Regional solar and wind energy characteristics and it’s energy potential in northwest of Turkey
Yıl 2022,
Cilt: 12 Sayı: 2, 527 - 538, 15.04.2022
Tuğba Biçen
,
Aslı Ayhan Arslan
,
Ali Vardar
Öz
In this study, solar and wind energy properties and energy potentials around the Marmara Sea (North-West Turkey) are discussed from the perspective of climate change. The meteorological data of thirteen stations in this region were used. According to the results of 58 years between 1960 and 2017; temperature values of all stations increased between 0.8 and 1.7 oC. This increase is considered to be related with climate change. In this context, the importance of renewable energy sources such as solar and wind is increasing. The solar energy potential in the region is estimated to be between 1108.4 and 1488.9 kWhm-2yr-1 and the wind energy potential is between 1005.5 and 7007.9 kWhm-2yr-1. The evaluation of these energy reserves is very important in the prevention of climatic processes caused by fossil energies.
Kaynakça
- Abdullah, M.A., Agalgaonkar, A.P., & Muttaqi, K.M. (2014). Climate change mitigation with the integration of renewable energy resources in the electricity grid of New South Wales, Australia. Renewable Energy, 66, 305-313. https://dx.doi.org/10.1016/j.renene.2013.12.014
- Al-Abbadi, N.M. (2005). Wind energy resource assessment for five locations in Saudi Arabia. Renewable Energy, 30(10), 1489-1499. https://doi.org/10.1016/j.renene.2004.11.013
- Amponsah, N.Y., Troldborg, M., Kington, B., Aalders, I., & Hough, R.L. (2014). Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renewable and Sustainable Energy Reviews, 39, 461-475. https://doi.org/10.1016/j.rser.2014.07.087
- Bose, B.K. (2010). Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 4(1), 6-17. https://doi.org/10.1109/MIE.2010.935860.
- Boyle, G. (2004). Renewable energy: power for a sustainable future (2nd ed.). United Kingdom: Oxford University Press.
- Carbon Trust. The carbon emissions generated in all that we consume. (2019, January 29) https://www.carbontrust.com/media/84936/ctc603-the-carbon-emissions-generated-in-all-that-we-consume.pdf
Chatzimouratidis, A.I., & Pilavachi, P.A. (2008). Multicriteria evaluation of power plants impacts on the living standard using the analytic hierarchy process. Energy Policy, 36(3), 1074-89. https://doi.org/10.1016/j.enpol.2007.11.028
- Covenant of Mayors (2010). Technical annex to the seap template instructions document: the emission factors. https://www.eumayors.eu/IMG/pdf/technical_annex_en.pdf
- Elsayed, M.A., Matthews, R., & Mortimer, N.D. (2003). Carbon and energy balances for a range of biofuels options. Project Number B/B6/00784/REP URN 03/836. Resources Research Unit, Sheffield Hallam University. https://www.researchgate.net/publication/235704342_Carbon_and_Energy_Balances_for_a_Range_of_Biofuels_Options
- Gasch R, Twele, J (2011). Windkraftanlagen. (7th ed.) Wiesbaden: Vieweg+Teubner Verlag, Springer Fachmedien; 587 p.
- Google Earth (2019). (2019, January 23). https://www.google.com.tr/intl/tr/earth/download/ gep/agree.html
GSA-Global Solar Atlas. (2022, January 15). https://globalsolaratlas.info/map?c=48.134246,11.431274, 11&s=48.131726, 11.572723&m=site
- GWA-Global Wind Atlas. (2022, January 15). https://globalwindatlas.info/
- Hernandez-Ochoa, I.M., Asseng, S., Kassie, B.T., Xiong, W., Robertson, R., Luz Pequeno, D.N., Sonder, K., Reynolds, M., Babar, M. D., Miland, A. M., & Hoogenboom, G. (2018). Climate change impact on Mexico wheat production. Agricultural and Forest Meteorology, 263, 373-387. https://doi.org/10.1016/j.agrformet.2018.09.008
Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30(11-12), 2042-56. https://doi.org/10.1016/j.energy.2004.07.020
- İlkiliç, C. (2012). Wind energy and assessment of wind energy potential in Turkey. Renewable and Sustainable Energy Reviews, 16, 1165-1173. https://doi.org/10.1016/j.rser.2011.11.021
- Jungbluth, N. (2005). Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Progress in Photovoltaics: Research and Applications, 13(5), 429-46. https://doi.org/10.1002/pip.614
- Klug, H. (2001). Basic Course in Wind Energy. German Wind Energy Institute (DEWI), Istanbul.
- Lenzen, M. (1999). Greenhouse gas analysis of solar-thermal electricity generation. Solar Energy, 65(6), 353-68. https://doi.org/10.1016/S0140-6701(99)98999-3
- Lenzen, M. (2008). Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energy Conversion and Management, 49(8), 2178-99. https://doi.org/10.1016/j.enconman.2008.01.033
- Longa, D. F., & Zwaan, B. V. (2017). Do Kenya’s climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy? Renewable Energy, 113, 1559-1568. https://doi.org/10.1016/j.renene.2017.06.026
- Mentens, K. (2011). Photovoltaic. (1st ed.) München: Carl Hanser Verlag.
- Nasa. Global Temperature. Global Climate Change. (2017, April 23) https://climate.nasa.gov/vital-signs/global-temperature/
Nasa. How climate is changing? Global Climate Change. (2019, January 29) https://climate.nasa.gov/effects/
- Patlitzianas, K.D., Kagiannas, A.G., Askounis, D.T., & Psarras, J. (2005). The policy perspective for RES development in the new member states of the EU. Renewable Energy, 30, 477-492. https://doi.org/10.1016/j.renene.2004.07.012
- Pelletier, J.D. (2006). The sensitivity of playa windblown-dust emissions to climatic and anthropogenic change. Journal of Arid Environments, 66(1), 62-75. https://doi.org/10.1016/j.jaridenv.2005.10.010
- Santamouris, M. (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 82,100-113. https://doi.org/10.1016/j.enbuild.2014.07.022
- Soysal, M.İ. (2000). Principles of Biometry. Tekirdağ: Trakya University Faculty of Agriculture Paper No: 95; 332 p.
- Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P.M. (Eds.). (2013). Climate Change 2013: The Physical Science Basis. Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). (1th ed.) Cambridge University press.
- TSEM-Turkey Solar Energy Map. Republic of Turkey Ministry of Energy and Natural Resources (2022, January 15). https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-gunes
- TSMS- Turkish State Meteorological Service. (2008, March 12). www.meteor.gov.tr
- TUIK- Turkish Statistical Institute. National Population Census. (2018, October 22). http://www.turkstat.gov.tr
Varun., Prakash, R., & Bhat, I.K. (2012). Life cycle greenhouse gas emissions estimation for small hydropower schemes in India. Energy, 44(1), 498-508. https://doi.org/10.1016/j.energy.2012.05.052
- Velmurugan, V., & Sridhar, K. (2008). Prospects and scopes of the solar pond: a detailed review. Renewable and Sustainable Energy Reviews, 12(8), 2253-63. https://doi.org/10.1016/j.rser.2007.03.011
- Vindmolleindustrien. Danish Wind Industry Association, Guide Tour. (2019, January 10). http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/ en/stat/unitsw.htm
- Xie, W., Huang, J., Wang, J., Cui, Q., Robertson, R., & Chen, K. (2020). Climate change impacts on China's agriculture: The responses from market and trade. China Economic Review,62, 101256. https://doi.org/10.1016/j.chieco.2018.11.007
- Zahoransky, R., Allelein, H.J., Bollin, E., Oehler, H., & Schelling, U. (2010). Energietechnik Systeme zur Energieumwandlung (5th ed.) Wiesbaden; Vieweg+Teubner Verlag, Springer Fachmedien.
Türkiye'nin kuzeybatısındaki bölgesel güneş-rüzgâr enerjisi karakteristikleri ve enerji potansiyeli
Yıl 2022,
Cilt: 12 Sayı: 2, 527 - 538, 15.04.2022
Tuğba Biçen
,
Aslı Ayhan Arslan
,
Ali Vardar
Öz
Bu çalışmada, Türkiye’nin Marmara Denizi çevresinde (North-West Turkey) güneş ve rüzgâr enerjisi karakteristikleri ile enerji potansiyelleri, iklim değişikliği perspektifinden ele alınmıştır. Bu bölgede bulunan on üç istasyonunun meteorolojik verilerinden yararlanılmıştır. 1960 ile 2017 yılları arasındaki 58 yıllık ölçüm sonuçlarına göre; istasyonların tamamında sıcaklık değerlerinin 0,8 ile 1,7 oC arasında artış gösterdiği tespit edilmiştir. Bu artışının iklim değişikliği ile ilişkili olduğu değerlendirilmektedir. Bu çerçevede güneş ve rüzgâr gibi yenilenebilir enerji kaynaklarının önemi daha da artmaktadır. Bölgede güneş enerjisi potansiyelinin 1108.4 ile 1488.9 m-2yıl-1 arasında ve rüzgâr enerjisi potansiyelini ise 1005,5 ile 7007,9 kWhm-2yıl-1 arasında olduğu hesaplanmıştır. Söz konusu enerji rezervlerinin değerlendirilmesi, fosil kökenli enerjilerin sebep olduğu iklimsel süreçlerin önlenmesinde oldukça önemlidir.
Kaynakça
- Abdullah, M.A., Agalgaonkar, A.P., & Muttaqi, K.M. (2014). Climate change mitigation with the integration of renewable energy resources in the electricity grid of New South Wales, Australia. Renewable Energy, 66, 305-313. https://dx.doi.org/10.1016/j.renene.2013.12.014
- Al-Abbadi, N.M. (2005). Wind energy resource assessment for five locations in Saudi Arabia. Renewable Energy, 30(10), 1489-1499. https://doi.org/10.1016/j.renene.2004.11.013
- Amponsah, N.Y., Troldborg, M., Kington, B., Aalders, I., & Hough, R.L. (2014). Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renewable and Sustainable Energy Reviews, 39, 461-475. https://doi.org/10.1016/j.rser.2014.07.087
- Bose, B.K. (2010). Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 4(1), 6-17. https://doi.org/10.1109/MIE.2010.935860.
- Boyle, G. (2004). Renewable energy: power for a sustainable future (2nd ed.). United Kingdom: Oxford University Press.
- Carbon Trust. The carbon emissions generated in all that we consume. (2019, January 29) https://www.carbontrust.com/media/84936/ctc603-the-carbon-emissions-generated-in-all-that-we-consume.pdf
Chatzimouratidis, A.I., & Pilavachi, P.A. (2008). Multicriteria evaluation of power plants impacts on the living standard using the analytic hierarchy process. Energy Policy, 36(3), 1074-89. https://doi.org/10.1016/j.enpol.2007.11.028
- Covenant of Mayors (2010). Technical annex to the seap template instructions document: the emission factors. https://www.eumayors.eu/IMG/pdf/technical_annex_en.pdf
- Elsayed, M.A., Matthews, R., & Mortimer, N.D. (2003). Carbon and energy balances for a range of biofuels options. Project Number B/B6/00784/REP URN 03/836. Resources Research Unit, Sheffield Hallam University. https://www.researchgate.net/publication/235704342_Carbon_and_Energy_Balances_for_a_Range_of_Biofuels_Options
- Gasch R, Twele, J (2011). Windkraftanlagen. (7th ed.) Wiesbaden: Vieweg+Teubner Verlag, Springer Fachmedien; 587 p.
- Google Earth (2019). (2019, January 23). https://www.google.com.tr/intl/tr/earth/download/ gep/agree.html
GSA-Global Solar Atlas. (2022, January 15). https://globalsolaratlas.info/map?c=48.134246,11.431274, 11&s=48.131726, 11.572723&m=site
- GWA-Global Wind Atlas. (2022, January 15). https://globalwindatlas.info/
- Hernandez-Ochoa, I.M., Asseng, S., Kassie, B.T., Xiong, W., Robertson, R., Luz Pequeno, D.N., Sonder, K., Reynolds, M., Babar, M. D., Miland, A. M., & Hoogenboom, G. (2018). Climate change impact on Mexico wheat production. Agricultural and Forest Meteorology, 263, 373-387. https://doi.org/10.1016/j.agrformet.2018.09.008
Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30(11-12), 2042-56. https://doi.org/10.1016/j.energy.2004.07.020
- İlkiliç, C. (2012). Wind energy and assessment of wind energy potential in Turkey. Renewable and Sustainable Energy Reviews, 16, 1165-1173. https://doi.org/10.1016/j.rser.2011.11.021
- Jungbluth, N. (2005). Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database. Progress in Photovoltaics: Research and Applications, 13(5), 429-46. https://doi.org/10.1002/pip.614
- Klug, H. (2001). Basic Course in Wind Energy. German Wind Energy Institute (DEWI), Istanbul.
- Lenzen, M. (1999). Greenhouse gas analysis of solar-thermal electricity generation. Solar Energy, 65(6), 353-68. https://doi.org/10.1016/S0140-6701(99)98999-3
- Lenzen, M. (2008). Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energy Conversion and Management, 49(8), 2178-99. https://doi.org/10.1016/j.enconman.2008.01.033
- Longa, D. F., & Zwaan, B. V. (2017). Do Kenya’s climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy? Renewable Energy, 113, 1559-1568. https://doi.org/10.1016/j.renene.2017.06.026
- Mentens, K. (2011). Photovoltaic. (1st ed.) München: Carl Hanser Verlag.
- Nasa. Global Temperature. Global Climate Change. (2017, April 23) https://climate.nasa.gov/vital-signs/global-temperature/
Nasa. How climate is changing? Global Climate Change. (2019, January 29) https://climate.nasa.gov/effects/
- Patlitzianas, K.D., Kagiannas, A.G., Askounis, D.T., & Psarras, J. (2005). The policy perspective for RES development in the new member states of the EU. Renewable Energy, 30, 477-492. https://doi.org/10.1016/j.renene.2004.07.012
- Pelletier, J.D. (2006). The sensitivity of playa windblown-dust emissions to climatic and anthropogenic change. Journal of Arid Environments, 66(1), 62-75. https://doi.org/10.1016/j.jaridenv.2005.10.010
- Santamouris, M. (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 82,100-113. https://doi.org/10.1016/j.enbuild.2014.07.022
- Soysal, M.İ. (2000). Principles of Biometry. Tekirdağ: Trakya University Faculty of Agriculture Paper No: 95; 332 p.
- Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P.M. (Eds.). (2013). Climate Change 2013: The Physical Science Basis. Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). (1th ed.) Cambridge University press.
- TSEM-Turkey Solar Energy Map. Republic of Turkey Ministry of Energy and Natural Resources (2022, January 15). https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-gunes
- TSMS- Turkish State Meteorological Service. (2008, March 12). www.meteor.gov.tr
- TUIK- Turkish Statistical Institute. National Population Census. (2018, October 22). http://www.turkstat.gov.tr
Varun., Prakash, R., & Bhat, I.K. (2012). Life cycle greenhouse gas emissions estimation for small hydropower schemes in India. Energy, 44(1), 498-508. https://doi.org/10.1016/j.energy.2012.05.052
- Velmurugan, V., & Sridhar, K. (2008). Prospects and scopes of the solar pond: a detailed review. Renewable and Sustainable Energy Reviews, 12(8), 2253-63. https://doi.org/10.1016/j.rser.2007.03.011
- Vindmolleindustrien. Danish Wind Industry Association, Guide Tour. (2019, January 10). http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/ en/stat/unitsw.htm
- Xie, W., Huang, J., Wang, J., Cui, Q., Robertson, R., & Chen, K. (2020). Climate change impacts on China's agriculture: The responses from market and trade. China Economic Review,62, 101256. https://doi.org/10.1016/j.chieco.2018.11.007
- Zahoransky, R., Allelein, H.J., Bollin, E., Oehler, H., & Schelling, U. (2010). Energietechnik Systeme zur Energieumwandlung (5th ed.) Wiesbaden; Vieweg+Teubner Verlag, Springer Fachmedien.