Investigation of ball milling effect on superconducting properties of oleic acid added bulk MgB2 superconductors produced by two different methods
Yıl 2022,
Cilt: 12 Sayı: 3, 936 - 950, 15.07.2022
Özge Erdem
Öz
The effect of ball milling on the microstructure and some superconducting parameters such as flux pinning force (Fp) and critical current density (Jc) of the oleic acid (C18H34O2) added MgB2 bulk samples produced by two different methods, was analysed in this article. In the first method, ball milling was applied to the samples produced by using boron (B) powders coated with carbon (C) released from oleic acid. In the second method, oleic acid was mixed with magnesium (Mg) and B powders at the same time and then the same ball milling process used in the first method was applied to the powder mixture. The structural, magnetic and electrical properties of the produced samples were analysed. The results showed that ball milling process enhances the homogeneity of the structure, decreases the grain size and improves the grain connectivity of MgB2. Also, C substitution into MgB2 lattice resulting in an increase in electron scattering and disorders, enhances after ball milling process. It supplies a significant increase in Jc at high fields and causes a slightly decrease in transition temperature (Tc), especially for the samples produced by using the first method. Because the first method supports the ball milling effect on the homogenous dispersion of oleic acid addition in the MgB2 structure and the C entrance to MgB2 lattice, acting as pinning centres, the best Jc and Fp values at high fields was obtained for the produced samples with second method.
Destekleyen Kurum
The Scientific Research Project Coordination of Bayburt University
Proje Numarası
project number 2019/02-69001-02
Teşekkür
The author would like to thank Tayfur Kucukomeroglu for his kind technical assistance. The Scientific Research Project Coordination of Bayburt University supported this study with project number 2019/02-69001-02. The samples were made at the Karadeniz Technical University in Trabzon, Turkey.
Kaynakça
- Bean, C. P. (1962). Magnetization of hard superconductors. Physical review letters, 8(6), 250. https://doi.org/10.1103/PhysRevLett.8.250
- Buzea, C., & Yamashita, T. (2001). Review of the superconducting properties of MgB2. Superconductor Science and Technology, 14(11), R115. https://doi.org/10.1088/0953-2048/14/11/201
- Das, S., Bernhard, C., & Varma, G. D. (2015). Effect of combined addition of graphene oxide and citric acid on superconducting properties of MgB2. Physica C: Superconductivity and its Applications, 509, 49-55. https://doi.org/10.1016/j.physc.2014.12.005
- Eltsev, Y., Lee, S., Nakao, K., Chikumoto, N., Tajima, S., Koshizuka, N., & Murakami, M. (2002). Anisotropic superconducting properties of MgB2 single crystals probed by in-plane electrical transport measurements. Physical Review B, 65(14), 140501. https://doi.org/10.1103/PhysRevB.65.140501
- Erdem, O., Abdioglu, M., Guner, S. B., Celik, S., & Kucukomeroglu, T. (2017). Improvement in levitation force performance of bulk MgB2 superconductors through coronene powder adding. Journal of Alloys and Compounds, 727, 1213-1220. https://doi.org/10.1016/j.jallcom.2017.08.242
- Erdem, O., Guner, S. B., Celik, S., & Kucukomeroglu, T. (2020). Superconducting and levitation force characterisation of pyrene added MgB2 bulk superconductors. Cryogenics, 112, 103205. https://doi.org/10.1016/j.cryogenics.2020.103205
- Erdem, O., & Yanmaz, E. (2015). Effect of Er doping on the superconducting properties of porous MgB2. Bulletin of Materials Science, 38(1), 89-93. https://doi.org/10.1007/s12034-014-0810-y
- Erdem, O., & Yanmaz, E. (2017). Enhanced pinning properties of laser-irradiated bulk MgB2 superconductors. Journal of Superconductivity and Novel Magnetism, 30(3), 769-776. https://doi.org/10.1007/s10948-016-3777-7
- Gozzelino, L., Gerbaldo, R., Ghigo, G., Laviano, F., Torsello, D., Bonino, V., ... & Badica, P. (2019). Passive magnetic shielding by machinable MgB2 bulks: measurements and numerical simulations. Superconductor Science and Technology, 32(3), 034004. https://doi.org/10.1088/1361-6668/aaf99e
- Jiang, J., Senkowicz, B. J., Larbalestier, D. C., & Hellstrom, E. E. (2006). Influence of boron powder purification on the connectivity of bulk MgB2. Superconductor Science and Technology, 19(8), L33. https://doi.org/10.1088/0953-2048/19/8/L02
- Kazakov, S. M., Puzniak, R., Rogacki, K., Mironov, A. V., Zhigadlo, N. D., Jun, J., ... & Karpinski, J. (2005). Carbon substitution in MgB2 single crystals: Structural and superconducting properties. Physical Review B, 71(2), 024533. https://doi.org/10.1103/PhysRevB.71.024533
- Kimishima, Y., Takami, S., Okuda, T., Uehara, M., Kuramoto, T., & Sugiyama, Y. (2007). Complete flux jump in bulk MgB2 sintered under high pressure. Physica C: Superconductivity and its applications, 463, 281-285. https://doi.org/10.1016/j.physc.2007.03.492
- Klöppel, S., Marian, A., Haberstroh, C., & Bruzek, C. E. (2021). Thermo-hydraulic and economic aspects of long-length high-power MgB2 superconducting cables. Cryogenics, 113, 103211. https://doi.org/10.1016/j.cryogenics.2020.103211
- Kulich, M., Kováč, P., Hain, M., Rosová, A., & Dobročka, E. (2016). High density and connectivity of a MgB2 filament made using the internal magnesium diffusion technique. Superconductor Science and Technology, 29(3), 035004. https://doi.org/10.1088/0953-2048/29/3/035004
- Laliena, C., Martínez, E., Angurel, L. A., & Navarro, R. (2015). Effect of ball milling and fatty acid addition on the properties of MgB2 wires. IEEE Transactions on Applied Superconductivity, 25(3), 1-4. https://doi.org/10.1109/TASC.2014.2364158
- Liu, H. R., Xie, Z. W., Jin, L. H., Yang, F., Zhang, S. N., Wang, Q. Y., ... & Zhou, L. (2020). Improved superconducting properties in graphene-doped MgB2 bulks prepared by high energy ball milling. Journal of Materials Science: Materials in Electronics, 31(11), 8837-8843. https://doi.org/10.1007/s10854-020-03418-3
- Majoros, M., Sumption, M. D., Parizh, M., Wan, F., Rindfleisch, M. A., Doll, D., ... & Collings, E. W. (2022). Magnetic, Mechanical and Thermal Modeling of Superconducting, Whole-Body, Actively Shielded, 3 T MRI Magnets Wound Using MgB2 Strands for Liquid Cryogen Free Operation. IEEE Transactions on Applied Superconductivity, 32(4), 1-4. https://doi.org/10.1109/TASC.2022.3147137
- Martínez, E., Navarro, R., & Andrés, J. M. (2013). Improvement of the critical current density on in situ PIT processed Fe/MgB2 wires by oleic acid addition. Superconductor Science and Technology, 26(12), 125017. https://doi.org/10.1088/0953-2048/26/12/125017
- Matsushita, T., Kiuchi, M., Yamamoto, A., Shimoyama, J. I., & Kishio, K. (2008). Essential factors for the critical current density in superconducting MgB2: connectivity and flux pinning by grain boundaries. Superconductor Science and Technology, 21(1), 015008. https://doi.org/10.1088/0953-2048/21/01/015008
- Naito, T., Ogino, A., Fujishiro, H., & Awaji, S. (2020). Effects of Carbon Doping on Trapped Magnetic Field of MgB2 Bulk Prepared by in-situ Hot Isostatic Pressing Method. IEEE Transactions on Applied Superconductivity, 30(4), 1-6. https://doi.org/10.1109/TASC.2020.2985355
- Sun, X. G., Yang, X. S., Pan, X. F., Xi, D., Wang, Q. Y., Yan, G., ... & Zhao, Y. (2019). Ex situ MgB2 superconducting tape with very high critical current density by using low-temperature sintering precursor powders. Journal of Superconductivity and Novel Magnetism, 32(5), 1225-1230. https://doi.org/10.1007/s10948-018-4861-y
- Surdu, A. E., Hamdeh, H. H., Al-Omari, I. A., Sellmyer, D. J., Socrovisciuc, A. V., Prepelita, A. A., ... & Sidorenko, A. S. (2011). Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields. Beilstein Journal of Nanotechnology, 2(1), 809-813. https://doi.org/10.3762/bjnano.2.89
- Takenobu, T., Ito, T., Chi, D. H., Prassides, K., & Iwasa, Y. (2001). Intralayer carbon substitution in the MgB2 superconductor. Physical Review B, 64(13), 134513. https://doi.org/10.1103/PhysRevB.64.134513
- Van Devener, B., Perez, J. P. L., & Anderson, S. L. (2009). Air-stable, unoxidized, hydrocarbon-dispersible boron nanoparticles. Journal of Materials Research, 24(11), 3462-3464. https://doi.org/10.1557/jmr.2009.0412
- Wen, C., Liu, J., Yu, Z., Liu, J., Zhao, Z., & Wang, J. (2019). Research on superconducting magnet in a superconducting synchronous generator. Journal of Superconductivity and Novel Magnetism, 32(11), 3385-3395. https://doi.org/10.1007/s10948-019-5113-5
- Wu, Y. F., Lu, Y. F., Yan, G., Li, J. S., Feng, Y., Tang, H. P., ... & Zhang, P. X. (2006). Improved superconducting properties in bulk MgB2 prepared by high-energy milling of Mg and B powders. Superconductor Science and Technology, 19(11), 1215. https://doi.org/10.1088/0953-2048/19/11/021
- Ye, S. J., Matsumoto, A., Zhang, Y. C., & Kumakura, H. (2014). Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method. Superconductor Science and Technology, 27(8), 085012. https://doi.org/10.1088/0953-2048/27/8/085012
İki farklı metot ile üretilen oleik asit katkılı külçe MgB2 süperiletkenlerin süperiletkenlik özellikleri üzerine bilyeli öğütme etkisinin araştırılması
Yıl 2022,
Cilt: 12 Sayı: 3, 936 - 950, 15.07.2022
Özge Erdem
Öz
Bu makalede, iki farklı yöntem kullanılarak üretilen oleik asit (C18H34O2) katkılı MgB2 külçe örneklerin mikroyapı ile akı çivileme kuvveti (Fp) ve kritik akım yoğunluğu (Jc) gibi bazı süperiletkenlik parametreleri üzerine bilyalı öğütmenin etkisi incelenmiştir. Birinci yöntemde, oleik asitten salınan karbon (C) ile kaplanmış bor (B) tozları kullanılarak üretilen numunelere bilyalı öğütme uygulanmıştır. İkinci yöntemde oleik asit, magnezyum (Mg) ve B tozları ile aynı anda karıştırılmış ve daha sonra toz karışıma birinci yöntemde kullanılan aynı bilyalı öğütme işlemi uygulanmıştır. Üretilen numunelerin yapısal, manyetik ve elektriksel özellikleri analiz edilmiştir. Sonuçlar, bilyalı öğütme işleminin yapının homojenliğini arttırdığını, tane boyutunu küçülttüğünü ve MgB2'nin tane bağlantısını iyileştirdiğini göstermiştir. Ayrıca, bilyalı öğütme sonrası elektron saçılması ve düzensizlikte artışa neden olan MgB2 örgüsüne C yerleşimi artar. Bu durum, özellikle birinci yöntemle üretilen numunelerde yüksek alanlarda Jc'de önemli bir artış sağlar ve geçiş sıcaklığında (Tc) küçük bir azalmaya neden olur. Birinci yöntem, bilyalı öğütmenin oleik asit katkısının MgB2 yapısına homojen dağılımı ve çivileme merkezleri görevi gören MgB2 örgüsüne C girişi üzerindeki etkisini desteklediğinden, yüksek alanlarda en iyi Jc ve Fp değerleri ikinci yöntemle üretilen örnekler için elde edilmiştir.
Proje Numarası
project number 2019/02-69001-02
Kaynakça
- Bean, C. P. (1962). Magnetization of hard superconductors. Physical review letters, 8(6), 250. https://doi.org/10.1103/PhysRevLett.8.250
- Buzea, C., & Yamashita, T. (2001). Review of the superconducting properties of MgB2. Superconductor Science and Technology, 14(11), R115. https://doi.org/10.1088/0953-2048/14/11/201
- Das, S., Bernhard, C., & Varma, G. D. (2015). Effect of combined addition of graphene oxide and citric acid on superconducting properties of MgB2. Physica C: Superconductivity and its Applications, 509, 49-55. https://doi.org/10.1016/j.physc.2014.12.005
- Eltsev, Y., Lee, S., Nakao, K., Chikumoto, N., Tajima, S., Koshizuka, N., & Murakami, M. (2002). Anisotropic superconducting properties of MgB2 single crystals probed by in-plane electrical transport measurements. Physical Review B, 65(14), 140501. https://doi.org/10.1103/PhysRevB.65.140501
- Erdem, O., Abdioglu, M., Guner, S. B., Celik, S., & Kucukomeroglu, T. (2017). Improvement in levitation force performance of bulk MgB2 superconductors through coronene powder adding. Journal of Alloys and Compounds, 727, 1213-1220. https://doi.org/10.1016/j.jallcom.2017.08.242
- Erdem, O., Guner, S. B., Celik, S., & Kucukomeroglu, T. (2020). Superconducting and levitation force characterisation of pyrene added MgB2 bulk superconductors. Cryogenics, 112, 103205. https://doi.org/10.1016/j.cryogenics.2020.103205
- Erdem, O., & Yanmaz, E. (2015). Effect of Er doping on the superconducting properties of porous MgB2. Bulletin of Materials Science, 38(1), 89-93. https://doi.org/10.1007/s12034-014-0810-y
- Erdem, O., & Yanmaz, E. (2017). Enhanced pinning properties of laser-irradiated bulk MgB2 superconductors. Journal of Superconductivity and Novel Magnetism, 30(3), 769-776. https://doi.org/10.1007/s10948-016-3777-7
- Gozzelino, L., Gerbaldo, R., Ghigo, G., Laviano, F., Torsello, D., Bonino, V., ... & Badica, P. (2019). Passive magnetic shielding by machinable MgB2 bulks: measurements and numerical simulations. Superconductor Science and Technology, 32(3), 034004. https://doi.org/10.1088/1361-6668/aaf99e
- Jiang, J., Senkowicz, B. J., Larbalestier, D. C., & Hellstrom, E. E. (2006). Influence of boron powder purification on the connectivity of bulk MgB2. Superconductor Science and Technology, 19(8), L33. https://doi.org/10.1088/0953-2048/19/8/L02
- Kazakov, S. M., Puzniak, R., Rogacki, K., Mironov, A. V., Zhigadlo, N. D., Jun, J., ... & Karpinski, J. (2005). Carbon substitution in MgB2 single crystals: Structural and superconducting properties. Physical Review B, 71(2), 024533. https://doi.org/10.1103/PhysRevB.71.024533
- Kimishima, Y., Takami, S., Okuda, T., Uehara, M., Kuramoto, T., & Sugiyama, Y. (2007). Complete flux jump in bulk MgB2 sintered under high pressure. Physica C: Superconductivity and its applications, 463, 281-285. https://doi.org/10.1016/j.physc.2007.03.492
- Klöppel, S., Marian, A., Haberstroh, C., & Bruzek, C. E. (2021). Thermo-hydraulic and economic aspects of long-length high-power MgB2 superconducting cables. Cryogenics, 113, 103211. https://doi.org/10.1016/j.cryogenics.2020.103211
- Kulich, M., Kováč, P., Hain, M., Rosová, A., & Dobročka, E. (2016). High density and connectivity of a MgB2 filament made using the internal magnesium diffusion technique. Superconductor Science and Technology, 29(3), 035004. https://doi.org/10.1088/0953-2048/29/3/035004
- Laliena, C., Martínez, E., Angurel, L. A., & Navarro, R. (2015). Effect of ball milling and fatty acid addition on the properties of MgB2 wires. IEEE Transactions on Applied Superconductivity, 25(3), 1-4. https://doi.org/10.1109/TASC.2014.2364158
- Liu, H. R., Xie, Z. W., Jin, L. H., Yang, F., Zhang, S. N., Wang, Q. Y., ... & Zhou, L. (2020). Improved superconducting properties in graphene-doped MgB2 bulks prepared by high energy ball milling. Journal of Materials Science: Materials in Electronics, 31(11), 8837-8843. https://doi.org/10.1007/s10854-020-03418-3
- Majoros, M., Sumption, M. D., Parizh, M., Wan, F., Rindfleisch, M. A., Doll, D., ... & Collings, E. W. (2022). Magnetic, Mechanical and Thermal Modeling of Superconducting, Whole-Body, Actively Shielded, 3 T MRI Magnets Wound Using MgB2 Strands for Liquid Cryogen Free Operation. IEEE Transactions on Applied Superconductivity, 32(4), 1-4. https://doi.org/10.1109/TASC.2022.3147137
- Martínez, E., Navarro, R., & Andrés, J. M. (2013). Improvement of the critical current density on in situ PIT processed Fe/MgB2 wires by oleic acid addition. Superconductor Science and Technology, 26(12), 125017. https://doi.org/10.1088/0953-2048/26/12/125017
- Matsushita, T., Kiuchi, M., Yamamoto, A., Shimoyama, J. I., & Kishio, K. (2008). Essential factors for the critical current density in superconducting MgB2: connectivity and flux pinning by grain boundaries. Superconductor Science and Technology, 21(1), 015008. https://doi.org/10.1088/0953-2048/21/01/015008
- Naito, T., Ogino, A., Fujishiro, H., & Awaji, S. (2020). Effects of Carbon Doping on Trapped Magnetic Field of MgB2 Bulk Prepared by in-situ Hot Isostatic Pressing Method. IEEE Transactions on Applied Superconductivity, 30(4), 1-6. https://doi.org/10.1109/TASC.2020.2985355
- Sun, X. G., Yang, X. S., Pan, X. F., Xi, D., Wang, Q. Y., Yan, G., ... & Zhao, Y. (2019). Ex situ MgB2 superconducting tape with very high critical current density by using low-temperature sintering precursor powders. Journal of Superconductivity and Novel Magnetism, 32(5), 1225-1230. https://doi.org/10.1007/s10948-018-4861-y
- Surdu, A. E., Hamdeh, H. H., Al-Omari, I. A., Sellmyer, D. J., Socrovisciuc, A. V., Prepelita, A. A., ... & Sidorenko, A. S. (2011). Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields. Beilstein Journal of Nanotechnology, 2(1), 809-813. https://doi.org/10.3762/bjnano.2.89
- Takenobu, T., Ito, T., Chi, D. H., Prassides, K., & Iwasa, Y. (2001). Intralayer carbon substitution in the MgB2 superconductor. Physical Review B, 64(13), 134513. https://doi.org/10.1103/PhysRevB.64.134513
- Van Devener, B., Perez, J. P. L., & Anderson, S. L. (2009). Air-stable, unoxidized, hydrocarbon-dispersible boron nanoparticles. Journal of Materials Research, 24(11), 3462-3464. https://doi.org/10.1557/jmr.2009.0412
- Wen, C., Liu, J., Yu, Z., Liu, J., Zhao, Z., & Wang, J. (2019). Research on superconducting magnet in a superconducting synchronous generator. Journal of Superconductivity and Novel Magnetism, 32(11), 3385-3395. https://doi.org/10.1007/s10948-019-5113-5
- Wu, Y. F., Lu, Y. F., Yan, G., Li, J. S., Feng, Y., Tang, H. P., ... & Zhang, P. X. (2006). Improved superconducting properties in bulk MgB2 prepared by high-energy milling of Mg and B powders. Superconductor Science and Technology, 19(11), 1215. https://doi.org/10.1088/0953-2048/19/11/021
- Ye, S. J., Matsumoto, A., Zhang, Y. C., & Kumakura, H. (2014). Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method. Superconductor Science and Technology, 27(8), 085012. https://doi.org/10.1088/0953-2048/27/8/085012