Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of microstructural change and damping behaviour of Zn–27Al–1Cu alloy in different aging periods

Yıl 2022, Cilt: 12 Sayı: 2, 636 - 648, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1005896

Öz

The ternary Zn-27Al-1Cu alloy is produced from raw materials by the gravity casting method. The produced alloy was subjected to aging after solutionizing and quenching. The effect of ageing at different periods on the microstructure and damping behaviour of the alloy was investigated. The microstructural investigations revealed that the microstructure of the alloy in the as-cast state consisted of aluminium(Al)-rich α dendrites surrounded by eutectoid β phase, and zinc(Zn)-rich η phase and copper(Cu)-rich ε phase. The heat treatment eliminated the dendritic microstructure of the casting alloy and transformed it into a coarse-grained (β-matrix) stable form containing Zn-rich and Cu-rich precipitates. The microstructural changes after aging process were directly affected the mechanical properties of the alloy. The hardness and tensile strength increased with increasing ageing time up to 2.5 hours, but the percent elongation decreased. When the aging time reached 5 hours, hardness and tensile strength decreased while percent elongation increased significantly. The impact energy, namely toughness, increased in the early stage of aging, reduced sharply with increasing aging time and remained stable with a small increase in the prolonged stage of aging. The highest impact energy was attained from the aged alloy for 0.5 hours. The variation in damping energy was dependent on the changes in microstructural and mechanical properties caused by different aging periods. The prolonged aging process transformed the fracture characteristic of the as-cast alloy from relatively brittle to ductile fracture.

Kaynakça

  • Anjan, B. N., & Kumar, G. P. (2019). Wear behaviour of ZA27-based composite reinforced with 5 wt% of SiC particles and processed by multi-directional forging. Transactions of the Indian Institute of Metals, 72(6), 1621-1625. https://doi.org/10.1007/s12666-019-01705-0
  • Aydın, M. (2012). High-cycle fatigue behavior of severe plastically deformed binary Zn–60Al alloy by equal-channel angular extrusion. Journal of Materials Processing Technology, 212(8), 1780-1789. https://doi.org/10.1016/j.jmatprotec.2012.03.027
  • Aydın, M., & Şenaslan, F. (2018). The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy. International Journal of Materials Research, 109(8), 699-707. https://doi.org/10.3139/146.111665
  • Babic, M., Mitrovic, S., & Jeremic, B. (2010). The influence of heat treatment on the sliding wear behavior of a ZA-27 alloy. Tribology international, 43(1-2), 16-21. https://doi.org/10.1016/j.triboint.2009.04.016 Bican, O., & Savaşkan, T. (2020). Influence of T5 heat treatment on the microstructure and lubricated wear behavior of ternary ZnAl40Cu2 and quaternary ZnAl40Cu2Si2. 5 alloys. Materialwissenschaft und Werkstofftechnik, 51(3), 383-390. https://doi.org/10.1002/mawe.201800222
  • Chen, T. J., Yuan, C. R., Fu, M. F., Ma, Y., Li, Y. D., & Hao, Y. (2008). In situ silicon particle reinforced ZA27 composites: Part 1–Microstructures and tensile properties. Materials Science and Technology, 24(11), 1321-1332. https://doi.org/10.1179/174328408X295971
  • Chen, T. J., Zhao, H. J., Ma, Y., & Hao, Y. (2015). Microstructure Observation of Naturally Aged Thixoforming ZA27 Alloy. Materials Research, 18, 1322-1330. https://doi.org/10.1590/1516-1439.050015
  • Choudhury, P., Das, S., & Datta, B. K. (2002). Effect of Ni on the wear behavior of a zinc-aluminum alloy. Journal of materials science, 37(10), 2103-2107. https://doi.org/10.1023/A:1015297904125
  • Ferreira-Palma, C., Dorantes-Rosales, H. J., López-Hirata, V. M., & Torres-Castillo, A. A. (2021). Effect of Ag additions on the microstructure and phase transformations of Zn-22Al-2Cu (wt.%) alloy. International Journal of Materials Research, 112(2), 108-117. https://doi.org/10.1515/ijmr-2020-8009
  • Hasan, M. M., Sharif, A., & Gafur, M. A. (2020). Characteristics of eutectic and near-eutectic Zn–Al alloys as high-temperature lead-free solders. Journal of Materials Science: Materials in Electronics, 31(2), 1691-1702. https://doi.org/10.1007/s10854-019-02687-x
  • Hernández-Rivera, J. L., Flores, E. E. M., Contreras, E. R., Rocha, J. G., de Jesus Cruz-Rivera, J., & Torres-Villaseñor, G. (2017). Evaluation of hardening and softening behaviors in Zn–21Al–2Cu alloy processed by equal channel angular pressing. Journal of Materials Research and Technology, 6(4), 329-333. https://doi.org/10.1016/j.jmrt.2017.06.006
  • Jeshvaghani, R. A., Ghahvechian, H., Pirnajmeddin, H. & Shahverdi, H. R. (2016). Influence of heat treatment on the microstructure and wear behavior of end-chill cast Zn–27Al alloys with different copper content. Applied Physics A, 122(4), 397. https://doi.org/10.1007/s00339-016-9820-5
  • Jovanović, M. T., Bobić, I., Djurić, B., Grahovac, N., & Ilić, N. (2007). Microstructural and sliding wear behaviour of a heat-treated zinc-based alloy. Tribology letters, 25(3), 173-184. https://doi.org/10.1007/s11249-006-9106-8
  • Kai, W., Baiqing, X., Yongan, Z., Guojun, W., Xiwu, L., Zhihui, L., & Hongwei, L. (2017). Microstructure evolution of a high zinc containing Al-Zn-Mg-Cu alloy during homogenization. Rare Metal Materials and Engineering, 46(4), 928-934. https://doi.org/10.1016/S1875-5372(17)30124-8
  • Krupiński, M., Krol, M., Krupińska, B., Mazur, K., & Labisz, K. (2018). Influence of Sr addition on microstructure of the hypereutectic Zn–Al–Cu alloy. Journal of Thermal Analysis and Calorimetry, 133(1), 255-260. https://doi.org/10.1007/s10973-018-7397-2
  • Liu, S., Tu, H., Wu, C., Wang, J., & Su, X. (2021). Effect of Silicon and Titanium on the Microstructure and Mechanical Properties of ZA12 Alloy. Materials Today Communications, 102564. https://doi.org/10.1016/j.mtcomm.2021.102564
  • Mao, F., Chen, F., Yan, G., Wang, T. & Cao, Z. (2015). Effect of strontium addition on silicon phase and mechanical properties of Zn–27Al–3Si alloy. Journal of Alloys and Compounds, 622, 871-879. https://doi.org/10.1016/j.jallcom.2014.11.013
  • Meng, X., Zhang, D., Zhang, W., Qiu, C., Liang, G., & Chen, J. (2021). Influence of solution treatment on microstructures and mechanical properties of a naturally-aged Al–27Zn–1.5 Mg–1.2 Cu–0.08 Zr aluminum alloy. Materials Science and Engineering: A, 802, 140623. https://doi.org/10.1016/j.msea.2020.140623
  • Movahedi, N., Murch, G. E., Belova, I. V., & Fiedler, T. (2019). Effect of heat treatment on the compressive behavior of zinc alloy ZA27 syntactic foam. Materials, 12(5), 792. https://doi.org/10.3390/ma12050792
  • Nagavelly, S., Velagapudi, V., & Narasaiah, N. (2017). Mechanical properties and dry sliding wear behaviour of molybdenum disulphide reinforced zinc–aluminium alloy composites. Transactions of the Indian Institute of Metals, 70(8), 2155-2163. https://doi.org/10.1007/s12666-017-1037-6
  • Owoeye, S. S., Folorunso, D. O., Oji, B., & Borisade, S. G. (2019). Zinc-aluminum (ZA-27)-based metal matrix composites: a review article of synthesis, reinforcement, microstructural, mechanical, and corrosion characteristics. The International Journal of Advanced Manufacturing Technology, 100(1-4), 373-380. https://doi.org/10.1007/s00170-018-2760-9
  • Pola, A., Tocci, M., & Goodwin, F. E. (2020). Review of microstructures and properties of zinc alloys. Metals, 10(2), 253. https://doi.org/10.3390/met10020253
  • Prasad, B. K. (2004). Influence of heat treatment parameters on the lubricated sliding wear behaviour of a zinc-based alloy. Wear, 257(11), 1137-1144. https://doi.org/10.1016/j.wear.2004.07.006
  • Pürçek, G. (2005). Improvement of mechanical properties for Zn–Al alloys using equal-channel angular pressing. Journal of Materials Processing Technology, 169(2), 242-248. https://doi.org/10.1016/j.jmatprotec.2005.03.012
  • Rollez, D., Pola, A., Montesano, L., Brisotto, M., De Felicis, D., & Gelfi, M. (2017). Effect of aging on microstructure and mechanical properties of ZnAl15Cu1 alloy for wrought applications. International Journal of Materials Research, 108(6), 447-454. https://doi.org/10.3139/146.111502
  • Savaskan, T, Aydın, M., & Odabaşıoğlu, H. A. (2001). Fatigue behaviour of Zn-Al casting alloys. Materials science and technology, 17(6), 681. https://doi.org/10.1179/026708301101510393
  • Savaşkan, T., & Hekimoğlu, A. P. (2014). Microstructure and mechanical properties of Zn–15Al-based ternary and quaternary alloys. Materials Science and Engineering: A, 603, 52-57. https://doi.org/10.1016/j.msea.2014.02.047
  • Savaşkan, T., Pürçek, G., & Murphy, S. (2002). Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear, 252(9-10), 693-703. https://doi.org/10.1016/S0043-1648(01)00876-6
  • Ting, L. I. U., Si, N. C., Liu, G. L., Zhang, R., & Qi, C. Y. (2016). Effects of Si addition on microstructure, mechanical and thermal fatigue properties of Zn-38Al-2.5 Cu alloys. Transactions of Nonferrous Metals Society of China, 26(7), 1775-1782. https://doi.org/10.1016/S1003-6326(16)64290-5
  • Turhal, M. Ş. & Savaşkan, T. (2003). Relationships between secondary dendrite arm spacing and mechanical properties of Zn-40Al-Cu alloys. Journal of Materials Science, 38(12), 2639-2646. https://doi.org/10.1023/A:1024434602540
  • Vencl, A., Šljivić, V., Pokusová, M., Kandeva, M., Sun, H., Zadorozhnaya, E., & Bobić, I. (2021). Production, Microstructure and Tribological Properties of Zn-Al/Ti Metal-Metal Composites Reinforced with Alumina Nanoparticles. International Journal of Metalcasting, 1-10. https://doi.org/10.1007/s40962-020-00565-5
  • Wei, S. L., Feng, Y., Zhang, H., Xu, C. T., & Wu, Y. (2021). Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy. Journal of Central South University, 28(9), 2687-2700. https://doi.org/10.1007/s11771-021-4802-y
  • Yang, C. F., Pan, J. H., & Lee, T. H. (2009). Work-softening and anneal-hardening behaviors in fine-grained Zn–Al alloys. Journal of Alloys and Compounds, 468(1-2), 230-236. https://doi.org/10.1016/j.jallcom.2008.01.067
  • Yang, L. I. U., Li, H. Y., Jiang, H. F., & Lu, X. C. (2013). Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Transactions of Nonferrous Metals Society of China, 23(3), 642-649. https://doi.org/10.1016/S1003-6326(13)62511-X
  • Zhang, J., Wang, Q., Jiao, Z., Cui, C., Yin, F., & Yao, C. (2020). Effects of combined use of inoculation and modification heat treatment on microstructure, damping and mechanical properties of Zn–Al eutectoid alloy. Materials Science and Engineering: A, 790, 139740. https://doi.org/10.1016/j.msea.2020.139740
  • Zhang, Y., Yang, L., Zeng, X., Zheng, B., & Song, Z. (2013). The mechanism of anneal-hardening phenomenon in extruded Zn–Al alloys. Materials & Design, 50, 223-229. https://doi.org/10.1016/j.matdes.2013.02.069
  • Zhao, H., De Geuser, F., da Silva, A. K., Szczepaniak, A., Gault, B., Ponge, D., & Raabe, D. (2018). Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy. Acta Materialia, 156, 318-329. https://doi.org/10.1016/j.actamat.2018.07.003
  • Zhongming, Z., Jincheng, W., Gencang, Y., & Yaohe, Z. (2000). Microstructural evolution of the supersaturated ZA27 alloy and its damping capacities. Journal of materials science, 35(13), 3383-3388. https://doi.org/10.1023/A:1004885002887
  • Zhu, Y. H., To, S., Liu, X. M., & Lee, W. B. (2006). Microstructural changes inside the lamellar structures of alloy ZA27. Materials characterization, 57(4-5), 326-332. https://doi.org/10.1016/j.matchar.2006.02.009

Zn–27Al–1Cu alaşımının farklı yaşlandırma periyotlarında mikroyapısal değişiminin ve darbe davranışının incelenmesi

Yıl 2022, Cilt: 12 Sayı: 2, 636 - 648, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1005896

Öz

Üçlü Zn–27Al–1Cu alaşımı, hammaddelerden kokil kalıba döküm yöntemiyle üretildi. Üretilen alaşım, çözündürme ve su verme işlemlerinden sonra yaşlandırmaya tabi tutuldu. Farklı periyotlarda yaşlandırmanın alaşımın mikroyapısı ve darbe davranışı üzerindeki etkisi incelendi. Mikroyapısal incelemeler, döküm halindeki alaşımın mikroyapısının alüminyumca (Al) zengin α dendritleri ve onları çevreleyen ötektoid β fazı, çinkoca (Zn) zengin η fazı ve bakırca (Cu) zengin ε fazından oluştuğunu ortaya çıkarmıştır. Isıl işlem döküm alaşımının dendritik mikroyapısını ortadan kaldırdı ve alaşımın mikroyapısını Zn ve Cu bakımından zengin çökeltiler içeren iri taneli (β-matrisli) kararlı bir forma dönüştürdü. Yaşlandırma işlemi sonrası oluşan mikroyapısal değişimler, alaşımın mekanik özelliklerini doğrudan etkilemiştir. Yaşlandırma süresinin 2,5 saate kadar artmasıyla sertlik ve çekme dayanımı artmış, ancak yüzde uzama azalmıştır. Yaşlandırma süresi 5 saate ulaştığında sertlik ve çekme dayanımı azalırken, yüzde uzama önemli ölçüde artmıştır. Darbe enerjisi, diğer bir ifade ile tokluk yaşlanmanın erken evresinde arttı, yaşlanma süresinin artmasıyla keskin bir şekilde azaldı ve uzun süreli yaşlandırma durumunda az bir artışla sabit kaldı. En yüksek darbe enerjisi 0,5 saat boyunca yaşlandırılmış alaşımdan elde edildi. Darbe enerjisindeki değişim, farklı periyotlarda yaşlandırma işleminden kaynaklanan mikroyapısal ve mekanik özelliklerdeki değişikliklere bağlıydı. Uzun süreli yaşlandırma işlemi, döküm durumundaki alaşımın kırılma karakteristiğini nispeten gevrek kırılmadan sünek kırılmaya dönüştürdü.

Kaynakça

  • Anjan, B. N., & Kumar, G. P. (2019). Wear behaviour of ZA27-based composite reinforced with 5 wt% of SiC particles and processed by multi-directional forging. Transactions of the Indian Institute of Metals, 72(6), 1621-1625. https://doi.org/10.1007/s12666-019-01705-0
  • Aydın, M. (2012). High-cycle fatigue behavior of severe plastically deformed binary Zn–60Al alloy by equal-channel angular extrusion. Journal of Materials Processing Technology, 212(8), 1780-1789. https://doi.org/10.1016/j.jmatprotec.2012.03.027
  • Aydın, M., & Şenaslan, F. (2018). The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy. International Journal of Materials Research, 109(8), 699-707. https://doi.org/10.3139/146.111665
  • Babic, M., Mitrovic, S., & Jeremic, B. (2010). The influence of heat treatment on the sliding wear behavior of a ZA-27 alloy. Tribology international, 43(1-2), 16-21. https://doi.org/10.1016/j.triboint.2009.04.016 Bican, O., & Savaşkan, T. (2020). Influence of T5 heat treatment on the microstructure and lubricated wear behavior of ternary ZnAl40Cu2 and quaternary ZnAl40Cu2Si2. 5 alloys. Materialwissenschaft und Werkstofftechnik, 51(3), 383-390. https://doi.org/10.1002/mawe.201800222
  • Chen, T. J., Yuan, C. R., Fu, M. F., Ma, Y., Li, Y. D., & Hao, Y. (2008). In situ silicon particle reinforced ZA27 composites: Part 1–Microstructures and tensile properties. Materials Science and Technology, 24(11), 1321-1332. https://doi.org/10.1179/174328408X295971
  • Chen, T. J., Zhao, H. J., Ma, Y., & Hao, Y. (2015). Microstructure Observation of Naturally Aged Thixoforming ZA27 Alloy. Materials Research, 18, 1322-1330. https://doi.org/10.1590/1516-1439.050015
  • Choudhury, P., Das, S., & Datta, B. K. (2002). Effect of Ni on the wear behavior of a zinc-aluminum alloy. Journal of materials science, 37(10), 2103-2107. https://doi.org/10.1023/A:1015297904125
  • Ferreira-Palma, C., Dorantes-Rosales, H. J., López-Hirata, V. M., & Torres-Castillo, A. A. (2021). Effect of Ag additions on the microstructure and phase transformations of Zn-22Al-2Cu (wt.%) alloy. International Journal of Materials Research, 112(2), 108-117. https://doi.org/10.1515/ijmr-2020-8009
  • Hasan, M. M., Sharif, A., & Gafur, M. A. (2020). Characteristics of eutectic and near-eutectic Zn–Al alloys as high-temperature lead-free solders. Journal of Materials Science: Materials in Electronics, 31(2), 1691-1702. https://doi.org/10.1007/s10854-019-02687-x
  • Hernández-Rivera, J. L., Flores, E. E. M., Contreras, E. R., Rocha, J. G., de Jesus Cruz-Rivera, J., & Torres-Villaseñor, G. (2017). Evaluation of hardening and softening behaviors in Zn–21Al–2Cu alloy processed by equal channel angular pressing. Journal of Materials Research and Technology, 6(4), 329-333. https://doi.org/10.1016/j.jmrt.2017.06.006
  • Jeshvaghani, R. A., Ghahvechian, H., Pirnajmeddin, H. & Shahverdi, H. R. (2016). Influence of heat treatment on the microstructure and wear behavior of end-chill cast Zn–27Al alloys with different copper content. Applied Physics A, 122(4), 397. https://doi.org/10.1007/s00339-016-9820-5
  • Jovanović, M. T., Bobić, I., Djurić, B., Grahovac, N., & Ilić, N. (2007). Microstructural and sliding wear behaviour of a heat-treated zinc-based alloy. Tribology letters, 25(3), 173-184. https://doi.org/10.1007/s11249-006-9106-8
  • Kai, W., Baiqing, X., Yongan, Z., Guojun, W., Xiwu, L., Zhihui, L., & Hongwei, L. (2017). Microstructure evolution of a high zinc containing Al-Zn-Mg-Cu alloy during homogenization. Rare Metal Materials and Engineering, 46(4), 928-934. https://doi.org/10.1016/S1875-5372(17)30124-8
  • Krupiński, M., Krol, M., Krupińska, B., Mazur, K., & Labisz, K. (2018). Influence of Sr addition on microstructure of the hypereutectic Zn–Al–Cu alloy. Journal of Thermal Analysis and Calorimetry, 133(1), 255-260. https://doi.org/10.1007/s10973-018-7397-2
  • Liu, S., Tu, H., Wu, C., Wang, J., & Su, X. (2021). Effect of Silicon and Titanium on the Microstructure and Mechanical Properties of ZA12 Alloy. Materials Today Communications, 102564. https://doi.org/10.1016/j.mtcomm.2021.102564
  • Mao, F., Chen, F., Yan, G., Wang, T. & Cao, Z. (2015). Effect of strontium addition on silicon phase and mechanical properties of Zn–27Al–3Si alloy. Journal of Alloys and Compounds, 622, 871-879. https://doi.org/10.1016/j.jallcom.2014.11.013
  • Meng, X., Zhang, D., Zhang, W., Qiu, C., Liang, G., & Chen, J. (2021). Influence of solution treatment on microstructures and mechanical properties of a naturally-aged Al–27Zn–1.5 Mg–1.2 Cu–0.08 Zr aluminum alloy. Materials Science and Engineering: A, 802, 140623. https://doi.org/10.1016/j.msea.2020.140623
  • Movahedi, N., Murch, G. E., Belova, I. V., & Fiedler, T. (2019). Effect of heat treatment on the compressive behavior of zinc alloy ZA27 syntactic foam. Materials, 12(5), 792. https://doi.org/10.3390/ma12050792
  • Nagavelly, S., Velagapudi, V., & Narasaiah, N. (2017). Mechanical properties and dry sliding wear behaviour of molybdenum disulphide reinforced zinc–aluminium alloy composites. Transactions of the Indian Institute of Metals, 70(8), 2155-2163. https://doi.org/10.1007/s12666-017-1037-6
  • Owoeye, S. S., Folorunso, D. O., Oji, B., & Borisade, S. G. (2019). Zinc-aluminum (ZA-27)-based metal matrix composites: a review article of synthesis, reinforcement, microstructural, mechanical, and corrosion characteristics. The International Journal of Advanced Manufacturing Technology, 100(1-4), 373-380. https://doi.org/10.1007/s00170-018-2760-9
  • Pola, A., Tocci, M., & Goodwin, F. E. (2020). Review of microstructures and properties of zinc alloys. Metals, 10(2), 253. https://doi.org/10.3390/met10020253
  • Prasad, B. K. (2004). Influence of heat treatment parameters on the lubricated sliding wear behaviour of a zinc-based alloy. Wear, 257(11), 1137-1144. https://doi.org/10.1016/j.wear.2004.07.006
  • Pürçek, G. (2005). Improvement of mechanical properties for Zn–Al alloys using equal-channel angular pressing. Journal of Materials Processing Technology, 169(2), 242-248. https://doi.org/10.1016/j.jmatprotec.2005.03.012
  • Rollez, D., Pola, A., Montesano, L., Brisotto, M., De Felicis, D., & Gelfi, M. (2017). Effect of aging on microstructure and mechanical properties of ZnAl15Cu1 alloy for wrought applications. International Journal of Materials Research, 108(6), 447-454. https://doi.org/10.3139/146.111502
  • Savaskan, T, Aydın, M., & Odabaşıoğlu, H. A. (2001). Fatigue behaviour of Zn-Al casting alloys. Materials science and technology, 17(6), 681. https://doi.org/10.1179/026708301101510393
  • Savaşkan, T., & Hekimoğlu, A. P. (2014). Microstructure and mechanical properties of Zn–15Al-based ternary and quaternary alloys. Materials Science and Engineering: A, 603, 52-57. https://doi.org/10.1016/j.msea.2014.02.047
  • Savaşkan, T., Pürçek, G., & Murphy, S. (2002). Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear, 252(9-10), 693-703. https://doi.org/10.1016/S0043-1648(01)00876-6
  • Ting, L. I. U., Si, N. C., Liu, G. L., Zhang, R., & Qi, C. Y. (2016). Effects of Si addition on microstructure, mechanical and thermal fatigue properties of Zn-38Al-2.5 Cu alloys. Transactions of Nonferrous Metals Society of China, 26(7), 1775-1782. https://doi.org/10.1016/S1003-6326(16)64290-5
  • Turhal, M. Ş. & Savaşkan, T. (2003). Relationships between secondary dendrite arm spacing and mechanical properties of Zn-40Al-Cu alloys. Journal of Materials Science, 38(12), 2639-2646. https://doi.org/10.1023/A:1024434602540
  • Vencl, A., Šljivić, V., Pokusová, M., Kandeva, M., Sun, H., Zadorozhnaya, E., & Bobić, I. (2021). Production, Microstructure and Tribological Properties of Zn-Al/Ti Metal-Metal Composites Reinforced with Alumina Nanoparticles. International Journal of Metalcasting, 1-10. https://doi.org/10.1007/s40962-020-00565-5
  • Wei, S. L., Feng, Y., Zhang, H., Xu, C. T., & Wu, Y. (2021). Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy. Journal of Central South University, 28(9), 2687-2700. https://doi.org/10.1007/s11771-021-4802-y
  • Yang, C. F., Pan, J. H., & Lee, T. H. (2009). Work-softening and anneal-hardening behaviors in fine-grained Zn–Al alloys. Journal of Alloys and Compounds, 468(1-2), 230-236. https://doi.org/10.1016/j.jallcom.2008.01.067
  • Yang, L. I. U., Li, H. Y., Jiang, H. F., & Lu, X. C. (2013). Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Transactions of Nonferrous Metals Society of China, 23(3), 642-649. https://doi.org/10.1016/S1003-6326(13)62511-X
  • Zhang, J., Wang, Q., Jiao, Z., Cui, C., Yin, F., & Yao, C. (2020). Effects of combined use of inoculation and modification heat treatment on microstructure, damping and mechanical properties of Zn–Al eutectoid alloy. Materials Science and Engineering: A, 790, 139740. https://doi.org/10.1016/j.msea.2020.139740
  • Zhang, Y., Yang, L., Zeng, X., Zheng, B., & Song, Z. (2013). The mechanism of anneal-hardening phenomenon in extruded Zn–Al alloys. Materials & Design, 50, 223-229. https://doi.org/10.1016/j.matdes.2013.02.069
  • Zhao, H., De Geuser, F., da Silva, A. K., Szczepaniak, A., Gault, B., Ponge, D., & Raabe, D. (2018). Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy. Acta Materialia, 156, 318-329. https://doi.org/10.1016/j.actamat.2018.07.003
  • Zhongming, Z., Jincheng, W., Gencang, Y., & Yaohe, Z. (2000). Microstructural evolution of the supersaturated ZA27 alloy and its damping capacities. Journal of materials science, 35(13), 3383-3388. https://doi.org/10.1023/A:1004885002887
  • Zhu, Y. H., To, S., Liu, X. M., & Lee, W. B. (2006). Microstructural changes inside the lamellar structures of alloy ZA27. Materials characterization, 57(4-5), 326-332. https://doi.org/10.1016/j.matchar.2006.02.009
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Şenaslan 0000-0003-0498-6332

Murat Aydın 0000-0002-8998-1620

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 7 Ekim 2021
Kabul Tarihi 28 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Şenaslan, F., & Aydın, M. (2022). Investigation of microstructural change and damping behaviour of Zn–27Al–1Cu alloy in different aging periods. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 636-648. https://doi.org/10.17714/gumusfenbil.1005896