Araştırma Makalesi
BibTex RIS Kaynak Göster

Aril-sübstitüe pirilyum tuzlarının çözücüsüz sentezi ve oksokromların fotofiziksel özellikleri üzerine etkilerinin araştırılması

Yıl 2024, Cilt: 14 Sayı: 1, 98 - 104, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1355402

Öz

Pirilyum bileşikleri, üstün absorpsiyon ve floresans özellikleri nedeniyle üzerinde yoğun olarak çalışılan, oksonyum hetorhalkası üzerine kurulu yapılardır. Bu çalışma kapsamında ilk olarak pirilyum tuzlarının çözücüsüz ortamda elde edilebileceği gösterildi. Bu yöntem kullanılarak üçü yeni olan altı pirilyum bileşiği sentezlendi. Bu bileşiklerin 2,4 ve 6 pozisyonlarındaki fenil gruplarında farklı oksokromlar bulunmaktadır. Son aşamada bu bileşiklerin fotofiziksel özellikleri incelendi ve temel oksokromların pirilyum fotofiziği üzerindeki etkileri ortaya konuldu.

Etik Beyan

Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin herhangi bir etik kurul onayı ve/veya yasal-özel izin gerektirmediğini beyan eder.

Kaynakça

  • Aliaga, C., Vidal, M., Pastenes, C., Rezende, M. C., & Domínguez, M. (2019). Solvatofluorochromism of conjugated 4-methoxyphenyl-pyridinium electron donor-acceptor pairs. Dyes and Pigments, 166, 395-402. https://doi.org/10.1016/j.dyepig.2019.03.054
  • Arbeloa, F. L., Ojeda, P. R., & Arbeloa, I. L. (1989). Flourescence self-quenching of the molecular forms of rhodamine b in aqueous and ethanolic solutions. Journal of Luminescence, 44(1-2), 105-112. https://doi.org/10.1016/0022-2313(89)90027-6
  • Burov, A. M., Pchelintseva, N. V., & Fedotova, O. V. (2008). Electronic absorption spectra of pyrylium and benzodihydrochromenylium salts. Chemistry of Heterocyclic Compounds, 44(8), 924-930. https://doi.org/10.1007/s10593-008-0134-1
  • Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., & Goldberg, K. I. (2010). NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 29(9), 2176–2179. https://doi.org/10.1021/om100106e
  • García, F., García, J. M., García-Acosta, B., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2005). Pyrylium-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chemical Communications, 22, 2790-2792. https://doi.org/10.1039/b502374b
  • Haucke, G., Czerney, P., & Cebulla, F. (1992). Absorption and fluorescence of pyrylium salts. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 96(7), 880–886. https://doi.org/10.1002/bbpc.19920960706
  • Hola, E., & Ortyl, J. (2021). Pyrylium salt as a visible-light-induced photoredox catalyst for polymer and organic synthesis – perspectives on catalyst design and performance. European Polymer Journal, 150, 110365. https://doi.org/10.1016/j.eurpolymj.2021.110365
  • Idelson, A., Sterzenbach, C., Jester, S.-S., Tschierske, C., Baumeister, U., & Höger, S. (2017). A liquid-crystalline phenylene-based shape-persistent molecular spoked wheel. Journal of the American Chemical Society, 139(12), 4429–4434. https://doi.org/10.1021/jacs.6b13020
  • Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A new chromo-chemodosimeter selective for sulfide anion. Journal of the American Chemical Society, 125(30), 9000–9001. https://doi.org/10.1021/ja0347336
  • Lainé, P. P., Bedioui, F., Loiseau, F., Chiorboli, C., & Campagna, S. (2006). Conformationally gated photoinduced processes within photosensitizeracceptor dyads based on osmium(ıı) complexes with triarylpyridinio-functionalized terpyridyl ligands: insights from experimental study. Journal of the American Chemical Society, 128(23), 7510–7521. https://doi.org/10.1021/ja058357w
  • Makin, S., Markina, T., & Boiko, I. (1986). Chemistry of enol ethers. part 73. synthesis of pyrylium salts from the monoacetals of 1, 5‐dicarbonyl compounds. Chemischer Informationsdienst, 17(23), 208-210. https://doi.org/10.1002/chin.198623209
  • Miranda, M. A., & Garcia, H. (1994). 2,4,6-Triphenylpyrylium tetrafluoroborate as an electron-transfer photosensitizer. Chemical Reviews, 94(4), 1063–1089. https://doi.org/10.1021/cr00028a009
  • Qian, X., Gong, W., Wang, F., Lin, Y., & Ning, G. (2015). A pyrylium-based colorimetric and fluorimetric chemosensor for the selective detection of lysine in aqueous environment and real sample. Tetrahedron Letters, 56(21), 2764–2767. https://doi.org/10.1016/j.tetlet.2015.04.029
  • Yin, W., Wang, H., Deng, B., Ma, F., Zhang, J., Zhou, M., Wang, H., & Lu, Y. (2022). A pyrylium salt-based fluorescent probe for the highly sensitive detection of methylamine vapour. The Analyst, 147(15), 3451–3455. https://doi.org/10.1039/D2AN00911K
  • Yoshida, Z., Sugimoto, H., & Yoneda, S. (1972). Electronic spectra and structures of thiopyrylium and pyrylium cations. Tetrahedron, 28(24), 5873-5881. https://doi.org/10.1016/0040-4020(72)88120-1

Solvent-free synthesis of aryl-substituted pyrylium salts and investigation of the auxochromes’ effects on their photophysical properties

Yıl 2024, Cilt: 14 Sayı: 1, 98 - 104, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1355402

Öz

Pyrylium compounds are structures based on an oxonium heterocycle that has been extensively studied thanks to their superior absorption and fluorescence properties. In this study, pyrylium salts were first shown to be obtained in the solvent-free medium. Six pyrylium compounds, three of which were novel, were synthesized using this method. These compounds have different auxochromes on the phenyl groups at the 2,4 and 6 positions. In the final step, the photophysical properties of these compounds were examined and the effects of basic auxochromes on pyrylium photophysics were revealed.

Etik Beyan

The authors of this article declares that materials and methods used in this study requires no ethical committee approval and/or legal-special permission.

Kaynakça

  • Aliaga, C., Vidal, M., Pastenes, C., Rezende, M. C., & Domínguez, M. (2019). Solvatofluorochromism of conjugated 4-methoxyphenyl-pyridinium electron donor-acceptor pairs. Dyes and Pigments, 166, 395-402. https://doi.org/10.1016/j.dyepig.2019.03.054
  • Arbeloa, F. L., Ojeda, P. R., & Arbeloa, I. L. (1989). Flourescence self-quenching of the molecular forms of rhodamine b in aqueous and ethanolic solutions. Journal of Luminescence, 44(1-2), 105-112. https://doi.org/10.1016/0022-2313(89)90027-6
  • Burov, A. M., Pchelintseva, N. V., & Fedotova, O. V. (2008). Electronic absorption spectra of pyrylium and benzodihydrochromenylium salts. Chemistry of Heterocyclic Compounds, 44(8), 924-930. https://doi.org/10.1007/s10593-008-0134-1
  • Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., & Goldberg, K. I. (2010). NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 29(9), 2176–2179. https://doi.org/10.1021/om100106e
  • García, F., García, J. M., García-Acosta, B., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2005). Pyrylium-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chemical Communications, 22, 2790-2792. https://doi.org/10.1039/b502374b
  • Haucke, G., Czerney, P., & Cebulla, F. (1992). Absorption and fluorescence of pyrylium salts. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 96(7), 880–886. https://doi.org/10.1002/bbpc.19920960706
  • Hola, E., & Ortyl, J. (2021). Pyrylium salt as a visible-light-induced photoredox catalyst for polymer and organic synthesis – perspectives on catalyst design and performance. European Polymer Journal, 150, 110365. https://doi.org/10.1016/j.eurpolymj.2021.110365
  • Idelson, A., Sterzenbach, C., Jester, S.-S., Tschierske, C., Baumeister, U., & Höger, S. (2017). A liquid-crystalline phenylene-based shape-persistent molecular spoked wheel. Journal of the American Chemical Society, 139(12), 4429–4434. https://doi.org/10.1021/jacs.6b13020
  • Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A new chromo-chemodosimeter selective for sulfide anion. Journal of the American Chemical Society, 125(30), 9000–9001. https://doi.org/10.1021/ja0347336
  • Lainé, P. P., Bedioui, F., Loiseau, F., Chiorboli, C., & Campagna, S. (2006). Conformationally gated photoinduced processes within photosensitizeracceptor dyads based on osmium(ıı) complexes with triarylpyridinio-functionalized terpyridyl ligands: insights from experimental study. Journal of the American Chemical Society, 128(23), 7510–7521. https://doi.org/10.1021/ja058357w
  • Makin, S., Markina, T., & Boiko, I. (1986). Chemistry of enol ethers. part 73. synthesis of pyrylium salts from the monoacetals of 1, 5‐dicarbonyl compounds. Chemischer Informationsdienst, 17(23), 208-210. https://doi.org/10.1002/chin.198623209
  • Miranda, M. A., & Garcia, H. (1994). 2,4,6-Triphenylpyrylium tetrafluoroborate as an electron-transfer photosensitizer. Chemical Reviews, 94(4), 1063–1089. https://doi.org/10.1021/cr00028a009
  • Qian, X., Gong, W., Wang, F., Lin, Y., & Ning, G. (2015). A pyrylium-based colorimetric and fluorimetric chemosensor for the selective detection of lysine in aqueous environment and real sample. Tetrahedron Letters, 56(21), 2764–2767. https://doi.org/10.1016/j.tetlet.2015.04.029
  • Yin, W., Wang, H., Deng, B., Ma, F., Zhang, J., Zhou, M., Wang, H., & Lu, Y. (2022). A pyrylium salt-based fluorescent probe for the highly sensitive detection of methylamine vapour. The Analyst, 147(15), 3451–3455. https://doi.org/10.1039/D2AN00911K
  • Yoshida, Z., Sugimoto, H., & Yoneda, S. (1972). Electronic spectra and structures of thiopyrylium and pyrylium cations. Tetrahedron, 28(24), 5873-5881. https://doi.org/10.1016/0040-4020(72)88120-1
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Organik Kimyasal Sentez
Bölüm Makaleler
Yazarlar

Efdal Teknikel 0000-0003-3218-9437

Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 5 Eylül 2023
Kabul Tarihi 30 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Teknikel, E. (2024). Solvent-free synthesis of aryl-substituted pyrylium salts and investigation of the auxochromes’ effects on their photophysical properties. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 98-104. https://doi.org/10.17714/gumusfenbil.1355402