Araştırma Makalesi
BibTex RIS Kaynak Göster

Kumlu zeminden oluşan bir şevin stabilitesine şev açısı ve yüksekliğinin etkisinin sayısal olarak incelenmesi

Yıl 2022, Cilt: 12 Sayı: 2, 664 - 675, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1051741

Öz

İnşaat mühendisliği uygulamalarında şev stabilitesi sorunları çok yaygın olup özellikle baraj, otoyol, tünel vb. projelerin uygulamalarında sıklıkla karşılaşılmaktadır. Bu çalışmada, granüler (daneli) sıkı bir zemin tabakası üzerine oturan gevşek daneli bir zemin tabakasının olduğu bir zemin profili esas alınarak şev yüksekliği (H) ve şev açısı (β) değişiminin şev duraylılığı üzerindeki etkileri incelenmiştir. Bu amaçla tam ölçekli bir şevde çok sayıda sonlu elemanlar analizi yapılmıştır. Analizlerde sonlu elemanlar yöntemi (FEM) ile çalışan Plaxis 2D programı kullanılmıştır. İki granüler zemin, gelişmiş bir elastoplastic gerilme-şekil değiştirme modeli olan doğrusal olmayan bir pekleşen zemin modeli (hardening soil model) ile tanımlanmıştır. Altı farklı şev açısı incelenmiş olup her açı için altı farklı şev yüksekliği seçilmiştir. Toplamda on iki seri sayısal analiz yapılmıştır. İlk altı seride şevin tepesinde herhangi bir sürşarj yükü olmadığı varsayılmıştır. İkinci altı seride ise sürşarj yükünün etkisi de araştırılmıştır. Yapılan analizler sonucunda, şev yüksekliği ve eğim açısının şevin güvenlik katsayısı (FS) üzerinde önemli etkileri olduğu bulunmuştur. Analiz sonuçlarına göre, yenilme yüzeylerinin çoğunun dairesel olduğu ve yüzeysel (sığ) kayma olarak sınıflandırılabileceği görülmüştür. Şev yüksekliğinin ve şev açısının artması ile FS’nin azaldığı gözlemlenmiş olup bunun tersi durumda ise FS’nin arttığı görülmektedir. İlaveten, gevşek daneli zeminlerden oluşan şevlerin FS'sini kolayca tahmin etmek için eğriler ve çizelgeler önerilmiştir.

Kaynakça

  • Akbaş, B. (2015). Probabilistic slope stability analysis using limit equilibrium, finite element and random finite element methods [Master's thesis, Middle East Technical University].
  • Aksoy, H. S., Edan, O. M., & Taher, N. R. (2021a). Shear strength parameters of sand reinforced with polypropylene fiber. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(4), 900-907. https://doi.org/10.35414/akufemubid.888613
  • Aksoy, H. S., Taher, N. R., & Awlla, H. A. (2021b). Shear strength parameters of sand-tire chips mixtures. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(3), 713-720. https://doi.org/10.17714/gumusfenbil.865490
  • Albataineh, N. (2006). Slope stability analysis using 2D and 3D methods [Doctoral dissertation, University of Akron].
  • Alemdag, S., Kaya, A., Karadag, M., Gurocak, Z., & Bulut, F. 2015. Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: an example of the Kalebasi district (NE Turkey). Journal of African Earth Sciences, 106, 134-146. https://doi.org/10.1016/j.jafrearsci.2015.03.010
  • Anvari, S. M., Shooshpasha, I., & Kutanaei, S. S. (2017). Effect of granulated rubber on shear strength of fine-grained sand. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 936-944. https://doi.org/10.1016/j.jrmge.2017.03.008
  • Awla, H. A. & Karaton, M. (2021). Full 3D modeling of soil structure interaction by using solid finite elements. Journal of Engineering Research. https://doi.org/10.36909/jer.10683
  • Awlla, H. A., Taher, N. R., & Mawlood, Y. I. (2020). Effect of fixed-base and soil structure interaction on the dynamic responses of steel structures. International Journal of Emerging Trends in Engineering Research, 8(9), 6298-6305. https://doi.org/10.30534/ijeter/2020/223892020
  • Azadmanesh, M., & Arafati, N. (2012). A comparison on slope stability analysis of aydoghmoosh earth dam by limit equilibrium, finite element and finite difference methods. International Journal of Civil Engineering and Building Materials (ISSN 2223-487X), 2(3), 115-123.
  • Bolton, H., Heymann, G., & Groenwold, A. (2003). Global search for critical failure surface in slope stability analysis. Engineering Optimization, 35(1), 51-65. https://doi.org/10.1080/0305215031000064749
  • Boutrup, E., & Lovell, C. (1980). Searching techniques in slope stability analysis. Engineering Geology, 16(1-2), 51-61. https://doi.org/10.1016/0013-7952(80)90006-X
  • Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Waterman, D., Chesaru, A., & Bonnier, P. G. (2016). Plaxis 2016. Plaxis bv, the Netherlands. Cheng, Y. M. (2003). Location of critical failure surface and some further studies on slope stability analysis. Computers and Geotechnics, 30(3), 255-267. https://doi.org/10.1016/S0266-352X(03)00012-0
  • Dawson, E., Roth, W., & Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique, 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  • Djilali, S., Touaoula, T. M., & Miri, S. E. H. (2017). A heroin epidemic model: very general non linear incidence, treat-age, and global stability. Acta Applicandae Mathematicae, 152, 171-194. https://doi.org/10.1007/s10440-017-0117-2
  • Goh, A. T. (1999). Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Canadian Geotechnical Journal, 36(2), 382-391. https://doi.org/10.1139/t98-110
  • Gör, M. (2021). Limit denge analizi (Bishop Yöntemi) ile kütle hareketinin mekanizması ve önlem yapısının analizi: Van ili örneği. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 597-608. https://doi.org/10.17714/gumusfenbil.850560
  • Gör, M., Taher N. R., Aksoy H. S., & Awlla, H. A. (2022). Effect of geogrid inclusion on the slope stability. V-International European Conference on Interdisciplinary Scientific Research (pp. 275-286). Valencia, Spain.
  • Griffiths, D., & Lane, P. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
  • Halder, A., Nandi, S., & Bandyopadhyay, K. (2020). A comparative study on slope stability analysis by different approaches. In Geotechnical Characterization and Modelling (pp. 285-293). Springer, Singapore. https://doi.org/10.1007/978-981-15-6086-6_23
  • Huang, Y. H. (1983). Stability analysis of earth slopes. Van Nostrand Reinhold Company, New York. Huvaj, N., & Oğuz, E. A. (2018). Probabilistic slope stability analysis: a case study. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(5), 1458-1465. https://doi.org/10.16984/saufenbilder.430032
  • Kanik, M., & Ersoy, H., (2019). Evaluation of the engineering geological investigation of the Ayvali dam site (NE Turkey). Arabian Journal of Geosciences, 12(3), 1-13. https://doi.org/10.1007/s12517-019-4243-1
  • Kaya, A., Alemdağ, S., Dağ, S., & Gürocak, Z., (2016). Stability assessment of high-steep cut slope debris on a landslide (Gumushane, NE Turkey). Bulletin of Engineering Geology and the Environment, 75(1), 89-99. https://doi.org/10.1007/s10064-015-0753-6
  • Keskin, İ., Ahmed, M. Y., Taher, N. R., Gör, M., & Abdulsamad, B. Z. (2022). An evaluation on effects of surface explosion on underground tunnel; availability of ABAQUS Finite element method. Tunnelling and Underground Space Technology, 120, 104306. https://doi.org/10.1016/j.tust.2021.104306
  • Khabbaz, H., Fatahi, B., & Nucifora, C. (2012). Finite element methods against limit equilibrium approaches for slope stability analysis. Australia New Zealand Conference on Geomechanics, Geomechanical Society and New Zealand Geotechnical Society.
  • Li, W., Kwok, C. Y., & Senetakis, K. (2020). Effects of inclusion of granulated rubber tires on the mechanical behaviour of a compressive sand. Canadian Geotechnical Journal, 57(5), 763-769. https://doi.org/10.1139/cgj-2019-0112
  • Jha A.K., Madhav, M.R., & Reddy, G.V.N. (2018). Analysis of effect of reinforcement on stability of slopes and reinforcement length optimization. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 49(4).
  • Moayedi, H., Tien Bui, D., Gör, M., Pradhan, B. & Jaafari, A. (2019). The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes. ISPRS International Journal of Geo-Information, 8(9), 391. https://doi.org/10.3390/ijgi8090391
  • Pourkhosravani, A., & Kalantari, B. (2011). A review of current methods for slope stability evaluation. Electronic Journal of Geotechnical Engineering, 16, 1245-1254.
  • Sharma, A., Raju, P. T., Sreedhar, V., & Mahiyar, H. (2019). Slope stability analysis of steep-reinforced soil slopes using finite element method. In Geotechnical Applications (pp. 163-171). Springer, Singapore. https://doi.org/10.1007/978-981-13-0368-5_18
  • Shepheard, C. J., Vardanega, P. J., Holcombe, E. A., & Michaelides, K. (2017). Analysis of design choices for a slope stability scenario in the humid tropics. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 171(1), (pp. 37-52). Thomas Telford Ltd. https://doi.org/10.1680/jensu.16.00081
  • Shiferaw, H. M. (2021). Study on the influence of slope height and angle on the factor of safety and shape of failure of slopes based on strength reduction method of analysis. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 1-11. https://doi.org/10.1186/s43088-021-00115-w
  • Siegel, R. A. (1975). Computer analysis of general slope stability problems. Purdue University Libraries. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2243&context=jtrp
  • Taşkıran, T., Yavuz, V. S., & Keskin, M. S. (2015). Şev stabilitesinin iki ve üç boyutlu modeller ile incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 6(1), 1-8.
  • Tien Bui, D., MoayedI, H., Gör, M., Jaafari, A., & Foong, L. K. (2019). Predicting slope stability failure through machine learning paradigms. ISPRS International Journal of Geo-Information, 8(9), 395. https://doi.org/10.3390/ijgi8090395
  • Yang, X. L., & Huang, F. (2009). Slope stability analysis considering joined influences of nonlinearity and dilation. Journal of Central South University of Technology, 16(2), 292-296. https://doi.org/10.1007/s11771-009-0050-2
  • Zolfaghari, A. R., Heath, A. C., & McCombie, P. F. (2005). Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Computers and Geotechnics, 32(3), 139-152. https://doi.org/10.1016/j.compgeo.2005.02.001

Numerical investigation of the effect of slope angle and height on the stability of a slope composed of sandy soil

Yıl 2022, Cilt: 12 Sayı: 2, 664 - 675, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1051741

Öz

Slope stability issues are very frequently in civil engineering applications and are commonly encountered in huge and significant projects such as dams, highways and tunnels, etc. This study examines the impact of slope height (H) and slope angle (β) on the stability of loose granular soil slope underlined by dense granular soil layer. For this purpose, a number of finite element analyses were conducted on a full-scale soil slope. The computer program Plaxis 2D code was used which is based on the finite element method (FEM). The granular soils were described by non-linear hardening soil model, which is an advanced elastoplastic stress-strain constitutive soil model. Six different slope angles were investigated and for each angle, six different heights were chosen. In total, twelve series of numerical analyses were executed. In the first six series, it was assumed that there is no surcharge load on the top of the slope. In the second six series, the effect of surcharge load was also investigated. According to numerical analysis results, it was found that the slope height and slope angle have a considerable effect on the safety factor (FS) of the slope. It was also noticed that most of the failure surfaces of the slope were circular and classified as face slope failure. It was observed that by increasing slope height and the slope angle, the FS of the slope decreases and vice versa. In addition, curves and charts have been proposed to easily estimate the FS of loose granular soil slope.

Kaynakça

  • Akbaş, B. (2015). Probabilistic slope stability analysis using limit equilibrium, finite element and random finite element methods [Master's thesis, Middle East Technical University].
  • Aksoy, H. S., Edan, O. M., & Taher, N. R. (2021a). Shear strength parameters of sand reinforced with polypropylene fiber. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(4), 900-907. https://doi.org/10.35414/akufemubid.888613
  • Aksoy, H. S., Taher, N. R., & Awlla, H. A. (2021b). Shear strength parameters of sand-tire chips mixtures. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(3), 713-720. https://doi.org/10.17714/gumusfenbil.865490
  • Albataineh, N. (2006). Slope stability analysis using 2D and 3D methods [Doctoral dissertation, University of Akron].
  • Alemdag, S., Kaya, A., Karadag, M., Gurocak, Z., & Bulut, F. 2015. Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: an example of the Kalebasi district (NE Turkey). Journal of African Earth Sciences, 106, 134-146. https://doi.org/10.1016/j.jafrearsci.2015.03.010
  • Anvari, S. M., Shooshpasha, I., & Kutanaei, S. S. (2017). Effect of granulated rubber on shear strength of fine-grained sand. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 936-944. https://doi.org/10.1016/j.jrmge.2017.03.008
  • Awla, H. A. & Karaton, M. (2021). Full 3D modeling of soil structure interaction by using solid finite elements. Journal of Engineering Research. https://doi.org/10.36909/jer.10683
  • Awlla, H. A., Taher, N. R., & Mawlood, Y. I. (2020). Effect of fixed-base and soil structure interaction on the dynamic responses of steel structures. International Journal of Emerging Trends in Engineering Research, 8(9), 6298-6305. https://doi.org/10.30534/ijeter/2020/223892020
  • Azadmanesh, M., & Arafati, N. (2012). A comparison on slope stability analysis of aydoghmoosh earth dam by limit equilibrium, finite element and finite difference methods. International Journal of Civil Engineering and Building Materials (ISSN 2223-487X), 2(3), 115-123.
  • Bolton, H., Heymann, G., & Groenwold, A. (2003). Global search for critical failure surface in slope stability analysis. Engineering Optimization, 35(1), 51-65. https://doi.org/10.1080/0305215031000064749
  • Boutrup, E., & Lovell, C. (1980). Searching techniques in slope stability analysis. Engineering Geology, 16(1-2), 51-61. https://doi.org/10.1016/0013-7952(80)90006-X
  • Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Waterman, D., Chesaru, A., & Bonnier, P. G. (2016). Plaxis 2016. Plaxis bv, the Netherlands. Cheng, Y. M. (2003). Location of critical failure surface and some further studies on slope stability analysis. Computers and Geotechnics, 30(3), 255-267. https://doi.org/10.1016/S0266-352X(03)00012-0
  • Dawson, E., Roth, W., & Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique, 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  • Djilali, S., Touaoula, T. M., & Miri, S. E. H. (2017). A heroin epidemic model: very general non linear incidence, treat-age, and global stability. Acta Applicandae Mathematicae, 152, 171-194. https://doi.org/10.1007/s10440-017-0117-2
  • Goh, A. T. (1999). Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Canadian Geotechnical Journal, 36(2), 382-391. https://doi.org/10.1139/t98-110
  • Gör, M. (2021). Limit denge analizi (Bishop Yöntemi) ile kütle hareketinin mekanizması ve önlem yapısının analizi: Van ili örneği. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 597-608. https://doi.org/10.17714/gumusfenbil.850560
  • Gör, M., Taher N. R., Aksoy H. S., & Awlla, H. A. (2022). Effect of geogrid inclusion on the slope stability. V-International European Conference on Interdisciplinary Scientific Research (pp. 275-286). Valencia, Spain.
  • Griffiths, D., & Lane, P. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
  • Halder, A., Nandi, S., & Bandyopadhyay, K. (2020). A comparative study on slope stability analysis by different approaches. In Geotechnical Characterization and Modelling (pp. 285-293). Springer, Singapore. https://doi.org/10.1007/978-981-15-6086-6_23
  • Huang, Y. H. (1983). Stability analysis of earth slopes. Van Nostrand Reinhold Company, New York. Huvaj, N., & Oğuz, E. A. (2018). Probabilistic slope stability analysis: a case study. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(5), 1458-1465. https://doi.org/10.16984/saufenbilder.430032
  • Kanik, M., & Ersoy, H., (2019). Evaluation of the engineering geological investigation of the Ayvali dam site (NE Turkey). Arabian Journal of Geosciences, 12(3), 1-13. https://doi.org/10.1007/s12517-019-4243-1
  • Kaya, A., Alemdağ, S., Dağ, S., & Gürocak, Z., (2016). Stability assessment of high-steep cut slope debris on a landslide (Gumushane, NE Turkey). Bulletin of Engineering Geology and the Environment, 75(1), 89-99. https://doi.org/10.1007/s10064-015-0753-6
  • Keskin, İ., Ahmed, M. Y., Taher, N. R., Gör, M., & Abdulsamad, B. Z. (2022). An evaluation on effects of surface explosion on underground tunnel; availability of ABAQUS Finite element method. Tunnelling and Underground Space Technology, 120, 104306. https://doi.org/10.1016/j.tust.2021.104306
  • Khabbaz, H., Fatahi, B., & Nucifora, C. (2012). Finite element methods against limit equilibrium approaches for slope stability analysis. Australia New Zealand Conference on Geomechanics, Geomechanical Society and New Zealand Geotechnical Society.
  • Li, W., Kwok, C. Y., & Senetakis, K. (2020). Effects of inclusion of granulated rubber tires on the mechanical behaviour of a compressive sand. Canadian Geotechnical Journal, 57(5), 763-769. https://doi.org/10.1139/cgj-2019-0112
  • Jha A.K., Madhav, M.R., & Reddy, G.V.N. (2018). Analysis of effect of reinforcement on stability of slopes and reinforcement length optimization. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 49(4).
  • Moayedi, H., Tien Bui, D., Gör, M., Pradhan, B. & Jaafari, A. (2019). The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes. ISPRS International Journal of Geo-Information, 8(9), 391. https://doi.org/10.3390/ijgi8090391
  • Pourkhosravani, A., & Kalantari, B. (2011). A review of current methods for slope stability evaluation. Electronic Journal of Geotechnical Engineering, 16, 1245-1254.
  • Sharma, A., Raju, P. T., Sreedhar, V., & Mahiyar, H. (2019). Slope stability analysis of steep-reinforced soil slopes using finite element method. In Geotechnical Applications (pp. 163-171). Springer, Singapore. https://doi.org/10.1007/978-981-13-0368-5_18
  • Shepheard, C. J., Vardanega, P. J., Holcombe, E. A., & Michaelides, K. (2017). Analysis of design choices for a slope stability scenario in the humid tropics. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 171(1), (pp. 37-52). Thomas Telford Ltd. https://doi.org/10.1680/jensu.16.00081
  • Shiferaw, H. M. (2021). Study on the influence of slope height and angle on the factor of safety and shape of failure of slopes based on strength reduction method of analysis. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 1-11. https://doi.org/10.1186/s43088-021-00115-w
  • Siegel, R. A. (1975). Computer analysis of general slope stability problems. Purdue University Libraries. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2243&context=jtrp
  • Taşkıran, T., Yavuz, V. S., & Keskin, M. S. (2015). Şev stabilitesinin iki ve üç boyutlu modeller ile incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 6(1), 1-8.
  • Tien Bui, D., MoayedI, H., Gör, M., Jaafari, A., & Foong, L. K. (2019). Predicting slope stability failure through machine learning paradigms. ISPRS International Journal of Geo-Information, 8(9), 395. https://doi.org/10.3390/ijgi8090395
  • Yang, X. L., & Huang, F. (2009). Slope stability analysis considering joined influences of nonlinearity and dilation. Journal of Central South University of Technology, 16(2), 292-296. https://doi.org/10.1007/s11771-009-0050-2
  • Zolfaghari, A. R., Heath, A. C., & McCombie, P. F. (2005). Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Computers and Geotechnics, 32(3), 139-152. https://doi.org/10.1016/j.compgeo.2005.02.001
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nichirvan Ramadhan Taher 0000-0002-1295-080X

Mesut Gör 0000-0002-5463-9278

Hüseyin Suha Aksoy 0000-0003-0564-457X

Halmat Ahmed 0000-0002-0545-0962

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 31 Aralık 2021
Kabul Tarihi 22 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Taher, N. R., Gör, M., Aksoy, H. S., Ahmed, H. (2022). Numerical investigation of the effect of slope angle and height on the stability of a slope composed of sandy soil. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 664-675. https://doi.org/10.17714/gumusfenbil.1051741