Araştırma Makalesi
BibTex RIS Kaynak Göster

TDMA-tabanlı bir bilişsel radyo ağının sonlu birincil ve ikincil kullanıcılar için modellenmesi, benzetimi ve çağrı başarım analizi

Yıl 2024, Cilt: 14 Sayı: 1, 105 - 115, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1318497

Öz

Bu makalede; TDMA-tabanlı bir bilişsel radyo ağı modellenmiş ve ağdaki ikincil kullanıcıların (İK’ların) çağrı başarımı farklı birincil ve ikincil kullanıcı trafik parametreleri ile farklı zaman dilimi sayıları için analiz edilmiştir. Gerçekleştirilen modelde birincil kullanıcılar, ortam erişim kontrol mekanizmasında klasik çözümlerden farklı olarak Zaman Bölmeli Çoklu Erişim tekniği kullanmakta, ayrıca ikincil kullanıcılar, birincil kullanıcılar tarafından kullanılmayan zaman dilimlerinden fırsatçı bir yaklaşımla yararlanmaktadır. Geliştirilen ağ modelinde, birincil kullanıcıların kanala erişimde ikincil kullanıcılara göre yüksek önceliğe sahip oldukları ve ikincil kullanıcıların kanal kullanımından etkilenmedikleri varsayılmaktadır. Bilişsel radyo ağının başarımı iki boyutlu sürekli Markov zinciri kullanılarak çağrı-tıkanma ve çağrı-düşme olasılıkları açısından analitik olarak detaylıca analiz edilmiştir. Ayrıca, ilgili ağ modelinin Monte-Carlo benzetimi gerçekleştirilmiş ve benzetim sonuçları analitik sonuçlar ile doğrulanmıştır. Elde edilen benzetim sonuçlarına göre, İK varış hızı λ_s=0,07 ve zaman dilimi sayısı N=4 olduğunda İK çağrı-tıkanma olasılığı 0,0347 iken N=6 için bu değer %95 iyileşerek 0,00172 değerini ve N=8 için ise %99 iyileşerek 0,00034 değerini aldığı görülmüştür.

Kaynakça

  • Bandırmalı, N., Çeken, C., Bayılmış, C., & Ertürk, İ. (2005). Kablosuz erişim yöntemlerinin karşılaştırmalı incelemesi. TMMOB Elektrik Elektronik Bilgisayar Mühendisliği 11. Ulusal Kongresi (ss. 22-25), İstanbul.
  • Bayrakdar, M. E., & Çalhan, A. (2015). Bilişsel radyo ağlarında spektrum el değiştirme. Sakarya University Journal of Science, 19(3), 291-302. https://doi.org/10.16984/saufenbilder.81445
  • Bayrakdar, M. E., & Çalhan, A. (2017). Kablosuz bilişsel radyo ağlarında spektrum el değiştirme için öncelik kuyrukları ve yapay zekâ teknikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 303-315. https://doi.org/10.28948/ngumuh.338042
  • Chu, T. M. C., Phan, H., & Zepernick, H. J. (2014). Dynamic spectrum access for cognitive radio networks with prioritized traffics. IEEE Communications Letters, 18(7), 1218-1221. https://doi.org/10.1109/LCOMM.2014.2319253
  • Hassani, M. M., & Berangi, R. (2019). Impact of the primary user on the secondary user blocking probability in cognitive radio sensor networks. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3), 2081-2092. https://doi.org/10.3906/elk-1706-292
  • Haykin, S. (2005). Cognitive radio: brain‒empowered wireless communications, IEEE Journal of Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380
  • Jee, A., Hoque, S., & Arif, W. (2020). Performance analysis of secondary users under heterogeneous licensed spectrum environment in cognitive radio ad hoc networks. Annals of Telecommunications, 75, 407-419. http://dx.doi.org/10.1007/s12243-020-00761-8
  • Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18. https://doi.org/10.1109/98.788210
  • Namdar, M., & Başgümüş, A. (2017). Outage performance analysis of underlay cognitive radio networks with decode‐and‐forward relaying. Cognitive Radio, IntechOpen, 25-38. https://doi.org/10.5772/intechopen.69244
  • Park, J. H., & Chung, J. M. (2016). Prioritized channel allocation-based dynamic spectrum access in cognitive radio sensor networks without spectrum handoff. EURASIP Journal on Wireless Communications and Networking, 266, 1-8. https://doi.org/10.1186/s13638-016-0764-4
  • Qiming, T., Chuan, M., Guanding, Y., & Aiping, H. (2010). Analysis of cognitive radio spectrum access with finite primary users and infinite secondary users. International Conference on Wireless Communications & Signal Processing (WCSP) (pp. 1-5), China, https://doi.org/10.1109/WCSP.2010.5633740
  • Salameh, O., Bruneel, H., & Wittevrongel, S. (2020). Performance evaluation of cognitive radio networks with imperfect spectrum sensing and bursty primary user traffic. Mathematical Problems in Engineering, 64, 1-11. https://doi.org/10.1155/2020/4102046 Salameh, O., Turck, K. D., & Bruneel, H. (2017). Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff. Telecommunication Systems, 65, 539-550. https://doi.org/10.1007/s11235-016-0250-7
  • Sridhara, K., Chandra, A., & Tripathi, P. S. M. (2008). Spectrum challenges and solutions by cognitive radio: an overview. Wireless Personal Communications, 45, 281-291. https://doi.org/10.1007/s11277-008-9465-6
  • Tang, P. K., Chew, Y. H., Ong, L. C., & Haldar, M. K. (2006). Performance of secondary radios in spectrum sharing with prioritized primary access. IEEE Military Communications Conference (MILCOM), (pp. 1-7), USA. https://doi.org/10.1109/MILCOM.2006.302214
  • Tang, W., Yu, H., Han, Y., & Li, S. (2012). An analytical performance model considering access strategy of opportunistic spectrum sharing system. Concurrency and Computation: Practice and Experience, 24(11), 1200-1212. https://doi.org/10.1002/cpe.1890
  • Tumuluru, V. K., Wang, P., Niyato, D., & Song, W. (2012). Performance analysis of cognitive radio spectrum access with prioritized traffic. IEEE Transactions on Vehicular Technology, 61(4), 1895-1906. https://doi.org/10.1109/TVT.2012.2186471.
  • Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79-89. https://doi.org/10.1109/MSP.2007.361604
  • Zhonggui, M., & Hongbo, W. (2012). Dynamic spectrum allocation with maximum efficiency and fairness in interactive cognitive radio networks. Wireless Personal Communications, 64, 439-455. https://doi.org/10.1007/s11277-010-0208-0

Modeling, simulation and call performance analysis of a TDMA-based cognitive radio network with finite primary and secondary users

Yıl 2024, Cilt: 14 Sayı: 1, 105 - 115, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1318497

Öz

In this article; a TDMA-based cognitive radio network is modeled and the call performance of secondary users in this network is analyzed for different primary and secondary user traffic parameters and for different numbers of time slots. In our model, primary users utilize Time Division Multiple Access technique as the media access control mechanism, differing from well-known classical approaches, and by means of an opportunistic approach, secondary users take advantage of time slots not used by primary users. In addition, in the proposed network model, it is assumed that primary users have higher priority in accessing the channel than secondary users and are not affected by secondary users’ channel occupation. The performance of the cognitive radio network is analyzed in detail in terms of call-block and call-drop probabilities using a two-dimensional continuous Markov chain. In addition, the Monte-Carlo simulation of the proposed network model has been performed, and the obtained analytical results have been verified by the simulation results. According to the simulation results obtained, when the SU (secondary user) arrival rate is λ_s=0,07 and the number of time slot is N=4, the call block probability of SU is 0.0347, when the number of time slot is N=6, this value is improved by 95% to 0.00172 and when the number of time slot is N=8, value is improved by 99% to 0.00034.

Kaynakça

  • Bandırmalı, N., Çeken, C., Bayılmış, C., & Ertürk, İ. (2005). Kablosuz erişim yöntemlerinin karşılaştırmalı incelemesi. TMMOB Elektrik Elektronik Bilgisayar Mühendisliği 11. Ulusal Kongresi (ss. 22-25), İstanbul.
  • Bayrakdar, M. E., & Çalhan, A. (2015). Bilişsel radyo ağlarında spektrum el değiştirme. Sakarya University Journal of Science, 19(3), 291-302. https://doi.org/10.16984/saufenbilder.81445
  • Bayrakdar, M. E., & Çalhan, A. (2017). Kablosuz bilişsel radyo ağlarında spektrum el değiştirme için öncelik kuyrukları ve yapay zekâ teknikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 303-315. https://doi.org/10.28948/ngumuh.338042
  • Chu, T. M. C., Phan, H., & Zepernick, H. J. (2014). Dynamic spectrum access for cognitive radio networks with prioritized traffics. IEEE Communications Letters, 18(7), 1218-1221. https://doi.org/10.1109/LCOMM.2014.2319253
  • Hassani, M. M., & Berangi, R. (2019). Impact of the primary user on the secondary user blocking probability in cognitive radio sensor networks. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3), 2081-2092. https://doi.org/10.3906/elk-1706-292
  • Haykin, S. (2005). Cognitive radio: brain‒empowered wireless communications, IEEE Journal of Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380
  • Jee, A., Hoque, S., & Arif, W. (2020). Performance analysis of secondary users under heterogeneous licensed spectrum environment in cognitive radio ad hoc networks. Annals of Telecommunications, 75, 407-419. http://dx.doi.org/10.1007/s12243-020-00761-8
  • Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18. https://doi.org/10.1109/98.788210
  • Namdar, M., & Başgümüş, A. (2017). Outage performance analysis of underlay cognitive radio networks with decode‐and‐forward relaying. Cognitive Radio, IntechOpen, 25-38. https://doi.org/10.5772/intechopen.69244
  • Park, J. H., & Chung, J. M. (2016). Prioritized channel allocation-based dynamic spectrum access in cognitive radio sensor networks without spectrum handoff. EURASIP Journal on Wireless Communications and Networking, 266, 1-8. https://doi.org/10.1186/s13638-016-0764-4
  • Qiming, T., Chuan, M., Guanding, Y., & Aiping, H. (2010). Analysis of cognitive radio spectrum access with finite primary users and infinite secondary users. International Conference on Wireless Communications & Signal Processing (WCSP) (pp. 1-5), China, https://doi.org/10.1109/WCSP.2010.5633740
  • Salameh, O., Bruneel, H., & Wittevrongel, S. (2020). Performance evaluation of cognitive radio networks with imperfect spectrum sensing and bursty primary user traffic. Mathematical Problems in Engineering, 64, 1-11. https://doi.org/10.1155/2020/4102046 Salameh, O., Turck, K. D., & Bruneel, H. (2017). Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff. Telecommunication Systems, 65, 539-550. https://doi.org/10.1007/s11235-016-0250-7
  • Sridhara, K., Chandra, A., & Tripathi, P. S. M. (2008). Spectrum challenges and solutions by cognitive radio: an overview. Wireless Personal Communications, 45, 281-291. https://doi.org/10.1007/s11277-008-9465-6
  • Tang, P. K., Chew, Y. H., Ong, L. C., & Haldar, M. K. (2006). Performance of secondary radios in spectrum sharing with prioritized primary access. IEEE Military Communications Conference (MILCOM), (pp. 1-7), USA. https://doi.org/10.1109/MILCOM.2006.302214
  • Tang, W., Yu, H., Han, Y., & Li, S. (2012). An analytical performance model considering access strategy of opportunistic spectrum sharing system. Concurrency and Computation: Practice and Experience, 24(11), 1200-1212. https://doi.org/10.1002/cpe.1890
  • Tumuluru, V. K., Wang, P., Niyato, D., & Song, W. (2012). Performance analysis of cognitive radio spectrum access with prioritized traffic. IEEE Transactions on Vehicular Technology, 61(4), 1895-1906. https://doi.org/10.1109/TVT.2012.2186471.
  • Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79-89. https://doi.org/10.1109/MSP.2007.361604
  • Zhonggui, M., & Hongbo, W. (2012). Dynamic spectrum allocation with maximum efficiency and fairness in interactive cognitive radio networks. Wireless Personal Communications, 64, 439-455. https://doi.org/10.1007/s11277-010-0208-0
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veri İletişimleri
Bölüm Makaleler
Yazarlar

Sedat Atmaca 0000-0003-0229-4893

Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 22 Haziran 2023
Kabul Tarihi 31 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Atmaca, S. (2024). TDMA-tabanlı bir bilişsel radyo ağının sonlu birincil ve ikincil kullanıcılar için modellenmesi, benzetimi ve çağrı başarım analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 105-115. https://doi.org/10.17714/gumusfenbil.1318497