Araştırma Makalesi
BibTex RIS Kaynak Göster

V3Ge bileşiğinin fiziksel özelliklerinin ve süperiletkenlik mekanizmasının teorik olarak incelenmesi

Yıl 2024, Cilt: 14 Sayı: 3, 834 - 850, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1439901

Öz

Bu çalışmada Yoğunluk Fonksiyonel Teorisini ele alan Quantum Espresso paket programı kullanılarak A15 tipi V3Ge bileşiğinin yapısal, elektronik, elastik ve fonon özellikleri araştırılmış ve süperiletkenlik mekanizması teorik olarak incelenmiştir. Örgü sabiti hesaplamalarını müteakip hacim modülü ve hacim modülünün basınca göre birinci türevi farklı örgü sabitlerine karşılık gelen enerji değerleri ve Murnaghan durum denklemleri yardımıyla elde edilmiştir. Genelleştirilmiş Gradyan Yaklaşımı ve Yapay Potansiyel Metodu kullanılarak elektronik özelliklere ilişkin hesaplamalar yapılmış ve neticesinde V3Ge bileşiğinin elektronik bant yapısı grafikleri spin-orbit etkileşimi hesaba katılarak ve spin-orbit etkileşimi hariç tutularak ayrı ayrı hazırlanmıştır. Bunun yanı sıra V3Ge kristali için hesaplanan elektron durum yoğunluğu grafiklerinden, V3Ge kristalinin süperiletkenlik mekanizmasının araştırılmasında önemli bir yer tutan Fermi enerjisi civarındaki durum yoğunluğu N(EF), tam-rölativistik ultrasoft yapay potansiyeller kullanılarak hesaplanmıştır. Süperiletken materyallerin elastik özelliklerinin araştırılması, süperiletkenlik özelliklerinin teorik olarak anlaşılabilmesi için de oldukça önemlidir. Bu nedenle bu çalışmada V3Ge bileşiğinin elastik özellikleri ayrıntılı olarak ele alınmıştır. Elastik sabitlerin değerleri, Gerilme-Gerinim (Stress-Strain) metodu kullanılarak elde edilmiştir. V3Ge’nin süperiletkenlik özelliklerinin incelenebilmesi için fonon özelliklerinin de incelenmesi gerekir. Fonon hesaplamaları neticesinde ortalama fonon frekansı ve elektron-fonon etkileşim parametresi elde edilmiştir. Bu parametre değerleri ve Migdal-Eliashberg yaklaşımı kullanılarak V3Ge bileşiğinin süperiletkenliğe geçiş kritik sıcaklığı ortaya konmuştur.

Kaynakça

  • Achar, B. N. N., and Barsch, G. R. (1979). Phonon spectra of the A15 compounds V3Si, V3Ge and V3Ga. Solid State Communications, 29(8), 563-566. https://doi.org/10.1016/0038-1098(79)90664-1
  • Ahmed, E., Kobayashi, K., Arakawa, N., Okuba, Y., Sakai, A., Nakatsuji, S., Iyo, A., and Ebihira, T. (2022). Superconducting properties of the A15 structure compound V3Ge. Physica C, 602, 1354140. https://doi.org/10.1016/j.physc.2022.1354140
  • Allen, P. B. (1972). Neutron spectroscopy of superconductors. Physical Review B, 6(7), 2577. https://doi.org/10.1103/PhysRevB.6.2577
  • Allen, P. B., and Dynes, R. C. (1975). Transition temperature of strong-coupled superconductors reanalyzed. Physical Review B, 12(3), 905. https://doi.org/10.1103/PhysRevB.12.905
  • Arbman, G., and Jarlborg, T. (1978). Trend studies of A15 compounds by self-consistent band calculations. Solid State Communications, 26(11), 857-861. https://doi.org/10.1016/0038-1098(78)90759-7
  • Born, M., & Huang, K. (1996). Dynamical theory of crystal lattices. Oxford university press. https://doi.org/10.1093/oso/9780192670083.001.0001
  • Chihi, T., Fatmi, M., & Ghebouli, M. A. (2012). Ab initio study of some fundamental properties of the M3X (M= Cr, V; X= Si, Ge) compounds. Physica B: Condensed Matter, 407(17), 3591-3595. https://doi.org/10.1016/j.physb.2012.05.032
  • Delaire, O., Lucas, M. S., Munoz, J. A., Kresch, M., and Fultz, B. (2008). Adiabatic Electron-Phonon İnteraction and High-Temperature Thermodynamics of A15 Compounds. Physics Review Letters, 101, 105504. https://doi.org/10.1103/PhysRevLett.101.105504
  • Delaire, O. (2010). Studies of high-temperature electron-phonon interactions with inelastic neutron scattering and first-principles computations. Applied Physics A, 99, 523-529. https://doi.org/10.1007/s00339-010-5618-z
  • Dew-Hughes, D. (1975). Superconducting A-15 compounds: A review. Cryogenics, 15(8), 435-454. https://doi.org/10.1016/0011-2275(75)90019-3
  • Dierker, S. B., Merlin, R., Klein, M. V., Webb, G. W., and Fisk, Z. (1983). Raman scattering in V3Si, V3Ge, Nb3Sn, and Nb3Sb: Damping of the Eg optical phonon by interband electronic excitations. Physical Review B, 27, 3577-3591. https://doi.org/10.1103/PhysRevB.27.3577
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502. https://iopscience.iop.org/article/10.1088/0953-8984/21/39/395502
  • Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., ... & Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter, 29(46), 465901. https://iopscience.iop.org/article/10.1088/1361-648X/aa8f79
  • Hardy, G. F., and Hulm, J. K. (1953). Superconducting Silicides and Germanides. Phys. Rev., 89, 884. https://doi.org/10.1103/PhysRev.89.884
  • Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349.
  • James, W. J., & Straumanis, M. E. (1961). Lattice parameter and coefficient of thermal expansion of vanadium. Zeitschrift für Physikalische Chemie, 29(1_2), 134-142. https://doi.org/10.1524/zpch.1961.29.1_2.134
  • Kodess, B. N., and Butman, L. A. (1982). Electron density distribution in V3Ge. Solid State Communications, 44(3), 421-424. https://doi.org/10.1016/0038-1098(82)90885-7
  • Klein, B. M., and Lu, Z. W. (2001). Structural instabilities in A15 materials driven by anharmonic phonons: a first-principles study. Physica B, 296(1-3), 120-124. https://doi.org/10.1016/S0921-4526(00)00788-2
  • Kokalj, A. (1999). XCrySDen—a new program for displaying crystalline structures and electron densities. Journal of Molecular Graphics and Modelling, 17(3-4), 176-179. https://doi.org/10.1016/S1093-3263(99)00028-5
  • Mattheiss, L. F. (1975). APW-LCAO band model for A15 compound. Phys. Rev. B, 12, 2161-2180. https://doi.org/10.1103/PhysRevB.12.2161
  • Menon, C. S. and Philip, J. (1978). Third order elastic constants of V3Si and V3Ge. Solid State Communications, 26(12), 897-899. https://doi.org/10.1016/0038-1098(78)91247-4 Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247. https://doi.org/10.1073/pnas.30.9.244
  • Nettel S. J., and Thomas, H. (1977). Electron density of states and superconducting TC in A15-compounds. Solid State Communications, 21(7), 683-686. https://doi.org/10.1016/0038-1098(77)90845-6
  • Papaconstantopoulos, D. A., and Soukoulis, C. M. (1981). The superconducting transition temperature of disordered A-15 compounds. Physica B+C, 107(1-3), 265-266 https://doi.org/10.1016/0378-4363(81)90438-1 Perdew, J. P., and Burke, K. (1996). Comparison shopping for a gradient‐corrected density functional. International journal of quantum chemistry, 57(3), 309-319. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<309::AID-QUA4>3.0.CO;2-1
  • Philip, J. (1980). Grüneisen parameter and thermal expansion of V3Si and V3Ge. J. Phys. Chem. Solids, 41(5), 461-463. https://doi.org/10.1016/0022-3697(80)90175-4
  • Radousky, H. B., Jarlborg, T., Knapp, G. S., and Freeman, A. J. (1982). Assessment of theoretical determinations of the electron-phonon coupling parameter λ in metals and intermetallic compounds. Physical Review B, 26, 1208-1222. https://doi.org/10.1103/PhysRevB.26.1208
  • Reuss, A. J. Z. A. M. M. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech, 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  • Skripov, A. V., and Stepanov, A. P. (1984). Electronic structure of V3Si and V3Ge. Phys. Stat. Sol. (B), 126, 557-563. https://doi.org/10.1002/pssb.2221260215 Smidman, M. (2014). Superconducting and magnetic properties of non-centrosymmetric systems [Doctoral dissertation, University of Warwick].
  • Solleder, T., Essman, U., and Kronmüller, H. (1984). The paramagnetic susceptibility of neutron irradiated V3Ge single crystals. Physics Letter A, 105(7), 377-379. https://doi.org/10.1016/0375-9601(84)90286-X
  • Somekh, R. E., and Evetts, R.E. (1977). The sputtering of high TC A15 Nb3Si and V3Ge. Solid State Communications, 24(10), 733-737. https://doi.org/10.1016/0038-1098(77)90086-2
  • Surikov, Vad. I., Surikov, Val. I., Kuznetsova, Y.V., Semenyuk, N. A., Lyakh, O.V., and Prokudina, N. A. (2021). Electronic specific heat of vanadium compounds at low temperatures. Russian Physics Journal, 64, 376-380. https://doi.org/10.1007/s11182-021-02340-3
  • Tahsin, Ö., ARIKAN, N., and İHSAN, A. (2023). Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(4), 858-864. https://doi.org/10.35414/akufemubid.1263710
  • Voigt, W. (1928). Lehrbuch der Kristallphysik, Verlag und Druck, Von BG Teubner. Leipzig und Berlin, 962.

Theoretical Investigation of the physical properties and superconductivity mechanism of V3Ge compound

Yıl 2024, Cilt: 14 Sayı: 3, 834 - 850, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1439901

Öz

In this study, the superconductivity mechanism was theoretically examined by investigating the structural, electronic, elastic and phonon properties of the A15 type V3Ge compound using the Quantum Espresso package program, which deals with Density Functional Theory. Following the lattice constant calculations the bulk modulus and the first derivative of the bulk modulus with respect to pressure were with the help of energy values corresponding and different lattice constants and Murnaghan equations of state. Calculations regarding the electronic proerties were made using the Generalized Gradient Approach and Pseudopotential Method and as a result, the electronic band structure graphs of the V3Ge compound were prepared separately by including the spin-orbit interaction in the calculation and excluding the spin-orbit interaction. In addition, from the electronic density of states graph calculated for the V3Ge crystal, the density of states at the Fermi level, N(EF), which has an important place in the investigation of the superconductivity mechanism of the V3Ge crystal was calculated using full-relativistic ultrasoft pseudopotentials. Investigation of the elastic properties of superconducting materials is also very important for the theoretical understanding of superconductivity properties. Therefore, in this study, the elastic properties of the V3Ge compound are discussed in detail. Elastic constant values have been obtained by using the Stress-Strain method. In order to investigate the superconductivity properties of V3Ge, phonon properties should be analysed. As a result of the phonon calculations, the average phonon frequency and electron-phonon interaction parameter were obtained. These parameter values were used to reveal the critical temperature of the V3Ge compound for transition to superconductivity using the Migdal-Eliashberg approach.

Kaynakça

  • Achar, B. N. N., and Barsch, G. R. (1979). Phonon spectra of the A15 compounds V3Si, V3Ge and V3Ga. Solid State Communications, 29(8), 563-566. https://doi.org/10.1016/0038-1098(79)90664-1
  • Ahmed, E., Kobayashi, K., Arakawa, N., Okuba, Y., Sakai, A., Nakatsuji, S., Iyo, A., and Ebihira, T. (2022). Superconducting properties of the A15 structure compound V3Ge. Physica C, 602, 1354140. https://doi.org/10.1016/j.physc.2022.1354140
  • Allen, P. B. (1972). Neutron spectroscopy of superconductors. Physical Review B, 6(7), 2577. https://doi.org/10.1103/PhysRevB.6.2577
  • Allen, P. B., and Dynes, R. C. (1975). Transition temperature of strong-coupled superconductors reanalyzed. Physical Review B, 12(3), 905. https://doi.org/10.1103/PhysRevB.12.905
  • Arbman, G., and Jarlborg, T. (1978). Trend studies of A15 compounds by self-consistent band calculations. Solid State Communications, 26(11), 857-861. https://doi.org/10.1016/0038-1098(78)90759-7
  • Born, M., & Huang, K. (1996). Dynamical theory of crystal lattices. Oxford university press. https://doi.org/10.1093/oso/9780192670083.001.0001
  • Chihi, T., Fatmi, M., & Ghebouli, M. A. (2012). Ab initio study of some fundamental properties of the M3X (M= Cr, V; X= Si, Ge) compounds. Physica B: Condensed Matter, 407(17), 3591-3595. https://doi.org/10.1016/j.physb.2012.05.032
  • Delaire, O., Lucas, M. S., Munoz, J. A., Kresch, M., and Fultz, B. (2008). Adiabatic Electron-Phonon İnteraction and High-Temperature Thermodynamics of A15 Compounds. Physics Review Letters, 101, 105504. https://doi.org/10.1103/PhysRevLett.101.105504
  • Delaire, O. (2010). Studies of high-temperature electron-phonon interactions with inelastic neutron scattering and first-principles computations. Applied Physics A, 99, 523-529. https://doi.org/10.1007/s00339-010-5618-z
  • Dew-Hughes, D. (1975). Superconducting A-15 compounds: A review. Cryogenics, 15(8), 435-454. https://doi.org/10.1016/0011-2275(75)90019-3
  • Dierker, S. B., Merlin, R., Klein, M. V., Webb, G. W., and Fisk, Z. (1983). Raman scattering in V3Si, V3Ge, Nb3Sn, and Nb3Sb: Damping of the Eg optical phonon by interband electronic excitations. Physical Review B, 27, 3577-3591. https://doi.org/10.1103/PhysRevB.27.3577
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502. https://iopscience.iop.org/article/10.1088/0953-8984/21/39/395502
  • Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., ... & Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter, 29(46), 465901. https://iopscience.iop.org/article/10.1088/1361-648X/aa8f79
  • Hardy, G. F., and Hulm, J. K. (1953). Superconducting Silicides and Germanides. Phys. Rev., 89, 884. https://doi.org/10.1103/PhysRev.89.884
  • Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349.
  • James, W. J., & Straumanis, M. E. (1961). Lattice parameter and coefficient of thermal expansion of vanadium. Zeitschrift für Physikalische Chemie, 29(1_2), 134-142. https://doi.org/10.1524/zpch.1961.29.1_2.134
  • Kodess, B. N., and Butman, L. A. (1982). Electron density distribution in V3Ge. Solid State Communications, 44(3), 421-424. https://doi.org/10.1016/0038-1098(82)90885-7
  • Klein, B. M., and Lu, Z. W. (2001). Structural instabilities in A15 materials driven by anharmonic phonons: a first-principles study. Physica B, 296(1-3), 120-124. https://doi.org/10.1016/S0921-4526(00)00788-2
  • Kokalj, A. (1999). XCrySDen—a new program for displaying crystalline structures and electron densities. Journal of Molecular Graphics and Modelling, 17(3-4), 176-179. https://doi.org/10.1016/S1093-3263(99)00028-5
  • Mattheiss, L. F. (1975). APW-LCAO band model for A15 compound. Phys. Rev. B, 12, 2161-2180. https://doi.org/10.1103/PhysRevB.12.2161
  • Menon, C. S. and Philip, J. (1978). Third order elastic constants of V3Si and V3Ge. Solid State Communications, 26(12), 897-899. https://doi.org/10.1016/0038-1098(78)91247-4 Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247. https://doi.org/10.1073/pnas.30.9.244
  • Nettel S. J., and Thomas, H. (1977). Electron density of states and superconducting TC in A15-compounds. Solid State Communications, 21(7), 683-686. https://doi.org/10.1016/0038-1098(77)90845-6
  • Papaconstantopoulos, D. A., and Soukoulis, C. M. (1981). The superconducting transition temperature of disordered A-15 compounds. Physica B+C, 107(1-3), 265-266 https://doi.org/10.1016/0378-4363(81)90438-1 Perdew, J. P., and Burke, K. (1996). Comparison shopping for a gradient‐corrected density functional. International journal of quantum chemistry, 57(3), 309-319. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<309::AID-QUA4>3.0.CO;2-1
  • Philip, J. (1980). Grüneisen parameter and thermal expansion of V3Si and V3Ge. J. Phys. Chem. Solids, 41(5), 461-463. https://doi.org/10.1016/0022-3697(80)90175-4
  • Radousky, H. B., Jarlborg, T., Knapp, G. S., and Freeman, A. J. (1982). Assessment of theoretical determinations of the electron-phonon coupling parameter λ in metals and intermetallic compounds. Physical Review B, 26, 1208-1222. https://doi.org/10.1103/PhysRevB.26.1208
  • Reuss, A. J. Z. A. M. M. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech, 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  • Skripov, A. V., and Stepanov, A. P. (1984). Electronic structure of V3Si and V3Ge. Phys. Stat. Sol. (B), 126, 557-563. https://doi.org/10.1002/pssb.2221260215 Smidman, M. (2014). Superconducting and magnetic properties of non-centrosymmetric systems [Doctoral dissertation, University of Warwick].
  • Solleder, T., Essman, U., and Kronmüller, H. (1984). The paramagnetic susceptibility of neutron irradiated V3Ge single crystals. Physics Letter A, 105(7), 377-379. https://doi.org/10.1016/0375-9601(84)90286-X
  • Somekh, R. E., and Evetts, R.E. (1977). The sputtering of high TC A15 Nb3Si and V3Ge. Solid State Communications, 24(10), 733-737. https://doi.org/10.1016/0038-1098(77)90086-2
  • Surikov, Vad. I., Surikov, Val. I., Kuznetsova, Y.V., Semenyuk, N. A., Lyakh, O.V., and Prokudina, N. A. (2021). Electronic specific heat of vanadium compounds at low temperatures. Russian Physics Journal, 64, 376-380. https://doi.org/10.1007/s11182-021-02340-3
  • Tahsin, Ö., ARIKAN, N., and İHSAN, A. (2023). Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(4), 858-864. https://doi.org/10.35414/akufemubid.1263710
  • Voigt, W. (1928). Lehrbuch der Kristallphysik, Verlag und Druck, Von BG Teubner. Leipzig und Berlin, 962.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yoğun Madde Modellemesi ve Yoğunluk Fonksiyonel Teorisi, Yoğun Maddenin Elektronik ve Manyetik Özellikleri; Süperiletkenlik, Yoğun Maddenin Yapısal Özellikleri
Bölüm Makaleler
Yazarlar

Süleyman Berkutay Dursun 0000-0001-8969-0498

Sadık Bağcı 0000-0001-8097-6000

Yayımlanma Tarihi 15 Eylül 2024
Gönderilme Tarihi 19 Şubat 2024
Kabul Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 3

Kaynak Göster

APA Dursun, S. B., & Bağcı, S. (2024). V3Ge bileşiğinin fiziksel özelliklerinin ve süperiletkenlik mekanizmasının teorik olarak incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(3), 834-850. https://doi.org/10.17714/gumusfenbil.1439901