Araştırma Makalesi
BibTex RIS Kaynak Göster

Talk/EPDM/Polipropilen polimer kompozit köpük üretimi ve üretim şartlarının optimize edilmesi

Yıl 2022, Cilt: 12 Sayı: 3, 864 - 876, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1041296

Öz

Bu çalışmada, talk ve etilen-propilen-dien-monomer (EPDM) katkılı polipropilen (T-EPDM-PP) kompozit köpüklerin hücre yapısı ve mekanik özelliklerine enjeksiyon proses şartlarının etkisi incelenmiştir. Enjeksiyon basıncı, geri besleme basıncı, enjeksiyon hızı ve ergiyik sıcaklığı gibi farklı proses şartları kullanılmıştır. Mekanik özellikleri belirlemek için ise çekme testi ve darbe testi gerçekleştirilmiştir. Mekanik özelliklerin karşılaştırılabilmesi için köpüklendirilmemiş T-EPDM-PP polimer kompozit numuneleri de üretilmiştir. Elde edilen deneysel veriler Taguchi metodu kullanılarak analiz edilmiştir. Köpüklerin hücre morfolojisi, farklı proses şartlarına bağlı olarak, steromikroskop kullanarak kabuk tabakası kalınlığı (KTK), hücre boyutu ve hücre yoğunluğu açısından incelenmiştir. Enjeksiyon basıncı (E.B), enjeksiyon hızı (E.H) ve ergiyik sıcaklığı (E.S)’nın artması ile köpük numunelerin çekme ve darbe dayanımları azalırken geri besleme basıncının artması ile artmıştır. Kabuk tabakası kalınlığının artması ile kompozit köpüğün çekme ve darbe dayanımları artmıştır. Artan E.B ve enjeksiyon hızlarında hücre boyutu azalmıştır. Yüksek enjeksiyon basıncı ve enjeksiyon hızı ile birlikte düşük geri besleme basıncı ve ergiyik sıcaklığı kullanıldığında yüksek hücre yoğunluğu elde edilmiştir. Artan E.B, E.H ve E.S ile köpük yoğunluğu azalmıştır. T-EPDM-PP esaslı kompozit köpük üretiminde yüksek çekme ve darbe dayanımı elde etmek için optimum proses parametreleri olarak geri besleme basıncı 100 bar, ergiyik sıcaklığı 160 oC, enjeksiyon hızı 60 mm/s ve enjeksiyon basıncı 60 bar olarak tespit edilmiştir.

Destekleyen Kurum

Kütahya Dumlupınar Üniversitesi

Proje Numarası

2014-84

Teşekkür

Bu çalışma, Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir. (Proje No: 2014-84). Yazarlar desteklerinden dolayı teşekkürü bir borç bilir.

Kaynakça

  • Altan, M., & Demirci, M. (2018). Effect of process parameters on shear layer thickness in ınjection molded short-glass fiber reinforced polypropylene. International Polymer Processing, 33(5), 714-720. https://doi.org/10.3139/217.3585
  • Andreas, N. J. S., & Altstadt, V. (2007). Controlling morphology of injection molded structural foams by mold design and processing parameters. Journal of Cellular Plastics, 43(4-5), 313-330. https://doi.org/10.1177/0021955X07079043
  • Andrzej, K. B., & Omar, F. (2006). Microcellular ınjection molded wood fiber–PP composites: Part I-Effect of chemical foaming agent content on cell morphology and physico-mechanical properties. Journal of Cellular Plastics, 42(1), 63-76. https://doi.org/10.1177/0021955X06060945
  • Aycicek, M., Sedef, C., & Akın, A. (2018). Prepare foam with injection molding method in acrylonitrile-butadiene-styrene (ABS) matrix using chemical foam agent. Materials Science: Advanced Composite Materials, 2(4), 1-4. http://dx.doi.org/10.18063/msacm.v0i0.917
  • Barlow, C., Kumar, V., Flinn, B., Bordia, R. K., & Weller, J. (2001). Impact strength of high density solid-state microcellular polycarbonate foams. Journal of Engineering Materials and Technology, 123(2), 229-233. https://doi.org/10.1115/1.1339004
  • Barzegari, M. R., & Rodrigue, D. (2009). The effect of injection molding conditions on the morphology of polymer structural foams. Polymer Engineering and Science, 49(5), 949-959. https://doi.org/10.1002/pen.21283
  • Blanchet, J. F., & Rodrigue, D. (2004). The effect of skin thickness on the mechanical properties of structural foams. Cellular Polymers, 23(4), 193-210. https://doi.org/10.1177/026248930402300401
  • Chien, R. D., Chen, S. C., Lee, P. H., & Jien-Sheng, H. (2004). Study on the molding characteristics and mechanical properties of injection-molded foaming polypropylene parts. Journal of Reinforced Plastics and Composites, 23(4), 429-444. https://doi.org/10.1177/0731684404031891
  • Colton, J. S., & Suh, N. P. (1987). The nucleation of microcellular thermoplastic foam with additives: Part II: experimental results and discussion, Polymer Engineering & Science, 27(7), 493-499. https://doi.org/10.1002/pen.760270703
  • Christopher, C. I., & Monika, B. (2008). Current trends in nanocomposite foams. Journal of Cellular Plastics, 44(6), 493-515, 2008. https://doi.org/10.1177/0021955X08097707
  • Doroudiani, S., & Kortschot, M. T. (2003). Polystyrene foams. II. Structure-impact properties relationships. Journal of Applied Polymer Science, 90(5), 1421-1426. https://doi.org/10.1002/app.12805
  • Heidari, A., & Fasihi, M. (2019). Cell structure-impact property relationship of polypropylene/thermoplastic elastomer blend foams. eXPRESS Polymer Letters, 13(5), 429-442. DOI:10.3144/expresspolymlett.2019.36
  • Jae, D. Y., & Sung, W. C. (2004). A mold surface treatment for improving surface finish of injection molded microcellular parts. Cellular Polymers, 23(1), 39-48. https://doi.org/10.1177/026248930402300103
  • Kumar, V., & Suh, N. P. (1990). A process for making microcellular thermoplastic parts. Polymer Engineering & Science, 30(20), 1323-1329. https://doi.org/10.1002/pen.760302010
  • Leung, S. N., Anson, W., Lilac, C. W., & Park, C. B. (2012). Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 63, 187– 198. https://doi.org/10.1016/j.supflu.2011.12.018
  • Larissa, Z., Martin, J., & Munstedt, H. (2009). Foaming of thin films of a fluorinated ethylene propylene copolymer using supercritical carbon dioxide. Journal of Supercritical Fluids, 49(1), 103-110. https://doi.org/10.1016/j.supflu.2008.11.013
  • Martial, S., Jacques, F., Audrey C., Clemence, N., & Elisabeth, R. (2011). New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Progress in Polymer Science, 36(6), 749–766. https://doi.org/10.1016/j.progpolymsci.2010.12.004
  • Mengeloglu, F., & Laurent, M. M. (2003). Mechanical properties of extrusion-foamed rigid PVC/wood-flour composites. Journal of Vinyl & Additive Technology, 9(1), 26-31. https://doi.org/10.1002/vnl.10058
  • Minoru, S., Iku, H., & Yasushi, M. (2007). Mechanism of strength improvement of foamed plastics having fine cell. Journal of Cellular Plastics, 43(2), 157-167. https://doi.org/10.1177/0021955X06075585
  • Ming-Cheng, G., Marie-Claude, H., & Pierre, J. C. (2007). Cell structure and dynamic properties of ınjection molded polypropylene foams. Polymer Engineering and Science, 47(7), 1070-1081. https://doi.org/10.1002/pen.20786
  • Palutkiewicz, P., Milena, T., & Elzbieta, B. (2020). The influence of blowing agent addition, talc filler content, and injection velocity on selected properties, surface state, and structure of polypropylene injection molded parts. Cellular Polymers, 39(1), 3-30. https://doi.org/10.1177/0262489319873642
  • Park, C. B., & Cheung, L. K. (1997). A study of cell nucleation in the extrusion of polypropylene foams. Polymer Engineering and Science, 37(1), 1-10. https://doi.org/10.1002/pen.11639
  • Qin, X., Thompson, M. R., & Hrymak, A. N. (2006). Rheological comparison of chemical and physical blowing agents in a thermoplastic polyolefin. Industrial & Engineering Chemistry Research, 45(8), 2734-2740. https://doi.org/10.1021/ie0510932
  • Rodriguez-Perez, M. A., & Lobos, J. (2009). Mechanical response of polyethylene foams with high densities and cell sizes in the microcellular range. Journal of Cellular Plastics, 45(5), 389-403. https://doi.org/10.1177/0021955X09103946
  • Spitael, P., & Chrıstopher, W. M. (2004). Strain hardening in polypropylenes and its role in extrusion foaming. Polymer Engineering and Science, 44(11), 2090-2100. https://doi.org/10.1002/pen.20214
  • Tejeda, E. H., Carlos Zepeda, S., Ruben Gonzalez, N., & Denis, R. (2005). Morphology and mechanical properties of foamed polyethylene-polypropylene blends. Journal of Cellular Plastics, 41(5), 417-435. https://doi.org/10.1177/0021955X05056959
  • Tsivintzelis, I., Anastasıa, G. A., & Costas, P. (2007). Foaming of polymers with supercritical CO2: An experimental and theoretical study. Polymer, 48(20), 5928-5939. https://doi.org/10.1016/j.polymer.2007.08.004
  • Villamizar, C. A., & Chang, D. H. (1978). Studies on structural foam processing II. Bubble dynamics in foam ınjection molding. Polymer Engineering and Science, 18(9), 669-710. https://doi.org/10.1002/pen.760180905
  • Wei, G., Huajie, M., Bei, L., & Xiangyu, G. (2014). Influence of processing parameters on molding process in microcellular injection molding. Procedia Engineering, 81, 670-675. https://doi.org/10.1016/j.proeng.2014.10.058
  • Wentao, Z., Jian, Y., Lichuan, W., Weiming, M., & Jiasong, H. (2006). Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. Polymer, 47(21), 7580-7589. https://doi.org/10.1016/j.polymer.2006.08.034
  • Wong, S., John, W. S. L., Hani, E. N., & Park, C. B. (2008). Effect of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) cellular foams. Macromolecular Materials and Engineering, 293(7), 605-613. https://doi.org/10.1002/mame.200700362
  • Xiangmin, H., Changchun Z., Lee, L. J., Kurt, W. K., & David, L. T. (2003). Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polymer Engineering and Science, 43(6), 1261-1275. https://doi.org/10.1002/pen.10107
  • Yetgin, S. H., Otomotiv sektörü için polimer köpük malzeme üretimi ve karakterizasyonu, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 2012. https://hdl.handle.net/20.500.12619/76563
  • Yetgin, S. H., Unal, H., Mimaroglu A., & Fındık, F. (2013). Influence of process parameters on the mechanical and foaming properties of PP polymer and PP/Talc/EPDM composites. Polymer-Plastics Technology and Engineering, 52(5), 433-439. https://doi.org/10.1080/03602559.2012.748802
  • Yinping, T., Srichand, H., Robert, H., Anselmo, G., & Paulo, J. B. (2020). A study of physico-mechanical properties of hollow glass bubble, jute fibre and rubber powder reinforced polypropylene compounds with and without MuCell® technology for lightweight applications. Polymers, 12(11), 2664. https://doi.org/10.3390/polym12112664
  • Yuan, M., Turng, L. S., Gong, S., Caulfıeld, D., Hunt, C., & Spındler, R. (2004). Study of injection molded microcellular polyamide-6 nanocomposites. Polymer Engineering and Science, 44(4), 673-686. https://doi.org/10.1002/pen.20061
  • Zhen, X. X., Zhen, X. Z., Kaushik, P., Jong, U. B., Sung, H. L., & Jin, K. K. (2010). Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend. Materials & Design, 31(1), 589-593. https://doi.org/10.1016/j.matdes.2009.07.002

Production of Talc/EPDM/Polypropylene polymer composite foam and optimizing production conditions

Yıl 2022, Cilt: 12 Sayı: 3, 864 - 876, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1041296

Öz

The effect of injection process conditions on the cell structure and mechanical properties of talc and ethylene-propylene-diene-monomer (EPDM) filled polypropylene (T-EPDM-PP) composite foams was investigated. Different process conditions such as injection pressure, feedback pressure, injection speed and melting temperature were used. Tensile test and impact test were performed to determine the mechanical properties of the foam materials. In order to compare the mechanical properties, unfomed T-EPDM-PP polymer composite samples were also produced. Obtained experimental data were analyzed using the Taguchi method. The cell morphology of the foams was investigated in terms of skin layer thickness, cell size and cell density using a stereomicroscope, depending on different process conditions. With the increase of injection pressure, injection speed and melting temperature, the tensile and impact strengths of foam samples decreased, while it increased with the increase of the feedback pressure. The tensile and impact strengths of the composite foam increased with the increase in skin layer thickness. Cell size decreased with increasing E.B and EB. High cell density was obtained when low feedback pressure and melting temperature were used together with high injection pressure and injection speed. Foam density decreased with increasing E.B, E.H and E.S. In order to obtain high tensile and impact strength in T-EPDM-PP based composite foam production, optimum process parameters were determined as feedback pressure 100 bar, melting temperature 160 oC, injection speed 60 mm/s and injection pressure 60 bar.

Proje Numarası

2014-84

Kaynakça

  • Altan, M., & Demirci, M. (2018). Effect of process parameters on shear layer thickness in ınjection molded short-glass fiber reinforced polypropylene. International Polymer Processing, 33(5), 714-720. https://doi.org/10.3139/217.3585
  • Andreas, N. J. S., & Altstadt, V. (2007). Controlling morphology of injection molded structural foams by mold design and processing parameters. Journal of Cellular Plastics, 43(4-5), 313-330. https://doi.org/10.1177/0021955X07079043
  • Andrzej, K. B., & Omar, F. (2006). Microcellular ınjection molded wood fiber–PP composites: Part I-Effect of chemical foaming agent content on cell morphology and physico-mechanical properties. Journal of Cellular Plastics, 42(1), 63-76. https://doi.org/10.1177/0021955X06060945
  • Aycicek, M., Sedef, C., & Akın, A. (2018). Prepare foam with injection molding method in acrylonitrile-butadiene-styrene (ABS) matrix using chemical foam agent. Materials Science: Advanced Composite Materials, 2(4), 1-4. http://dx.doi.org/10.18063/msacm.v0i0.917
  • Barlow, C., Kumar, V., Flinn, B., Bordia, R. K., & Weller, J. (2001). Impact strength of high density solid-state microcellular polycarbonate foams. Journal of Engineering Materials and Technology, 123(2), 229-233. https://doi.org/10.1115/1.1339004
  • Barzegari, M. R., & Rodrigue, D. (2009). The effect of injection molding conditions on the morphology of polymer structural foams. Polymer Engineering and Science, 49(5), 949-959. https://doi.org/10.1002/pen.21283
  • Blanchet, J. F., & Rodrigue, D. (2004). The effect of skin thickness on the mechanical properties of structural foams. Cellular Polymers, 23(4), 193-210. https://doi.org/10.1177/026248930402300401
  • Chien, R. D., Chen, S. C., Lee, P. H., & Jien-Sheng, H. (2004). Study on the molding characteristics and mechanical properties of injection-molded foaming polypropylene parts. Journal of Reinforced Plastics and Composites, 23(4), 429-444. https://doi.org/10.1177/0731684404031891
  • Colton, J. S., & Suh, N. P. (1987). The nucleation of microcellular thermoplastic foam with additives: Part II: experimental results and discussion, Polymer Engineering & Science, 27(7), 493-499. https://doi.org/10.1002/pen.760270703
  • Christopher, C. I., & Monika, B. (2008). Current trends in nanocomposite foams. Journal of Cellular Plastics, 44(6), 493-515, 2008. https://doi.org/10.1177/0021955X08097707
  • Doroudiani, S., & Kortschot, M. T. (2003). Polystyrene foams. II. Structure-impact properties relationships. Journal of Applied Polymer Science, 90(5), 1421-1426. https://doi.org/10.1002/app.12805
  • Heidari, A., & Fasihi, M. (2019). Cell structure-impact property relationship of polypropylene/thermoplastic elastomer blend foams. eXPRESS Polymer Letters, 13(5), 429-442. DOI:10.3144/expresspolymlett.2019.36
  • Jae, D. Y., & Sung, W. C. (2004). A mold surface treatment for improving surface finish of injection molded microcellular parts. Cellular Polymers, 23(1), 39-48. https://doi.org/10.1177/026248930402300103
  • Kumar, V., & Suh, N. P. (1990). A process for making microcellular thermoplastic parts. Polymer Engineering & Science, 30(20), 1323-1329. https://doi.org/10.1002/pen.760302010
  • Leung, S. N., Anson, W., Lilac, C. W., & Park, C. B. (2012). Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 63, 187– 198. https://doi.org/10.1016/j.supflu.2011.12.018
  • Larissa, Z., Martin, J., & Munstedt, H. (2009). Foaming of thin films of a fluorinated ethylene propylene copolymer using supercritical carbon dioxide. Journal of Supercritical Fluids, 49(1), 103-110. https://doi.org/10.1016/j.supflu.2008.11.013
  • Martial, S., Jacques, F., Audrey C., Clemence, N., & Elisabeth, R. (2011). New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Progress in Polymer Science, 36(6), 749–766. https://doi.org/10.1016/j.progpolymsci.2010.12.004
  • Mengeloglu, F., & Laurent, M. M. (2003). Mechanical properties of extrusion-foamed rigid PVC/wood-flour composites. Journal of Vinyl & Additive Technology, 9(1), 26-31. https://doi.org/10.1002/vnl.10058
  • Minoru, S., Iku, H., & Yasushi, M. (2007). Mechanism of strength improvement of foamed plastics having fine cell. Journal of Cellular Plastics, 43(2), 157-167. https://doi.org/10.1177/0021955X06075585
  • Ming-Cheng, G., Marie-Claude, H., & Pierre, J. C. (2007). Cell structure and dynamic properties of ınjection molded polypropylene foams. Polymer Engineering and Science, 47(7), 1070-1081. https://doi.org/10.1002/pen.20786
  • Palutkiewicz, P., Milena, T., & Elzbieta, B. (2020). The influence of blowing agent addition, talc filler content, and injection velocity on selected properties, surface state, and structure of polypropylene injection molded parts. Cellular Polymers, 39(1), 3-30. https://doi.org/10.1177/0262489319873642
  • Park, C. B., & Cheung, L. K. (1997). A study of cell nucleation in the extrusion of polypropylene foams. Polymer Engineering and Science, 37(1), 1-10. https://doi.org/10.1002/pen.11639
  • Qin, X., Thompson, M. R., & Hrymak, A. N. (2006). Rheological comparison of chemical and physical blowing agents in a thermoplastic polyolefin. Industrial & Engineering Chemistry Research, 45(8), 2734-2740. https://doi.org/10.1021/ie0510932
  • Rodriguez-Perez, M. A., & Lobos, J. (2009). Mechanical response of polyethylene foams with high densities and cell sizes in the microcellular range. Journal of Cellular Plastics, 45(5), 389-403. https://doi.org/10.1177/0021955X09103946
  • Spitael, P., & Chrıstopher, W. M. (2004). Strain hardening in polypropylenes and its role in extrusion foaming. Polymer Engineering and Science, 44(11), 2090-2100. https://doi.org/10.1002/pen.20214
  • Tejeda, E. H., Carlos Zepeda, S., Ruben Gonzalez, N., & Denis, R. (2005). Morphology and mechanical properties of foamed polyethylene-polypropylene blends. Journal of Cellular Plastics, 41(5), 417-435. https://doi.org/10.1177/0021955X05056959
  • Tsivintzelis, I., Anastasıa, G. A., & Costas, P. (2007). Foaming of polymers with supercritical CO2: An experimental and theoretical study. Polymer, 48(20), 5928-5939. https://doi.org/10.1016/j.polymer.2007.08.004
  • Villamizar, C. A., & Chang, D. H. (1978). Studies on structural foam processing II. Bubble dynamics in foam ınjection molding. Polymer Engineering and Science, 18(9), 669-710. https://doi.org/10.1002/pen.760180905
  • Wei, G., Huajie, M., Bei, L., & Xiangyu, G. (2014). Influence of processing parameters on molding process in microcellular injection molding. Procedia Engineering, 81, 670-675. https://doi.org/10.1016/j.proeng.2014.10.058
  • Wentao, Z., Jian, Y., Lichuan, W., Weiming, M., & Jiasong, H. (2006). Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. Polymer, 47(21), 7580-7589. https://doi.org/10.1016/j.polymer.2006.08.034
  • Wong, S., John, W. S. L., Hani, E. N., & Park, C. B. (2008). Effect of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) cellular foams. Macromolecular Materials and Engineering, 293(7), 605-613. https://doi.org/10.1002/mame.200700362
  • Xiangmin, H., Changchun Z., Lee, L. J., Kurt, W. K., & David, L. T. (2003). Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polymer Engineering and Science, 43(6), 1261-1275. https://doi.org/10.1002/pen.10107
  • Yetgin, S. H., Otomotiv sektörü için polimer köpük malzeme üretimi ve karakterizasyonu, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 2012. https://hdl.handle.net/20.500.12619/76563
  • Yetgin, S. H., Unal, H., Mimaroglu A., & Fındık, F. (2013). Influence of process parameters on the mechanical and foaming properties of PP polymer and PP/Talc/EPDM composites. Polymer-Plastics Technology and Engineering, 52(5), 433-439. https://doi.org/10.1080/03602559.2012.748802
  • Yinping, T., Srichand, H., Robert, H., Anselmo, G., & Paulo, J. B. (2020). A study of physico-mechanical properties of hollow glass bubble, jute fibre and rubber powder reinforced polypropylene compounds with and without MuCell® technology for lightweight applications. Polymers, 12(11), 2664. https://doi.org/10.3390/polym12112664
  • Yuan, M., Turng, L. S., Gong, S., Caulfıeld, D., Hunt, C., & Spındler, R. (2004). Study of injection molded microcellular polyamide-6 nanocomposites. Polymer Engineering and Science, 44(4), 673-686. https://doi.org/10.1002/pen.20061
  • Zhen, X. X., Zhen, X. Z., Kaushik, P., Jong, U. B., Sung, H. L., & Jin, K. K. (2010). Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend. Materials & Design, 31(1), 589-593. https://doi.org/10.1016/j.matdes.2009.07.002
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Salih Hakan Yetgin 0000-0002-6068-9204

Hüseyin Ünal 0000-0003-0521-6647

Proje Numarası 2014-84
Yayımlanma Tarihi 15 Temmuz 2022
Gönderilme Tarihi 24 Aralık 2021
Kabul Tarihi 17 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 3

Kaynak Göster

APA Yetgin, S. H., & Ünal, H. (2022). Talk/EPDM/Polipropilen polimer kompozit köpük üretimi ve üretim şartlarının optimize edilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(3), 864-876. https://doi.org/10.17714/gumusfenbil.1041296