.032
  • Bilgen, E., and Takahashi, H. (2002). Exergy analysis and experimental study of heat pump systems. Exergy, an international journal, 2(4), 259-265. https://doi.org/10.1016/S1164-0235(02)00083-3
  • Carrilho, D. G., Silva, P. D., Pires, L. C., Gaspar, P. D., and Nunes, J. (2017). Quantification of the thermal resistance variation in evaporators surface due to ice formation. Energy Procedia, 142, 4151–4156. https://doi.org/10.1016/j.egypro.2017.12.339
  • Gaigalis, V., Skema, R., Marcinauskas, K., and Korsakiene, I. (2016). A review on Heat Pumps implementation in Lithuania in compliance with the National Energy Strategy and EU policy. Renewable and Sustainable Energy Reviews, 53, 841–858. https://doi.org/10.1016/j.rser.2015.09.029
  • Joppolo, C. M., Molinaroli, L., De Antonellis, S., and Merlo, U. (2012). Experimental analysis of frost formation with the presence of an electric field on fin and tube evaporator. International Journal of Refrigeration, 35(2), 468–474. https://doi.org/10.1016/j.ijrefrig.2011.10.017
  • Karagoz, S., Yilmaz, M., Comakli, O., and Ozyurt, O. (2004). R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps. Energy Conversion and Management, 45(2), 181–196. http://doi.org/10.1016/S0196-8904(03)00144-4
  • Knabben, F. T., Hermes, C. J. L., and Melo, C. (2011). In-situ study of frosting and defrosting processes in tube-fin evaporators of household refrigerating appliances. International Journal of Refrigeration, 34(8), 2031–2041. http://doi.org/10.1016/j.ijrefrig.2011.07.006
  • Lee, S. H., Lee, M., Yoon, W. J., and Kim, Y. (2013). Frost growth characteristics of spirally-coiled circular fin-tube heat exchangers under frosting conditions. International Journal of Heat and Mass Transfer, 64, 1–9. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.018
  • Liu, X., Ni, L., Lau, S. K., and Li, H. (2013). Performance analysis of a multi-functional heat pump system in heating mode. Applied Thermal Engineering, 51(1-2), 698-710. https://doi.org/10.1016/j.applthermaleng.2012.08.043
  • Liu, Zhongbao, Li, A., Wang, Q., Chi, Y., and Zhang, L. (2017). Experimental study on a new type of thermal storage defrosting system for frost-free household refrigerators. Applied Thermal Engineering, 118, 256–265. https://doi.org/10.1016/j.applthermaleng.2017.02.077
  • Liu, Zhongbao, Zhao, F., Zhang, L., Zhang, R., Yuan, M., and Chi, Y. (2018). Performance of bypass cycle defrosting system using compressor casing thermal storage for air-cooled household refrigerators. Applied Thermal Engineering, 130, 1215–1223. https://doi.org/10.1016/j.applthermaleng.2017.11.077
  • Liu, Zhongliang, Wang, H., Zhang, X., Meng, S., and Ma, C. (2006). An experimental study on minimizing frost deposition on a cold surface under natural convection conditions by use of a novel anti-frosting paint. Part I. Anti-frosting performance and comparison with the uncoated metallic surface. International Journal of Refrigeration, 29(2), 229–236. https://doi.org/10.1016/j.ijrefrig.2005.05.018
  • Nada, S. A., Elattar, H. F., and Fouda, A. (2015). Experimental study for hybrid humidification–dehumidification water desalination and air conditioning system. Desalination, 363, 112–125. https://doi.org/10.1016/j.desal.2015.01.032
  • ONeal, D. L., and Tree, D. R. (1984). Measurement of frost growth and density in a parallel plate geometry. Ashrae Transactions, 90(2), 278–290.
  • Ozyurt, O., Comakli, O., Yilmaz, M., and Karslı, S. (2004). Heat pump use in milk pasteurization: an energy analysis. International Journal of Energy Research, 28(9), 833–846. https://doi.org/10.1002/er.999
  • Piscaglia, F., Blasi, A., Del Moro, S., Polonara, F., Arteconi, A., Zanarelli, L., and Renzulli, A. (2016). Monitoring of a vertical borehole ground-coupled heat pump system: A case study from a marly-limestone heat reservoir (Urbino, Central Italy). Geothermics, 62, 61–69. https://doi.org/10.1016/j.geothermics.2016.02.008
  • Ramadan, M., El Rab, M. G., and Khaled, M. (2015). Parametric analysis of air–water heat recovery concept applied to HVAC systems: Effect of mass flow rates. Case Studies in Thermal Engineering, 6, 61–68. https://doi.org/10.1016/j.csite.2015.06.001
  • Schneider, H. W. (1978). Equation of the growth rate of frost forming on cooled surfaces. International Journal of Heat and Mass Transfer, 21(8), 1019–1024. https://doi.org/10.1016/0017-9310(78)90098-4
  • Shen, B., Braun, J. E., and Groll, E. A. (2009). Improved methodologies for simulating unitary air conditioners at off-design conditions. International Journal of Refrigeration, 32(7), 1837–1849. https://doi.org/10.1016/j.ijrefrig.2009.06.009
  • Tan, H., Xu, G., Tao, T., Sun, X., and Yao, W. (2015). Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration. Applied Energy, 158, 220–232. https://doi.org/10.1016/j.apenergy.2015.08.072
  • Tang, J., Gong, G., Su, H., Wu, F., and Herman, C. (2016). Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method. Applied Energy, 169, 696–708. https://doi.org/10.1016/j.apenergy.2016.02.042
  • Wang, D., Tao, T., Xu, G., Luo, A., and Kang, S. (2012). Experimental study on frosting suppression for a finned-tube evaporator using ultrasonic vibration. Experimental Thermal and Fluid Science, 36, 1–11. https://doi.org/10.1016/j.expthermflusci.2011.03.002
  • Wang, F., Liang, C.-H., Yang, M.-T., and Zhang, X.-S. (2015). Preliminary study of a novel defrosting method for air source heat pumps based on superhydrophobic fin. Applied Thermal Engineering, 90, 136–144. http://doi.org/10.1016/j.applthermaleng.2015.07.003
  • Wang, S. W., and Liu, Z. Y. (2005). A new method for preventing HP from frosting. Renewable Energy, 30(5), 753–761. https://doi.org/10.1016/j.renene.2003.07.001
  • Wang, Z., Zheng, Y., Wang, F., Wang, X., Lin, Z., Li, J., and Huan, C. (2014). Experimental analysis on a novel frost-free air-source heat pump water heater system. Applied Thermal Engineering, 70(1), 808–816. http://doi.org/10.1016/j.applthermaleng.2014.05.038
  • Yan, W.-M., Li, H.-Y., Wu, Y.-J., Lin, J.-Y., and Chang, W.-R. (2003). Performance of finned tube heat exchangers operating under frosting conditions. International Journal of Heat and Mass Transfer, 46(5), 871–877. http://doi.org/10.1016/S0017-9310(02)00346-0
  • Yang, Y., Cui, G., and Lan, C. Q. (2019). Developments in evaporative cooling and enhanced evaporative cooling-A review. Renewable and Sustainable Energy Reviews, 113, 109230. https://doi.org/10.1016/j.rser.2019.06.037
  • Yumrutaş, R., and Ünsal, M. (2012). Energy analysis and modeling of a solar assisted house heating system with a heat pump and an underground energy storage tank. Solar Energy, 86(3), 983–993. http://doi.org/10.1016/j.solener.2012.01.008
  • Zheng, Z., Xu, Y., Dong, J., Zhang, L., and Wang, L. (2016). Design and experimental testing of a ground source heat pump system based on energy-saving solar collector. Journal of Energy Engineering, 142(3), 4015022. http://doi.org/10.1061/(ASCE)EY.1943-7897.0000288

Buhar sıkıştırmalı sistemlerin soğutma performansı üzerinde ikinci akışkanın kütlesel debisinin etkileri

Yıl 2022, Cilt: 12 Sayı: 1, 12 - 22, 15.01.2022
https://doi.org/10.17714/gumusfenbil.891882

Öz

Buhar sıkıştırmalı soğutma cihazları ısı pompalarıyla benzer prensipte çalışır. Bu tür makinelerde kompresör tarafından tüketilen gücün kullanılmasıyla soğuk ortamdan sıcak olana ısıl enerji transferi gerçekleştirilir. Bu çalışmada, AVL CRUISE™ M programında tasarlanan bir sistemin simülasyonu yapılarak hava akış hızının buhar sıkıştırmalı soğutma cihazının soğutma performansına etkisi incelenmiştir. Simülasyonu yapılan model havadan havaya soğutma makinesidir ve sistem içinde sirküle edilen gaz olarak soğutucu akışkan R134a kullanılmıştır. Sistemin COP değeri farklı çalışma koşullarında hesaplanmış ve elde edilen sonuçlar tümüyle tartışılmıştır. Bu doğrultuda, ısı pompasının her elemanındaki entalpi değişimi farklı çalışma koşullarında hesaplanmış ve P-h diyagramı üzerinde ele alınmıştır. Bu çalışma, sistem performansının doğru bir şekilde tahmin edilebilmesi için cihaz kurulumundan önce dikkate alınabilecek ısı pompaları, soğutma makineleri ve buzdolapları alanında pratik çözüm yöntemi olan bir simülasyon yöntemi sunmaktadır.

Kaynakça

  • Afshari, F., Comakli, O., Adiguzel, N., and Karagoz, S. (2016). Optimal charge amount for different refrigerants in air-to-water heat pumps. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 40(4), 325–335. https://doi.org/10.1007/s40997-016-0028-2
  • Afshari, F., Sahin, B., Khanlari, A., and Manay, E. (2020). Experimental optimization and investigation of compressor cooling fan in an air-to-water heat pump. Heat Transfer Research, 51(4). https://doi.org/ 10.1615/HeatTransRes.2019030709
  • Afshari, F., Karagoz, S., Comakli, O., and Zavaragh, H. G. (2019). Thermodynamic analysis of a system converted from heat pump to refrigeration device. Heat and Mass Transfer, 55(2), 281-291. https://doi.org/10.1007/s00231-018-2412-5
  • Al-Nadawi, A. K. (2021). Irreversibility Analysis of R407C, R404A, and R134A as an Alternatives of R22 in Vapor Compression Chiller under Cycling Conditions. International Journal of Thermodynamics, 24(1), 24-29. http://doi.org/10.5541/ijot.797614
  • Ameen, A., and Bari, S. (2004). Investigation into the effectiveness of heat pump assisted clothes dryer for humid tropics. Energy Conversion and Management, 45(9–10), 1397–1405. https://doi.org/10.1016/j.enconman.2003.09.001
  • Bansal, P., Fothergill, D., and Fernandes, R. (2010). Thermal analysis of the defrost cycle in a domestic freezer. International Journal of Refrigeration, 33(3), 589–599. http://doi.org/10.1016/j.ijrefrig.2009.11.012
  • Biaou, A. L., and Bernier, M. A. (2008). Achieving total domestic hot water production with renewable energy. Building and Environment, 43(4), 651-660. https://doi.org/10.1016/j.buildenv.2006.06.032
  • Bilgen, E., and Takahashi, H. (2002). Exergy analysis and experimental study of heat pump systems. Exergy, an international journal, 2(4), 259-265. https://doi.org/10.1016/S1164-0235(02)00083-3
  • Carrilho, D. G., Silva, P. D., Pires, L. C., Gaspar, P. D., and Nunes, J. (2017). Quantification of the thermal resistance variation in evaporators surface due to ice formation. Energy Procedia, 142, 4151–4156. https://doi.org/10.1016/j.egypro.2017.12.339
  • Gaigalis, V., Skema, R., Marcinauskas, K., and Korsakiene, I. (2016). A review on Heat Pumps implementation in Lithuania in compliance with the National Energy Strategy and EU policy. Renewable and Sustainable Energy Reviews, 53, 841–858. https://doi.org/10.1016/j.rser.2015.09.029
  • Joppolo, C. M., Molinaroli, L., De Antonellis, S., and Merlo, U. (2012). Experimental analysis of frost formation with the presence of an electric field on fin and tube evaporator. International Journal of Refrigeration, 35(2), 468–474. https://doi.org/10.1016/j.ijrefrig.2011.10.017
  • Karagoz, S., Yilmaz, M., Comakli, O., and Ozyurt, O. (2004). R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps. Energy Conversion and Management, 45(2), 181–196. http://doi.org/10.1016/S0196-8904(03)00144-4
  • Knabben, F. T., Hermes, C. J. L., and Melo, C. (2011). In-situ study of frosting and defrosting processes in tube-fin evaporators of household refrigerating appliances. International Journal of Refrigeration, 34(8), 2031–2041. http://doi.org/10.1016/j.ijrefrig.2011.07.006
  • Lee, S. H., Lee, M., Yoon, W. J., and Kim, Y. (2013). Frost growth characteristics of spirally-coiled circular fin-tube heat exchangers under frosting conditions. International Journal of Heat and Mass Transfer, 64, 1–9. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.018
  • Liu, X., Ni, L., Lau, S. K., and Li, H. (2013). Performance analysis of a multi-functional heat pump system in heating mode. Applied Thermal Engineering, 51(1-2), 698-710. https://doi.org/10.1016/j.applthermaleng.2012.08.043
  • Liu, Zhongbao, Li, A., Wang, Q., Chi, Y., and Zhang, L. (2017). Experimental study on a new type of thermal storage defrosting system for frost-free household refrigerators. Applied Thermal Engineering, 118, 256–265. https://doi.org/10.1016/j.applthermaleng.2017.02.077
  • Liu, Zhongbao, Zhao, F., Zhang, L., Zhang, R., Yuan, M., and Chi, Y. (2018). Performance of bypass cycle defrosting system using compressor casing thermal storage for air-cooled household refrigerators. Applied Thermal Engineering, 130, 1215–1223. https://doi.org/10.1016/j.applthermaleng.2017.11.077
  • Liu, Zhongliang, Wang, H., Zhang, X., Meng, S., and Ma, C. (2006). An experimental study on minimizing frost deposition on a cold surface under natural convection conditions by use of a novel anti-frosting paint. Part I. Anti-frosting performance and comparison with the uncoated metallic surface. International Journal of Refrigeration, 29(2), 229–236. https://doi.org/10.1016/j.ijrefrig.2005.05.018
  • Nada, S. A., Elattar, H. F., and Fouda, A. (2015). Experimental study for hybrid humidification–dehumidification water desalination and air conditioning system. Desalination, 363, 112–125. https://doi.org/10.1016/j.desal.2015.01.032
  • ONeal, D. L., and Tree, D. R. (1984). Measurement of frost growth and density in a parallel plate geometry. Ashrae Transactions, 90(2), 278–290.
  • Ozyurt, O., Comakli, O., Yilmaz, M., and Karslı, S. (2004). Heat pump use in milk pasteurization: an energy analysis. International Journal of Energy Research, 28(9), 833–846. https://doi.org/10.1002/er.999
  • Piscaglia, F., Blasi, A., Del Moro, S., Polonara, F., Arteconi, A., Zanarelli, L., and Renzulli, A. (2016). Monitoring of a vertical borehole ground-coupled heat pump system: A case study from a marly-limestone heat reservoir (Urbino, Central Italy). Geothermics, 62, 61–69. https://doi.org/10.1016/j.geothermics.2016.02.008
  • Ramadan, M., El Rab, M. G., and Khaled, M. (2015). Parametric analysis of air–water heat recovery concept applied to HVAC systems: Effect of mass flow rates. Case Studies in Thermal Engineering, 6, 61–68. https://doi.org/10.1016/j.csite.2015.06.001
  • Schneider, H. W. (1978). Equation of the growth rate of frost forming on cooled surfaces. International Journal of Heat and Mass Transfer, 21(8), 1019–1024. https://doi.org/10.1016/0017-9310(78)90098-4
  • Shen, B., Braun, J. E., and Groll, E. A. (2009). Improved methodologies for simulating unitary air conditioners at off-design conditions. International Journal of Refrigeration, 32(7), 1837–1849. https://doi.org/10.1016/j.ijrefrig.2009.06.009
  • Tan, H., Xu, G., Tao, T., Sun, X., and Yao, W. (2015). Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration. Applied Energy, 158, 220–232. https://doi.org/10.1016/j.apenergy.2015.08.072
  • Tang, J., Gong, G., Su, H., Wu, F., and Herman, C. (2016). Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method. Applied Energy, 169, 696–708. https://doi.org/10.1016/j.apenergy.2016.02.042
  • Wang, D., Tao, T., Xu, G., Luo, A., and Kang, S. (2012). Experimental study on frosting suppression for a finned-tube evaporator using ultrasonic vibration. Experimental Thermal and Fluid Science, 36, 1–11. https://doi.org/10.1016/j.expthermflusci.2011.03.002
  • Wang, F., Liang, C.-H., Yang, M.-T., and Zhang, X.-S. (2015). Preliminary study of a novel defrosting method for air source heat pumps based on superhydrophobic fin. Applied Thermal Engineering, 90, 136–144. http://doi.org/10.1016/j.applthermaleng.2015.07.003
  • Wang, S. W., and Liu, Z. Y. (2005). A new method for preventing HP from frosting. Renewable Energy, 30(5), 753–761. https://doi.org/10.1016/j.renene.2003.07.001
  • Wang, Z., Zheng, Y., Wang, F., Wang, X., Lin, Z., Li, J., and Huan, C. (2014). Experimental analysis on a novel frost-free air-source heat pump water heater system. Applied Thermal Engineering, 70(1), 808–816. http://doi.org/10.1016/j.applthermaleng.2014.05.038
  • Yan, W.-M., Li, H.-Y., Wu, Y.-J., Lin, J.-Y., and Chang, W.-R. (2003). Performance of finned tube heat exchangers operating under frosting conditions. International Journal of Heat and Mass Transfer, 46(5), 871–877. http://doi.org/10.1016/S0017-9310(02)00346-0
  • Yang, Y., Cui, G., and Lan, C. Q. (2019). Developments in evaporative cooling and enhanced evaporative cooling-A review. Renewable and Sustainable Energy Reviews, 113, 109230. https://doi.org/10.1016/j.rser.2019.06.037
  • Yumrutaş, R., and Ünsal, M. (2012). Energy analysis and modeling of a solar assisted house heating system with a heat pump and an underground energy storage tank. Solar Energy, 86(3), 983–993. http://doi.org/10.1016/j.solener.2012.01.008
  • Zheng, Z., Xu, Y., Dong, J., Zhang, L., and Wang, L. (2016). Design and experimental testing of a ground source heat pump system based on energy-saving solar collector. Journal of Energy Engineering, 142(3), 4015022. http://doi.org/10.1061/(ASCE)EY.1943-7897.0000288
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Faraz Afshari 0000-0001-9192-5604

Doğan Çiloğlu 0000-0002-7570-9271

Akif Ceviz 0000-0001-6268-571X

Murat Ceylan 0000-0002-4958-0697

Yayımlanma Tarihi 15 Ocak 2022
Gönderilme Tarihi 8 Mart 2021
Kabul Tarihi 18 Ekim 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

APA Afshari, F., Çiloğlu, D., Ceviz, A., Ceylan, M. (2022). Effects of secondary fluid flow rate on cooling performance of vapor compression systems. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 12-22. https://doi.org/10.17714/gumusfenbil.891882