Araştırma Makalesi
BibTex RIS Kaynak Göster

Ag katkılı TiO2 ve TiO2/PVA nanokompozit tozların antibakteriyel, optik ve mikroyapısal özelliklerinin araştırılması

Yıl 2022, Cilt: 12 Sayı: 2, 687 - 698, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1007800

Öz

Bu çalışmanın amacı, sol-jel prosesi ile sentezlenen gümüş (Ag) katkılı titanyum dioksit (TiO2) ve titanyum dioksit - polivinil alkol (TiO2/PVA) nanokompozit tozların mikroyapısal, optik ve antibakteriyel özelliklerini araştırmaktır. Nanokompozit tozların toz karakterizasyonu, SEM, EDS, XRD, lazer partikül boyutu, spesifik yüzey alanı, UV-vis analizi ve yoğunluk ölçümleri ile gerçekleştirilmiştir. SEM incelemeleri, PVA katkı maddesi kullanılarak sentezlenen TiO2 nanopartiküllerin nispeten küresel morfolojiye sahip olduğunu gösterdi. Katkısız ve Ag katkılı TiO2/PVA nanokompozit tozların XRD mikroanalizi ile anataz fazında olduğu tespit edildi. Nanokompozit tozlarda gümüşün varlığı, EDS analizi, XRD ve UV-vis pik kaymaları ile tespit edildi. Gümüş ve polimer katkılama, TiO2 sisteminde yüzey alanı ve yoğunluk değerlerini azaltmıştır. Nanokompozit tozlara Ag katkılandırılması, sentezlenen TiO2 ve TiO2/PVA nanokompozit tozların Staphylococcus aureus (S. aureus) ve Escherichia coli (E. coli)'ye karşı antibakteriyel aktivitesini önemli ölçüde iyileştirmiştir. Ayrıca, antibakteriyel aktivite etkisinin S. aureus’a kıyasla E. Coli üzerine daha az olduğu saptanmıştır.

Kaynakça

  • Abbad, S., Guergouri, K., Gazaout, S., Djebabra, S., Zertal, A., Barille, R., & Zaabat, M. (2020). Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route, Journal of Environmental Chemical Engineering, 8(3), 103718. https://doi.org/10.1016/j.jece.2020.103718
  • Aksu, A., Taskin, Ö, S., Cetintasoglu, M, E., Korkmaz, N, E., Torlak, C., & Caglar, N. (2020). Preparation of silica based C8 packing material from non-toxic water glass, International Journal of Environment and Geoinformatics, 7(2), 127-131. https://doi.org/10.30897/ijegeo.700599
  • Ali, T., Ahmed, A., Alam, U., Uddin, I., Tripathi, P., & Muneer, M. (2018). Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light, Materials Chemistry and Physics, 212, 325-335. https://doi.org/10.1016/j.matchemphys.2018.03.052
  • Bahadur, J., Agrawalet, S., Panwar, V., & Parveen, A. (2016). Antibacterial properties of silver doped TiO2 nanoparticles synthesized via sol-gel technique, Macromolecular Research, 24(6):488–493. https://doi.org/10.1007/s13233-016-4066-9
  • Bandyopadhyay, A., Sarkar, M., & Bhowmick, A. K. (2005). Poly(vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: synthesis and properties, Journal of Materials Science, 40(19), 5233-5241. https://doi.org/10.1007/s10853-005-4417-y
  • Behnajady, M. A., Modirshahla, N., Shokri, M., & Rad, B. (2008). Enhancement of photocatalytic activity of TiO2 nanoparticles by silver doping: photodeposition versus liquid impregnation methods, Global Nest Journal, 10(1), 1–7. https://doi.org/10.30955/gnj.000485
  • Brinker, C. J., Frye, G. C., Hurd, A. J., & Ashley, C. S. (1991). Fundamentals of sol-gel dip coating, Thin Solid Films, 201(1), 97-108. https://doi.org/10.1016/0040-6090(91)90158-T
  • Bulut, B., & Duman, Ş. (2021). Effects of calcination temperature on hydrothermally synthesized titanium dioxide submicron powders, Konya Journal of Engineering Sciences, 9(3), 676-685. https://doi.org/10.36306/konjes.915062
  • Cha, H. R., Babu, V. R., Rao, K. S. V. K., Kim, Y. H., Mei, S. R., Joo, W. H., & Lee, Y. (2012). Fabrication of amino acid based silver nanocomposite hydrogels from PVA- poly(ac-rylamide-co-acryloyl phenylalan-ine) and their antimicrobial studies, Bulletin of the Korean Chemical Society, 33(10), 3191-3195.
  • Chandra, A., Turng, L. S., Gopalan, P., Rowell, R. M., & Gong, S. (2008). Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties, Composites Science and Technology, 68, 768–776. https://doi.org/10.1016/j.compscitech.2007.08.027
  • Chang, J. H., An, Y. U., Cho, D., & Giannelis, E. P. (2003). Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II), Polymer, 44, 3715–3720. https://doi.org/10.1016/S0032-3861(03)00276-3
  • Chao, H. E., Yun, Y. U., Xingfang, H. U., & Larbot, A. (2003). Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder, Journal of the European Ceramic Society, 23(9), 1457–1464. https://doi.org/10.1016/S0955-2219(02)00356-4
  • Cheng, Q., Li, C., Pavlíneket, V., Saha, P., & Wang, H. (2006). Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties, Applied Surface Science, 252(12), 4154–4160. https://doi.org/10.1016/j.apsusc.2005.06.022
  • Crispim, E. G, Piai, J. F., Fajardo, A. R., & Ramos, E. R. F., Nakamura, T. U., Nakamura, C. V., Rubira, A. F., Muniz, E. C. (2012). Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization, Express Polymer Letters, 6, 383-395. https://doi.org/10.3144/expresspolymlett.2012.41
  • Fang, H., Wang, J., Li, L., Xu, L., Wu, Y., Wang, Y., Fei, X., Tian, J., & Li, Y. (2019). A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications, Chemical Engineering Journal, 365, 153-164. https://doi.org/10.1016/j.cej.2019.02.030
  • Feng, O. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of Biomedical Materials Research, 52(4), 662–668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
  • Feng, W., Mu-Sen, L., Yu-Peng, L., & Yong-Xin, Q. (2005). A simple sol–gel technique for preparing hydroxyapatite nanopowders. Materials Letters, 59(8-9), 916-919. https://doi.org/10.1016/j.matlet.2004.08.041
  • Francis, S., Kumar, M., & Varshney, L. (2004). Radiation synthesis of superabsorbent poly(acrylic acid)–carrageenan hydrogels, Radiation Physics and Chemistry, 69(6), 481-486. https://doi.org/10.1016/j.radphyschem.2003.09.004
  • Duman, Ş., & Özkal, B. (2012). Effect of initial powder properties on the granulation behavior of PVA added ZnO powders. 16th International Metallurgical & Materials Congress (IMMC 2012) (ss. 182-189). İstanbul.
  • Haque, F. Z., Nandanwar, R., & Singh, P. (2017). Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds, Optik, 128, 191-200. https://doi.org/10.1016/j.ijleo.2016.10.025
  • Han, K., & Yu, M. (2006). Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation, Journal of Applied Polymer Science, 100, 1588–1593. https://doi.org/10.1002/app.23312
  • Holzwarth, U., & Gibson, N. (2011). The scherrer equation versus the ‘debye-scherrer equation’. Nature Nanotechnology, 6, 534-534. https://doi.org/10.1002/app.23312
  • Guo, Z., Pereira, T., Choi, O., Wang, Y., & Hahn, H.T. (2006). Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties, Journal of Materials Chemistry, 16, 2800–2808. https://doi.org/10.1039/B603020C
  • Jamuna-Thevi, K., Bakar, S: A., Ibrahim, S., & Shahab, N. (2011). Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering, Vacuum, 86(3), 235–241. https://doi.org/10.1016/j.vacuum.2011.06.011
  • Jr Walker, W. J., Reed, J. S., & Verma, S. K. (1999). Influence of slurry parameters on the characteristics of spray‐dried granules, Journal of the American Ceramic Society, 82(7), 1711-1719. https://doi.org/10.1111/j.1151-2916.1999.tb01990.x
  • Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., & Yamamoto, K. (2000). Antibacterial silver-containing silica glass prepared by sol–gel method, Biomaterials, 21(4), 393–398. https://doi.org/10.1016/S0142-9612(99)00201-X
  • Lee, K., Guan, B. H., Zaid, H. M., Soleimani, H., & Ching D. L. C. (2016) Impact of pH on zinc oxide particle size by using sol-gel process. 4th International Conference on Fundamental and Applied Sciences (ICFAS 2016) (pp. 1787), Kuala Lumpur, Malaysia. https://doi.org/10.1063/1.4968109
  • Lei, X. F., Xue, X. X., & Yang, H. (2014). Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr (VI) under visible light, Applied Surface Science, 321, 396-403. https://doi.org/10.1016/j.apsusc.2014.10.045
  • Liu, C., & Shaw, L. (2015). Nanoparticulate materials and core/shell structures derived from wet chemistry methods. In B. Bhushan (Eds.), Encyclopedia of Nanotechnology (ss. 1-21). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9780-1_100906
  • Livage, J., Henry, M., & Sanchez, C. (1988). Sol–gel chemistry of transition metal oxides. Progress in Solid State Chemistry. 18, 259-341. https://doi.org/10.1016/0079-6786(88)90005-2
  • Li, J., Xie, B., Xia, K., Li, Y., Han, J., & Zhao, C. (2018). Enhanced antibacterial activity of silver doped titanium dioxide-chitosan composites under visible light, Materials, 11(8), 1403. https://doi.org/10.3390/ma11081403
  • Mathews, N. R., Morales, E. R., Cortés-Jacome, M. A., & Antonio, J. T. (2009). TiO2 thin films–Influence of annealing temperature on structural, optical and photocatalytic properties, Solar Energy, 83(9), 1499-1508. https://doi.org/10.1016/j.solener.2009.04.008
  • Mogal, S. I., Gandhi, V. G., Mishra, M., Tripathi, S., Shripathi, T., Joshi, P. A., & Shah, D. O. (2014). Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties, Industrial & Engineering Chemistry Research, 53(14), 5749–5758. https://doi.org/10.1021/ie404230q
  • Shenhar, R., Norsten, T.B., & Rotello, V.M. (2005). Polymer-mediated nanoparticle assembly: structural control and applications, Advanced Materials, 17, 657–669. https://doi.org/10.1002/adma.200401291
  • Seery, M. K., George, R., Floris, P., & Pillai, S. C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 189(2-3), 258–263. https://doi.org/10.1016/j.jphotochem.2007.02.010
  • Sun, S. -Q., Sun, B., Zhang, W., & Wang, W. (2008). Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method, Bulletin of Materials Science, 31(1), 61–66. https://doi.org/10.1007/s12034-008-0011-7
  • Swaroop, K., Francis, S., & Somashekarappa, H. M. (2016). Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity, Materials Today: Proceedings, 3, 1792–1798. https://doi.org/10.1016/j.matpr.2016.04.076
  • Varshney, L. (2007). Role of natural polysaccharides in radiation formation of PVA – hydrogel wound dressing. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 255, 343–349. https://doi.org/10.1016/j.nimb.2006.11.101
  • Viet, P. V., Phan, B. T., Mott, D., Maenosono, S., Sang, T. T., Thi, C. M., & Hieu, L. V. (2018). Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method, Journal of Photochemistry and Photobiology A: Chemistry, 352, 106–112. https://doi.org/10.1016/j.jphotochem.2017.10.051
  • Wang, G., (2007). Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol-water mixed solutions, Journal of Molecular Catalysis A: Chemical, 274, 185-191. https://doi.org/10.1016/j.molcata.2007.05.009
  • Wang, Y., Cheng, H., Hao, Y., Ma, J., Li, W., & Cai, S. (1999). Preparation, characterization and photoelectrochemical behaviors of Fe (III)-doped TiO2 nanoparticles, Journal of Materials Science, 34(15), 3721-3729. https://doi.org/10.1023/A:1004611724069
  • Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram, Acta metallurgica, 1(1), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
  • Wu, T., & Ke, Y. (2007). Melting, crystallization and optical behaviors of poly (ethylene terephthalate)-silica/polystyrene nanocomposite films, Thin Solid Films, 515, 5220–5226. https://doi.org/10.1016/j.tsf.2006.12.029
  • Ye, C. Q. (2018). Sol-gel processes of functional powders and films, In C. Saravanan (Eds.), Chemical reactions in inorganic chemistry, (ss. 31-50). InTech: London, UK. https://doi.org/10.5772/intechopen.69588
  • Yildirim, S. (2021). Synthesis, characterization and optical properties of Ag-doped TiO2 nanoparticles by flame spray pyrolysis. Journal of Materials Science: Materials in Electronics, 32, 16346–16358. https://doi.org/10.1007/s10854-021-06187-9
  • Yin, S., Zhang, Q., Saito, F., & Sato, T., (2003). Preparation of visible light-activated titania photocatalyst by mechanochemical method, Chemistry Letters, 32, 358-359. https://doi.org/10.1246/cl.2003.358
  • Zhang, Z., Wan, M., & Mao, Y. (2012). Enhanced photovoltaic effect of TiO2-based composite ZnFe2O4/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 233, 15–19. https://doi.org/10.1016/j.jphotochem.2012.02.009

Antibacterial, optical, and microstructural properties investigations of Ag-doped TiO2 and TiO2/PVA nanocomposite powders

Yıl 2022, Cilt: 12 Sayı: 2, 687 - 698, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1007800

Öz

This research aims to investigate the microstructural, optical, and antibacterial properties of silver (Ag) doped titanium dioxide (TiO2) and titanium dioxide - polyvinyl alcohol (TiO2/PVA) nanocomposite powders synthesized by the sol-gel method. The powder state characterization of the nanocomposite powders was performed with SEM, EDS, XRD, laser particle size, specific surface area, density measurements, UV-vis analysis, and antibacterial tests. SEM examinations demonstrated that titanium dioxide nanoparticles synthesized using PVA dopant have relatively spherical morphology. It detected that pure, Ag-doped TiO2 and Ag-doped TiO2/PVA nanocomposite powders are in an anatase phase by XRD microanalysis. The existence of silver in the nanocomposite powders was detected by EDS analysis, XRD, and UV-vis in peak shifts. The silver and polymer dopings were decreased surface area and density values for the TiO2 system. The addition of Ag to the nanocomposite powders significantly improved the antibacterial properties of the synthesized TiO2 and TiO2/PVA nanocomposite powders against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). However, it determined that the antibacterial activity effect was little on E. coli compared to S. aureus.

Kaynakça

  • Abbad, S., Guergouri, K., Gazaout, S., Djebabra, S., Zertal, A., Barille, R., & Zaabat, M. (2020). Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route, Journal of Environmental Chemical Engineering, 8(3), 103718. https://doi.org/10.1016/j.jece.2020.103718
  • Aksu, A., Taskin, Ö, S., Cetintasoglu, M, E., Korkmaz, N, E., Torlak, C., & Caglar, N. (2020). Preparation of silica based C8 packing material from non-toxic water glass, International Journal of Environment and Geoinformatics, 7(2), 127-131. https://doi.org/10.30897/ijegeo.700599
  • Ali, T., Ahmed, A., Alam, U., Uddin, I., Tripathi, P., & Muneer, M. (2018). Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light, Materials Chemistry and Physics, 212, 325-335. https://doi.org/10.1016/j.matchemphys.2018.03.052
  • Bahadur, J., Agrawalet, S., Panwar, V., & Parveen, A. (2016). Antibacterial properties of silver doped TiO2 nanoparticles synthesized via sol-gel technique, Macromolecular Research, 24(6):488–493. https://doi.org/10.1007/s13233-016-4066-9
  • Bandyopadhyay, A., Sarkar, M., & Bhowmick, A. K. (2005). Poly(vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: synthesis and properties, Journal of Materials Science, 40(19), 5233-5241. https://doi.org/10.1007/s10853-005-4417-y
  • Behnajady, M. A., Modirshahla, N., Shokri, M., & Rad, B. (2008). Enhancement of photocatalytic activity of TiO2 nanoparticles by silver doping: photodeposition versus liquid impregnation methods, Global Nest Journal, 10(1), 1–7. https://doi.org/10.30955/gnj.000485
  • Brinker, C. J., Frye, G. C., Hurd, A. J., & Ashley, C. S. (1991). Fundamentals of sol-gel dip coating, Thin Solid Films, 201(1), 97-108. https://doi.org/10.1016/0040-6090(91)90158-T
  • Bulut, B., & Duman, Ş. (2021). Effects of calcination temperature on hydrothermally synthesized titanium dioxide submicron powders, Konya Journal of Engineering Sciences, 9(3), 676-685. https://doi.org/10.36306/konjes.915062
  • Cha, H. R., Babu, V. R., Rao, K. S. V. K., Kim, Y. H., Mei, S. R., Joo, W. H., & Lee, Y. (2012). Fabrication of amino acid based silver nanocomposite hydrogels from PVA- poly(ac-rylamide-co-acryloyl phenylalan-ine) and their antimicrobial studies, Bulletin of the Korean Chemical Society, 33(10), 3191-3195.
  • Chandra, A., Turng, L. S., Gopalan, P., Rowell, R. M., & Gong, S. (2008). Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties, Composites Science and Technology, 68, 768–776. https://doi.org/10.1016/j.compscitech.2007.08.027
  • Chang, J. H., An, Y. U., Cho, D., & Giannelis, E. P. (2003). Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II), Polymer, 44, 3715–3720. https://doi.org/10.1016/S0032-3861(03)00276-3
  • Chao, H. E., Yun, Y. U., Xingfang, H. U., & Larbot, A. (2003). Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder, Journal of the European Ceramic Society, 23(9), 1457–1464. https://doi.org/10.1016/S0955-2219(02)00356-4
  • Cheng, Q., Li, C., Pavlíneket, V., Saha, P., & Wang, H. (2006). Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties, Applied Surface Science, 252(12), 4154–4160. https://doi.org/10.1016/j.apsusc.2005.06.022
  • Crispim, E. G, Piai, J. F., Fajardo, A. R., & Ramos, E. R. F., Nakamura, T. U., Nakamura, C. V., Rubira, A. F., Muniz, E. C. (2012). Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization, Express Polymer Letters, 6, 383-395. https://doi.org/10.3144/expresspolymlett.2012.41
  • Fang, H., Wang, J., Li, L., Xu, L., Wu, Y., Wang, Y., Fei, X., Tian, J., & Li, Y. (2019). A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications, Chemical Engineering Journal, 365, 153-164. https://doi.org/10.1016/j.cej.2019.02.030
  • Feng, O. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of Biomedical Materials Research, 52(4), 662–668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
  • Feng, W., Mu-Sen, L., Yu-Peng, L., & Yong-Xin, Q. (2005). A simple sol–gel technique for preparing hydroxyapatite nanopowders. Materials Letters, 59(8-9), 916-919. https://doi.org/10.1016/j.matlet.2004.08.041
  • Francis, S., Kumar, M., & Varshney, L. (2004). Radiation synthesis of superabsorbent poly(acrylic acid)–carrageenan hydrogels, Radiation Physics and Chemistry, 69(6), 481-486. https://doi.org/10.1016/j.radphyschem.2003.09.004
  • Duman, Ş., & Özkal, B. (2012). Effect of initial powder properties on the granulation behavior of PVA added ZnO powders. 16th International Metallurgical & Materials Congress (IMMC 2012) (ss. 182-189). İstanbul.
  • Haque, F. Z., Nandanwar, R., & Singh, P. (2017). Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds, Optik, 128, 191-200. https://doi.org/10.1016/j.ijleo.2016.10.025
  • Han, K., & Yu, M. (2006). Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation, Journal of Applied Polymer Science, 100, 1588–1593. https://doi.org/10.1002/app.23312
  • Holzwarth, U., & Gibson, N. (2011). The scherrer equation versus the ‘debye-scherrer equation’. Nature Nanotechnology, 6, 534-534. https://doi.org/10.1002/app.23312
  • Guo, Z., Pereira, T., Choi, O., Wang, Y., & Hahn, H.T. (2006). Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties, Journal of Materials Chemistry, 16, 2800–2808. https://doi.org/10.1039/B603020C
  • Jamuna-Thevi, K., Bakar, S: A., Ibrahim, S., & Shahab, N. (2011). Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering, Vacuum, 86(3), 235–241. https://doi.org/10.1016/j.vacuum.2011.06.011
  • Jr Walker, W. J., Reed, J. S., & Verma, S. K. (1999). Influence of slurry parameters on the characteristics of spray‐dried granules, Journal of the American Ceramic Society, 82(7), 1711-1719. https://doi.org/10.1111/j.1151-2916.1999.tb01990.x
  • Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., & Yamamoto, K. (2000). Antibacterial silver-containing silica glass prepared by sol–gel method, Biomaterials, 21(4), 393–398. https://doi.org/10.1016/S0142-9612(99)00201-X
  • Lee, K., Guan, B. H., Zaid, H. M., Soleimani, H., & Ching D. L. C. (2016) Impact of pH on zinc oxide particle size by using sol-gel process. 4th International Conference on Fundamental and Applied Sciences (ICFAS 2016) (pp. 1787), Kuala Lumpur, Malaysia. https://doi.org/10.1063/1.4968109
  • Lei, X. F., Xue, X. X., & Yang, H. (2014). Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr (VI) under visible light, Applied Surface Science, 321, 396-403. https://doi.org/10.1016/j.apsusc.2014.10.045
  • Liu, C., & Shaw, L. (2015). Nanoparticulate materials and core/shell structures derived from wet chemistry methods. In B. Bhushan (Eds.), Encyclopedia of Nanotechnology (ss. 1-21). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9780-1_100906
  • Livage, J., Henry, M., & Sanchez, C. (1988). Sol–gel chemistry of transition metal oxides. Progress in Solid State Chemistry. 18, 259-341. https://doi.org/10.1016/0079-6786(88)90005-2
  • Li, J., Xie, B., Xia, K., Li, Y., Han, J., & Zhao, C. (2018). Enhanced antibacterial activity of silver doped titanium dioxide-chitosan composites under visible light, Materials, 11(8), 1403. https://doi.org/10.3390/ma11081403
  • Mathews, N. R., Morales, E. R., Cortés-Jacome, M. A., & Antonio, J. T. (2009). TiO2 thin films–Influence of annealing temperature on structural, optical and photocatalytic properties, Solar Energy, 83(9), 1499-1508. https://doi.org/10.1016/j.solener.2009.04.008
  • Mogal, S. I., Gandhi, V. G., Mishra, M., Tripathi, S., Shripathi, T., Joshi, P. A., & Shah, D. O. (2014). Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties, Industrial & Engineering Chemistry Research, 53(14), 5749–5758. https://doi.org/10.1021/ie404230q
  • Shenhar, R., Norsten, T.B., & Rotello, V.M. (2005). Polymer-mediated nanoparticle assembly: structural control and applications, Advanced Materials, 17, 657–669. https://doi.org/10.1002/adma.200401291
  • Seery, M. K., George, R., Floris, P., & Pillai, S. C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 189(2-3), 258–263. https://doi.org/10.1016/j.jphotochem.2007.02.010
  • Sun, S. -Q., Sun, B., Zhang, W., & Wang, W. (2008). Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method, Bulletin of Materials Science, 31(1), 61–66. https://doi.org/10.1007/s12034-008-0011-7
  • Swaroop, K., Francis, S., & Somashekarappa, H. M. (2016). Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity, Materials Today: Proceedings, 3, 1792–1798. https://doi.org/10.1016/j.matpr.2016.04.076
  • Varshney, L. (2007). Role of natural polysaccharides in radiation formation of PVA – hydrogel wound dressing. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 255, 343–349. https://doi.org/10.1016/j.nimb.2006.11.101
  • Viet, P. V., Phan, B. T., Mott, D., Maenosono, S., Sang, T. T., Thi, C. M., & Hieu, L. V. (2018). Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method, Journal of Photochemistry and Photobiology A: Chemistry, 352, 106–112. https://doi.org/10.1016/j.jphotochem.2017.10.051
  • Wang, G., (2007). Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol-water mixed solutions, Journal of Molecular Catalysis A: Chemical, 274, 185-191. https://doi.org/10.1016/j.molcata.2007.05.009
  • Wang, Y., Cheng, H., Hao, Y., Ma, J., Li, W., & Cai, S. (1999). Preparation, characterization and photoelectrochemical behaviors of Fe (III)-doped TiO2 nanoparticles, Journal of Materials Science, 34(15), 3721-3729. https://doi.org/10.1023/A:1004611724069
  • Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram, Acta metallurgica, 1(1), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
  • Wu, T., & Ke, Y. (2007). Melting, crystallization and optical behaviors of poly (ethylene terephthalate)-silica/polystyrene nanocomposite films, Thin Solid Films, 515, 5220–5226. https://doi.org/10.1016/j.tsf.2006.12.029
  • Ye, C. Q. (2018). Sol-gel processes of functional powders and films, In C. Saravanan (Eds.), Chemical reactions in inorganic chemistry, (ss. 31-50). InTech: London, UK. https://doi.org/10.5772/intechopen.69588
  • Yildirim, S. (2021). Synthesis, characterization and optical properties of Ag-doped TiO2 nanoparticles by flame spray pyrolysis. Journal of Materials Science: Materials in Electronics, 32, 16346–16358. https://doi.org/10.1007/s10854-021-06187-9
  • Yin, S., Zhang, Q., Saito, F., & Sato, T., (2003). Preparation of visible light-activated titania photocatalyst by mechanochemical method, Chemistry Letters, 32, 358-359. https://doi.org/10.1246/cl.2003.358
  • Zhang, Z., Wan, M., & Mao, Y. (2012). Enhanced photovoltaic effect of TiO2-based composite ZnFe2O4/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 233, 15–19. https://doi.org/10.1016/j.jphotochem.2012.02.009
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şeyma Duman 0000-0002-6685-5656

Büşra Bulut 0000-0002-9946-6729

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 10 Ekim 2021
Kabul Tarihi 26 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Duman, Ş., & Bulut, B. (2022). Antibacterial, optical, and microstructural properties investigations of Ag-doped TiO2 and TiO2/PVA nanocomposite powders. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 687-698. https://doi.org/10.17714/gumusfenbil.1007800