Araştırma Makalesi
BibTex RIS Kaynak Göster

Impact of different troposphere models on the real-time multi-GNSS PPP performance

Yıl 2022, Cilt: 12 Sayı: 3, 756 - 768, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1061668

Öz

With the initialization of IGS (International GNSS Service) real-time service products, real-time Precise Point Positioning (PPP) applications have been a popular topic within the GNSS (Global Navigation Satellite Systems) users. The impact of the troposphere on GNSS signals is one of the most crucial error sources regarding the real-time PPP solution. In the PPP technique, the dry component of tropospheric delay is usually corrected by means of empirical models, while its wet component is estimated as an unknown parameter in the adjustment process. Hence, the troposphere model employed in the PPP solution has a considerable impact on the performance of the obtained solution. Therefore, the main objective of this study is to investigate the impact of different troposphere models on the performance of real-time multi-GNSS PPP. As a part of this study, four different troposphere models, where Saastamoinen and Hopfield models that are most frequently used in GNSS solutions are used together with GPT (Global Pressure and Temperature) 2 and 3 models separately, were constituted. In this context, the observation dataset acquired from a total of 16 different IGS stations over a ten-day period of December 19-28, 2021, were processed utilizing four different troposphere models. In addition to the positioning performance, PPP solutions were also analyzed in terms of zenith total delay (ZTD) estimation. The results show that the best positioning performance can be obtained when the Saastamoinen model is used in combination with GPT3. The three-dimensional positioning accuracy acquired from the corresponding solution is 2.72 cm, which is better than the closest solution by a ratio of 9.2%. Besides, in terms of the ZTD estimation, the best performance is achieved again in the case when the Saastamoinen model is used in combination with GPT3. For the related solution, the accuracy of ZTD estimation is calculated as 1.24 cm and this value indicates a better performance by a ratio of 10.2% compared with the closest solution.

Kaynakça

  • Abd Rabbou, M., El-Shazly, A., & Ahmed, K. (2018). Comparative analysis of multi-constellation GNSS single-frequency precise point positioning. Survey Review, 50(361), 373-382. https://doi.org/10.1080/00396265.2017.1296628
  • Bahadur, B., & Nohutcu, M. (2018a). Türkiye ve yakın çevresi için çoklu-GNSS kombinasyonlarının PPP performansına etkisi. Harita Dergisi, 84(160), 1-11.
  • Bahadur, B., & Nohutcu, M. (2018b). PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22(4), 1-10. https://doi.org/10.1007/s10291-018-0777-z
  • BNC-BKG NTRIP Client (2022, 21 Ocak) https://igs.bkg.bund.de/ntrip/download
  • Böhm, J., Heinkelmann, R., & Schuh, H. (2007). Short note: a global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81(10), 679-683. https://doi.org/10.1007/s00190-007-0135-3
  • Cai, C., & Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223-236. https://doi.org/10.1007/s10291-012-0273-9
  • Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6), 1593-1607. https://doi.org/10.1029/RS020i006p01593
  • Dousa, J., & Vaclavovic, P. (2014). Real-time zenith tropospheric delays in support of numerical weather prediction applications. Advances in Space Research, 53(9), 1347-1358. https://doi.org/10.1016/j.asr.2014.02.021
  • Hadas, T., & Bosy, J. (2015). IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19(1), 93-105. https://doi.org/10.1007/s10291-014-0369-5
  • Hadas, T., Teferle, F.N., Kazmierski, K., Hordyniec, P., & Bosy, J. (2017). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solutions, 21(3), 1069-1081. https://doi.org/10.1007/s10291-016-0595-0
  • Hopfield, H.S. (1969). Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 74(18), 4487–4499. https://doi.org/10.1029/JC074i018p04487
  • Jin, S., & Su, K. (2019). Co-seismic displacement and waveforms of the 2018 Alaska earthquake from high-rate GPS PPP velocity estimation. Journal of Geodesy, 93(9), 1559-1569. https://doi.org/10.1007/s00190-019-01269-3
  • Kouba, J., & Héroux, P. (2001). GPS precise point positioning using IGS orbit products. GPS Solutions, 5(2), 12-28. https://doi.org/10.1007/PL00012883
  • Kouba, J. (2015). A Guide to Using International GNSS Service (IGS) Products, IGS website https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products
  • Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., & Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters, 40(6), 1069-1073. https://doi.org/10.1002/grl.50288
  • Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349-360. https://doi.org/10.1007/s00190-017-1066-2
  • Li, X., Ge, M., Zhang, X., Zhang, Y., Guo, B., Wang, R., Klotz, J., & Wickert, J. (2013). Real‐time high‐rate co‐seismic displacement from ambiguity‐fixed precise point positioning: Application to earthquake early warning. Geophysical Research Letters, 40(2), 295-300. https://doi.org/10.1002/grl.50138
  • Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), 607-635. https://doi.org/10.1007/s00190-015-0802-8
  • Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., & Schuh, H. (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89(9), 843-856. https://doi.org/10.1007/s00190-015-0818-0
  • Nie, Z., Liu, F., & Gao, Y. (2020). Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solutions, 24(1), 1-11. https://doi.org/10.1007/s10291-019-0922-3
  • Pan, Z., Chai, H., & Kong, Y. (2017). Integrating multi-GNSS to improve the performance of precise point positioning. Advances in Space Research, 60(12), 2596-2606. https://doi.org/10.1016/j.asr.2017.01.014
  • Petit, G., & Luzum, B. (2010). IERS Conventions 2010 IERS Techn. Note 36 Verlagdes Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, ISBN 3-89888-989-6
  • Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 105(1), 279-298. https://doi.org/10.1007/BF02521844
  • Shi, J., Yuan, X., Cai, Y., & Wang, G. (2017). GPS real-time precise point positioning for aerial triangulation. GPS Solutions, 21(2), 405-414. https://doi.org/10.1007/s10291-016-0532-2
  • Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G., & Montenbruck, O. (2015). Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Advances in Space Research, 55(1), 269-281. https://doi.org/10.1016/j.asr.2014.06.030
  • Teke, K., Böhm, J., Nilsson, T., Schuh, H., Steigenberger, P., Dach, R., ... & Shimizu, S. (2011). Multi-technique comparison of troposphere zenith delays and gradients during CONT08. Journal of Geodesy, 85(7), 395-413. https://doi.org/10.1007/s00190-010-0434-y
  • Teunissen, P.J.G., & Montenbruck, O. (Eds.) (2017). Springer handbook of global navigation satellite systems, Springer.
  • Tu, R., Zhang, H., Ge, M., & Huang, G. (2013). A real-time ionospheric model based on GNSS Precise Point Positioning. Advances in Space Research, 52(6), 1125-1134. https://doi.org/10.1016/j.asr.2013.06.015
  • Wright, T. J., Houlié, N., Hildyard, M., & Iwabuchi, T. (2012). Real‐time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku‐Oki (Japan) earthquake. Geophysical Research Letters, 39(12). https://doi.org/10.1029/2012GL051894
  • Wu, J., Wu, S., Hajj, G., Bertiger, W., & Liehten, S. (1993). Effects of antenna orientation on GPS carrier phase, Manuscripta Geodaetica, 18(2), 91–98.
  • Yigit, C. O., & Gurlek, E. (2017). Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics, Natural Hazards and Risk, 8(2), 893-904. https://doi.org/10.1080/19475705.2017.1284160
  • Zhao, Q., Yao, Y., & Yao, W. (2018a). GPS-based PWV for precipitation forecasting and its application to a typhoon event. Journal of Atmospheric and Solar-Terrestrial Physics, 167, 124-133. https://doi.org/10.1016/j.jastp.2017.11.013
  • Zhao, Q., Yao, Y., Yao, W., & Li, Z. (2018b). Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-26299-3
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., & Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017. https://doi.org/10.1029/96JB03860

Farklı troposfer modellerinin gerçek zamanlı çoklu-GNSS PPP performansına etkisi

Yıl 2022, Cilt: 12 Sayı: 3, 756 - 768, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1061668

Öz

IGS (International GNSS Service) gerçek zamanlı ürünlerin kullanıma açılmasıyla gerçek zamanlı Hassas Nokta Konumlama (Precise Point Positioning, PPP) uygulamaları GNSS (Global Navigation Satellite Systems) kullanıcıları arasında ilgi çekici bir konu haline gelmiştir. Troposferin GNSS sinyalleri üzerindeki etkisi gerçek zamanlı PPP çözümü açısından en önemli hata kaynaklarından bir tanesidir. PPP tekniğinde troposferik gecikmenin kuru bileşeni genellikle deneysel modeller aracılığıyla düzeltilirken ıslak bileşen tahmin sürecinde bilinmeyen bir parametre olarak kestirilir. Dolayısıyla PPP çözümünde kullanılan troposfer modeli elde edilecek çözüm performansı üzerine önemli bir etkiye sahiptir. Bu nedenle bu çalışmanın temel amacı farklı troposfer modellerinin gerçek zamanlı çoklu-GNSS PPP performansına olan etkisini incelemektir. Çalışma kapsamında GNSS çözümlerinde en sık kullanılan Saastamoinen ve Hopfield modellerinin GPT (Global Pressure and Temperature) 2 ve 3 modelleri ile ayrı ayrı kullanıldığı toplamda dört farklı troposfer modeli oluşturulmuştur. Bu kapsamda 19-28 Aralık 2021 tarihleri arasındaki on günlük dönem için toplamda on altı farklı IGS istasyonundan elde edilen gözlem verisi dört farklı troposfer modeli kullanarak işlenmiştir. PPP çözümleri konum belirleme performansına ek olarak toplam zenit gecikme (zenith total delay, ZTD) kestirimi açısından da analiz edilmiştir. Sonuçlar, en yüksek konum belirleme performansının Saastamoinen modelin GPT3 ile eşlenik kullanıldığı durumda elde edilebileceğini göstermektedir. İlgili çözümden elde edilen üç boyutlu konum doğruluğu 2.72 cm olup en yakın çözüme kıyasla %9.2 oranında daha iyidir. Öte yandan, ZTD kestirimi açısından en iyi performans yine Saastamoinen modelin GPT3 ile eşlenik kullanılması durumunda elde edilmiştir. Bu çözümün ise ZTD kestirim doğruluğu 1.24 cm olarak hesap edilmiştir ve bu değer en yakın çözüme göre %10.2 oranında daha iyi bir performansa işaret etmektedir.

Kaynakça

  • Abd Rabbou, M., El-Shazly, A., & Ahmed, K. (2018). Comparative analysis of multi-constellation GNSS single-frequency precise point positioning. Survey Review, 50(361), 373-382. https://doi.org/10.1080/00396265.2017.1296628
  • Bahadur, B., & Nohutcu, M. (2018a). Türkiye ve yakın çevresi için çoklu-GNSS kombinasyonlarının PPP performansına etkisi. Harita Dergisi, 84(160), 1-11.
  • Bahadur, B., & Nohutcu, M. (2018b). PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22(4), 1-10. https://doi.org/10.1007/s10291-018-0777-z
  • BNC-BKG NTRIP Client (2022, 21 Ocak) https://igs.bkg.bund.de/ntrip/download
  • Böhm, J., Heinkelmann, R., & Schuh, H. (2007). Short note: a global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81(10), 679-683. https://doi.org/10.1007/s00190-007-0135-3
  • Cai, C., & Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223-236. https://doi.org/10.1007/s10291-012-0273-9
  • Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6), 1593-1607. https://doi.org/10.1029/RS020i006p01593
  • Dousa, J., & Vaclavovic, P. (2014). Real-time zenith tropospheric delays in support of numerical weather prediction applications. Advances in Space Research, 53(9), 1347-1358. https://doi.org/10.1016/j.asr.2014.02.021
  • Hadas, T., & Bosy, J. (2015). IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19(1), 93-105. https://doi.org/10.1007/s10291-014-0369-5
  • Hadas, T., Teferle, F.N., Kazmierski, K., Hordyniec, P., & Bosy, J. (2017). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solutions, 21(3), 1069-1081. https://doi.org/10.1007/s10291-016-0595-0
  • Hopfield, H.S. (1969). Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 74(18), 4487–4499. https://doi.org/10.1029/JC074i018p04487
  • Jin, S., & Su, K. (2019). Co-seismic displacement and waveforms of the 2018 Alaska earthquake from high-rate GPS PPP velocity estimation. Journal of Geodesy, 93(9), 1559-1569. https://doi.org/10.1007/s00190-019-01269-3
  • Kouba, J., & Héroux, P. (2001). GPS precise point positioning using IGS orbit products. GPS Solutions, 5(2), 12-28. https://doi.org/10.1007/PL00012883
  • Kouba, J. (2015). A Guide to Using International GNSS Service (IGS) Products, IGS website https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products
  • Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., & Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters, 40(6), 1069-1073. https://doi.org/10.1002/grl.50288
  • Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349-360. https://doi.org/10.1007/s00190-017-1066-2
  • Li, X., Ge, M., Zhang, X., Zhang, Y., Guo, B., Wang, R., Klotz, J., & Wickert, J. (2013). Real‐time high‐rate co‐seismic displacement from ambiguity‐fixed precise point positioning: Application to earthquake early warning. Geophysical Research Letters, 40(2), 295-300. https://doi.org/10.1002/grl.50138
  • Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), 607-635. https://doi.org/10.1007/s00190-015-0802-8
  • Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., & Schuh, H. (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89(9), 843-856. https://doi.org/10.1007/s00190-015-0818-0
  • Nie, Z., Liu, F., & Gao, Y. (2020). Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solutions, 24(1), 1-11. https://doi.org/10.1007/s10291-019-0922-3
  • Pan, Z., Chai, H., & Kong, Y. (2017). Integrating multi-GNSS to improve the performance of precise point positioning. Advances in Space Research, 60(12), 2596-2606. https://doi.org/10.1016/j.asr.2017.01.014
  • Petit, G., & Luzum, B. (2010). IERS Conventions 2010 IERS Techn. Note 36 Verlagdes Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, ISBN 3-89888-989-6
  • Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 105(1), 279-298. https://doi.org/10.1007/BF02521844
  • Shi, J., Yuan, X., Cai, Y., & Wang, G. (2017). GPS real-time precise point positioning for aerial triangulation. GPS Solutions, 21(2), 405-414. https://doi.org/10.1007/s10291-016-0532-2
  • Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G., & Montenbruck, O. (2015). Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Advances in Space Research, 55(1), 269-281. https://doi.org/10.1016/j.asr.2014.06.030
  • Teke, K., Böhm, J., Nilsson, T., Schuh, H., Steigenberger, P., Dach, R., ... & Shimizu, S. (2011). Multi-technique comparison of troposphere zenith delays and gradients during CONT08. Journal of Geodesy, 85(7), 395-413. https://doi.org/10.1007/s00190-010-0434-y
  • Teunissen, P.J.G., & Montenbruck, O. (Eds.) (2017). Springer handbook of global navigation satellite systems, Springer.
  • Tu, R., Zhang, H., Ge, M., & Huang, G. (2013). A real-time ionospheric model based on GNSS Precise Point Positioning. Advances in Space Research, 52(6), 1125-1134. https://doi.org/10.1016/j.asr.2013.06.015
  • Wright, T. J., Houlié, N., Hildyard, M., & Iwabuchi, T. (2012). Real‐time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku‐Oki (Japan) earthquake. Geophysical Research Letters, 39(12). https://doi.org/10.1029/2012GL051894
  • Wu, J., Wu, S., Hajj, G., Bertiger, W., & Liehten, S. (1993). Effects of antenna orientation on GPS carrier phase, Manuscripta Geodaetica, 18(2), 91–98.
  • Yigit, C. O., & Gurlek, E. (2017). Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics, Natural Hazards and Risk, 8(2), 893-904. https://doi.org/10.1080/19475705.2017.1284160
  • Zhao, Q., Yao, Y., & Yao, W. (2018a). GPS-based PWV for precipitation forecasting and its application to a typhoon event. Journal of Atmospheric and Solar-Terrestrial Physics, 167, 124-133. https://doi.org/10.1016/j.jastp.2017.11.013
  • Zhao, Q., Yao, Y., Yao, W., & Li, Z. (2018b). Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-26299-3
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., & Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017. https://doi.org/10.1029/96JB03860
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Berkay Bahadur 0000-0003-3169-8862

Yayımlanma Tarihi 15 Temmuz 2022
Gönderilme Tarihi 22 Ocak 2022
Kabul Tarihi 17 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 3

Kaynak Göster

APA Bahadur, B. (2022). Farklı troposfer modellerinin gerçek zamanlı çoklu-GNSS PPP performansına etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(3), 756-768. https://doi.org/10.17714/gumusfenbil.1061668