Araştırma Makalesi
BibTex RIS Kaynak Göster

Kabarcık döküm tekniği ile üretilen elastomer esaslı yumuşak robotik tutucunun performansının incelenmesi

Yıl 2024, Cilt: 14 Sayı: 4, 1120 - 1127, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1244719

Öz

Kabarcık döküm tekniği ile elastomerik malzemeden oluşan yumuşak bir robotik aktüatör üretilmiştir. Sıvı elastomerin viskozitesinin robotik aktüatörün bükülme şeklini nasıl etkilediğini belirlemek için araştırmalar yapıldı. Tutucunun eğriliği, tepki süresi ve yük taşıma kapasitesi ölçülmüş ve uygulanan hava basıncı ile bu özellikler arasındaki ilişki incelenmiştir. Ayrıca çevresel faktörlerin (kuru, ıslak ve yağlı) tutucunun yük taşıma kapasitesi üzerindeki etkisi incelenmiştir. Bu bulgular, uygulanan hava basıncı arttıkça tutucunun tepki süresinin, eğriliğinin ve yük taşıma kapasitesinin tamamının arttığını göstermektedir. Uygulanan tüm basınçlar için tutucunun en yüksek yük taşıma kapasitesi kuru ortamda gözlenmiştir. Üretilen robotik tutucuların kuru ortamda yük taşıma kapasitesi, 30 kPa, 35 kPa ve 40 kPa basınçları için sırasıyla yaklaşık 2,5 g, 3,5 g ve 5,9 g olmuştur. Bekleme süresinin değiştirilmesiyle elastomerin viskozitesi yönetilebilir. Optimum bükme performansı için ideal bekleme süresi 3 ile 4 dakika arasında bulunmuştur. Yumuşak robotik tutucu, daha yüksek performans elde etmek için geliştirilirse, gerçek dünya uygulamaları için uygun olacaktır.

Kaynakça

  • Acome, E., Mitchell, S. K., Morrissey, T., Emmett, M., Benjamin, C., King, M., Radakovitz, M., & Keplinger, C. (2018). Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 359(6371), 61–65. https://doi.org/ 10.1126/science.aao6139
  • Boley, J. W., Van Rees, W. M., Lissandrello, C., Horenstein, M. N., Truby, R. L., Kotikian, A., Lewis, J. A., & Mahadevan, L. (2019). Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences, 116(42), 20856–20862. https://doi.org/ 10.1073/pnas.1908806116
  • Gorissen, B., Reynaerts, D., Konishi, S., Yoshida, K., Kim, J., & De Volder, M. (2017). Elastic inflatable actuators for soft robotic applications. Advanced Materials, 29(43), 1604977. https://doi.org/ 10.1002/adma.201604977
  • Guseinov, R., McMahan, C., Pérez, J., Daraio, C., & Bickel, B. (2020). Programming temporal morphing of self-actuated shells. Nature Communications, 11(1), 1–7. https://doi.org/10.15479/AT:ISTA:7154.
  • Hawkes, E. W., Blumenschein, L. H., Greer, J. D., & Okamura, A. M. (2017). A soft robot that navigates its environment through growth. Science Robotics,2(8),eaan3028. https://doi.org/ 10.1126/scirobotics.aan3028
  • Hu, W., Lum, G. Z., Mastrangeli, M., & Sitti, M. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690), 81–85. https://doi.org/ 10.1038/nature25443
  • Jones, T. J., Jambon-Puillet, E., Marthelot, J., & Brun, P.-T. (2021). Bubble casting soft robotics. Nature, 599(7884), 229–233. https://doi.org/ 10.1038/s41586-021-04029-6
  • Kanik, M., Orguc, S., Varnavides, G., Kim, J., Benavides, T., Gonzalez, D., Akintilo, T., Tasan, C. C., Chandrakasan, A. P., & Fink, Y. (2019). Strain-programmable fiber-based artificial muscle. Science, 365(6449), 145–150. https://doi.org/ 10.1126/science.aaw2502
  • Kim, Y., Yuk, H., Zhao, R., Chester, S. A., & Zhao, X. (2018). Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 558(7709), 274–279. https://doi.org/ 10.1038/s41586-018-0185-0
  • Majidi, C. (2014). Soft robotics: A perspective—Current trends and prospects for the future. Soft Robotics, 1(1), 5–11. https://doi.org/ 10.1089/soro.2013.0001
  • Overvelde, J. T., Kloek, T., D’haen, J. J., & Bertoldi, K. (2015). Amplifying the response of soft actuators by harnessing snap-through instabilities. Proceedings of the National Academy of Sciences, 112(35), 10863–10868. https://doi.org/ 10.1073/pnas.1504947112
  • Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T., & Shepherd, R. F. (2017). Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction. Advanced Engineering Materials, 19(12), 1700016. https://doi.org/ 10.1002/adem.201700016
  • Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., & Walsh, C. J. (2015). Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73, 135–143. https://doi.org/ 10.1016/j.robot.2014.08.014
  • Roche, E. T., Wohlfarth, R., Overvelde, J. T., Vasilyev, N. V., Pigula, F. A., Mooney, D. J., Bertoldi, K., & Walsh, C. J. (2014). A bioinspired soft actuated material. Advanced Materials, 26(8), 1200–1206. https://doi.org/ 10.1002/adma.201304018
  • Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418. https://doi.org/ 10.1038/nmat4544
  • Yang, D., Verma, M. S., So, J., Mosadegh, B., Keplinger, C., Lee, B., Khashai, F., Lossner, E., Suo, Z., & Whitesides, G. M. (2016). Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies, 1(3), 1600055. https://doi.org/ 10.1002/admt.201600055

Investigation of the performance of the elastomer-based soft robotic gripper produced by the bubble casting technique

Yıl 2024, Cilt: 14 Sayı: 4, 1120 - 1127, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1244719

Öz

A soft robotic actuator was produced by the bubble casting technique, which is composed of elastomeric material. Investigations were conducted to determine how the viscosity of the liquid elastomer affected how the robotic actuator bent. The gripper's curvature, response time, and load-carying capacity were measured, and the relation between applied air pressure and these characteristics was examined. Moreover, the effect of environmental factors (dry, wet and oily) on the load-carrying capacity of the gripper was investigated. These findings demonstrate that as applied air pressure is increased, the gripper's response time, curvature, and load-carrying capacity all increase. For all applied pressures, the highest load-carrying capacity of the gripper was observed in a dry environment. The grippers load-carrying capacity in a dry environment was approximately 2.5 g, 3.5 g, and 5.9 g at pressures of 30 kPa, 35 kPa, and 40 kPa, respectively. By altering the waiting time, the elastomer's viscosity could be managed. The ideal waiting time was found to be between 3 and 4 minutes for optimal bending performance. If the soft robotic gripper is improved to achieve greater performance, it will be suitable for real-world applications.

Kaynakça

  • Acome, E., Mitchell, S. K., Morrissey, T., Emmett, M., Benjamin, C., King, M., Radakovitz, M., & Keplinger, C. (2018). Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 359(6371), 61–65. https://doi.org/ 10.1126/science.aao6139
  • Boley, J. W., Van Rees, W. M., Lissandrello, C., Horenstein, M. N., Truby, R. L., Kotikian, A., Lewis, J. A., & Mahadevan, L. (2019). Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences, 116(42), 20856–20862. https://doi.org/ 10.1073/pnas.1908806116
  • Gorissen, B., Reynaerts, D., Konishi, S., Yoshida, K., Kim, J., & De Volder, M. (2017). Elastic inflatable actuators for soft robotic applications. Advanced Materials, 29(43), 1604977. https://doi.org/ 10.1002/adma.201604977
  • Guseinov, R., McMahan, C., Pérez, J., Daraio, C., & Bickel, B. (2020). Programming temporal morphing of self-actuated shells. Nature Communications, 11(1), 1–7. https://doi.org/10.15479/AT:ISTA:7154.
  • Hawkes, E. W., Blumenschein, L. H., Greer, J. D., & Okamura, A. M. (2017). A soft robot that navigates its environment through growth. Science Robotics,2(8),eaan3028. https://doi.org/ 10.1126/scirobotics.aan3028
  • Hu, W., Lum, G. Z., Mastrangeli, M., & Sitti, M. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690), 81–85. https://doi.org/ 10.1038/nature25443
  • Jones, T. J., Jambon-Puillet, E., Marthelot, J., & Brun, P.-T. (2021). Bubble casting soft robotics. Nature, 599(7884), 229–233. https://doi.org/ 10.1038/s41586-021-04029-6
  • Kanik, M., Orguc, S., Varnavides, G., Kim, J., Benavides, T., Gonzalez, D., Akintilo, T., Tasan, C. C., Chandrakasan, A. P., & Fink, Y. (2019). Strain-programmable fiber-based artificial muscle. Science, 365(6449), 145–150. https://doi.org/ 10.1126/science.aaw2502
  • Kim, Y., Yuk, H., Zhao, R., Chester, S. A., & Zhao, X. (2018). Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 558(7709), 274–279. https://doi.org/ 10.1038/s41586-018-0185-0
  • Majidi, C. (2014). Soft robotics: A perspective—Current trends and prospects for the future. Soft Robotics, 1(1), 5–11. https://doi.org/ 10.1089/soro.2013.0001
  • Overvelde, J. T., Kloek, T., D’haen, J. J., & Bertoldi, K. (2015). Amplifying the response of soft actuators by harnessing snap-through instabilities. Proceedings of the National Academy of Sciences, 112(35), 10863–10868. https://doi.org/ 10.1073/pnas.1504947112
  • Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T., & Shepherd, R. F. (2017). Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction. Advanced Engineering Materials, 19(12), 1700016. https://doi.org/ 10.1002/adem.201700016
  • Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., & Walsh, C. J. (2015). Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73, 135–143. https://doi.org/ 10.1016/j.robot.2014.08.014
  • Roche, E. T., Wohlfarth, R., Overvelde, J. T., Vasilyev, N. V., Pigula, F. A., Mooney, D. J., Bertoldi, K., & Walsh, C. J. (2014). A bioinspired soft actuated material. Advanced Materials, 26(8), 1200–1206. https://doi.org/ 10.1002/adma.201304018
  • Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418. https://doi.org/ 10.1038/nmat4544
  • Yang, D., Verma, M. S., So, J., Mosadegh, B., Keplinger, C., Lee, B., Khashai, F., Lossner, E., Suo, Z., & Whitesides, G. M. (2016). Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies, 1(3), 1600055. https://doi.org/ 10.1002/admt.201600055
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Murat Eroğlu 0000-0001-5340-9609

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 30 Ocak 2023
Kabul Tarihi 10 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Eroğlu, M. (2024). Investigation of the performance of the elastomer-based soft robotic gripper produced by the bubble casting technique. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1120-1127. https://doi.org/10.17714/gumusfenbil.1244719