Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of physical, thermal, and morphological properties of polypropylene/montmorillonite composite foam

Yıl 2024, Cilt: 14 Sayı: 4, 1207 - 1218, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1444336

Öz

In this study, the properties of polymer based foams produced by plastic extrusion method using different amounts of chemical foaming agent from PP/MMT polymer/ceramic composite were examined. In the first step of foam production, the components forming the composite were melt-mixed in the extrusion machine to obtain a homogeneous mixture. In the second stage, 3, 6, 9% by weight (wt.) of chemical foaming agent (CCA) with the trade name ITP 825 was added to the PP/MMT mixture and after extrusion, composite granules in foam form were obtained. Foam granules, which were subjected to drying to remove moisture, were molded in a plastic injection machine in accordance with test sample standards. To examine the physical properties of polymer-based foams; wear, particle size analysis, to examine thermal properties; heat deflection temperature (HDT), Vicat softening temperature, melt flow index (MFI) and to examine its microstructure; Scanning electron microscopy (SEM) tests were performed. It was observed that the addition of clay increased the thermal resistance of the polymer, but the thermal properties were negatively affected by the increase in porosity. With the addition of 5% MMT by weight, HDT and Vicat values of polymer/ceramic composites increased by 3,8% and 1,4%, respectively.

Proje Numarası

1919B012301643

Kaynakça

  • Akkoyun, M., Badem, İ., Öztoksoy, M. E., & Aslan, Y. (2020). Polypropylene/chemical blowing agent foams: effect of the ınjection speed and core back distance on microstructure and mechanical properties. International Journal of Engineering Research and Development, 12(2), 638-647.
  • Antunes, M., Abbasi, H., & Velasco, J. I. (2021) The effect of microcellular structure on the dynamic mechanical thermal properties of high-performance nanocomposite foams made of graphene nanoplatelets-filled polysulfone. Polymers, 13(3), 437.
  • Ashby, M. F., & Lu, T. J. (2003). Metal foams: a survey. Science and Technology of China, Series B, 46(6), 521-532.
  • Ateş, M., Karadağ, S., Akdoğan Eker, A., & Eker, B. (2022). Polyurethane foam materials and their industrial applications. Polymer International, 71(10), 1157-1163.
  • Badem, İ. (2019). Polipropilen köpüklerde proses parametrelerinin mekanik, mikroyapı ve yüzey kalite özelliklerine etkisinin araştırılması [Yüksek Lisans Tezi, Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Başer, T. A. (2012). Alüminyum alaşımları ve otomotiv endüstrisinde kullanımı. Mühendis ve Makine, 53(635), 51-58.
  • Bledzki, A. K., & Faruk, Ö. (2006). Injection moulded microcellular wood fibre–polypropylene composites. Composites Part A: Applied Science and Manufacturing, 37(9), 1358-1367.
  • Chen, S, Zhu, W., & Cheng, Y. (2018). Multi-objective optimization of acoustic performances of polyurethane foam composites. Polymers, 10(7), 788.
  • Chung, C., Hwang, S., Chen, S., & Lai, M. (2021). Effects of injection molding process parameters on the chemical foaming behavior of polypropylene and polystyrene. Polymers, 13(14). https://doi.org/10.3390/polym13142331
  • Çakır, S. (2021). Otomotiv sektöründe kullanılan polipropilen esaslı iç trim parçalarının kimyasal köpük yapıc katkı kullanılarak enjeksiyon kalıplama yöntemi ile üretilmesi ve özelliklerinin belirlenmesi [Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü].
  • Dias, E., Chalse, H., Mutka, S., Mundhe, Y., Ambhore, N., Kulkarni, A., & Mache, A. (2023). Review on synthetic/natural fibers polymer composite filled with nanoclay and their mechanical performance. Materials Today: Proceedings, 77(3), 916-925.
  • Ema, Y., Ikeya, M., & Okamoto, M. (2006). Foam processing and cellular structure of polylactide-based nanocomposites. Polymer, 47(15), 5350-5359.
  • Fu, X. A., & Qutubuddin, S. (2001). Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer, 42(10), 4501-4507.
  • Guo, Z. (2008). Experimental analysis of polymer nanocomposite foaming using carbon dioxide [Yüksek Lisans Tezi, Ohio State Üniversitesi]
  • Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer–nanoclay composites. Applied Science, 8(9). https://doi.org/10.3390/app8091696
  • Güven, Ş. (2011). Toz metalurjisi ve metalik köpükler. Teknik Bilimler Dergisi, 1(2), 22-28.
  • Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite Structures, 262. https://doi.org/10.1016/j.compstruct.2021.113640
  • Jiang, M., He, L., Gong, W., Dong, L., Xie, H., & Xiong, C. (2012). Enhancement of polymer foam quality by modifying structural and decomposition characteristics of chemical blowing agent. Polymer-Plastics Technology and Engineering, 51(3), 263-267.
  • Jin, F. L., Zhao, M., Park, M., & Park, S. J. (2019). Recent trends of foaming in polymer processing: a review. Polymers, 11(6). https://doi.org/10.3390/polym11060953
  • Kanny, K., Jawahar, P., & Moodley, V. (2008) Mechanical and tribological behavior of clay–polypropylene nanocomposites. Journal of Materials Science, 43(22), 7230-7238.
  • Koçyi̇ği̇t, N. (2022). A review of micro and nanoporous polymeric foams: properties, preparation techniques, foaming agents and usage areas. Revista de Investigación de la Universidad del Quindío, 34(S5), 217-230.
  • Körner, C., & Singer, R. F. (2000). Processing of metal foams—challenges and opportunities. Advanced Engineering Materials, 2(4), 159-165.
  • Kumar, V. S. (2014). Thermal properties of polypropylene/MMT nanocomposites. International Journal of Science and Technology, 7(is7), 136-139.
  • Kumar, A., Patham, B., Mohanty, S., & Nayak, S. K. (2019). Effect of temperature on thermal, mechanical and morphological properties of polypropylene foams prepared by single step and two step batch foaming process. Journal of Polymer Research, 26. https://doi.org/10.1007/s10965-019-1699-3
  • Lee, L. J., Zheng, C., Cao, X., Han, X., Shen, J., & Xu, G. (2005). Polymer nanocomposite foams. Composites Science and Technology, 65(15-16), 2344-2363.
  • Majeed, K., Ahmed, A., Bakar, M. S. A., Mahlia, T. M. I., Saba, N., Hassan, A., Jawaid, M., Hussain, M., Iqbal, J., & Ali, Z. (2019). Mechanical and thermal properties of montmorillonite-reinforced polypropylene/rice husk hybrid nanocomposites. Polymers, 11(10), 1557.
  • Miller, D., & Kumar, V. (2011). Microcellular and nano cellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide II. tensile and impact properties. Polymer, 52(13), 2910-2919.
  • Nadeau, A. (2006). A study of direct gas ınjection foam extrusion of polyolefins for a wire coating application [Yüksek Lisans Tezi, Massachusetts Lowell Üniversitesi Plastik Mühendisliği Bölümü].
  • Nofar, M. R., Majithiya, K., & Park, C. B. (2012). The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. Journal of Cellular Plastics, 48(3), 271-287.
  • Nourmohammadi, M., Jahanmardi, R., Moeenfard, H., Zohuri, G. H., & Bazgir, S. (2022). Development of optimal polymeric foams with superior sound absorption and transmission loss. Journal of Applied Polymer Science, 139(28).
  • Sivertsen, K. (2007). Polymer foams [Yüksek Lisans Tezi, Massachusetts Institute of Technology Polymer Physics].
  • Suethao, S., Phongphanphanee, S., Wong-Ekkabut, J., & Smitthipong, W. (2021). The relationship between the morphology and elasticity of natural rubber foam based on the concentration of the chemical blowing agent. Polymers, 13(7). https://doi.org/10.3390/polym13071091
  • Thompson, M. R., Qin, X., Zhang, G., & Hrymak, A. N. (2006). Aspects of foaming a glass-reinforced polypropylene with chemical blowing agents. Journal of Applied Polymer Science, 102(5), 4696-4706.
  • Ulutaş, E. (2019). Geri dönüşümlü polipropilen/çeltik polimer kompozitinin mekanik, termal ve morfolojik özelliklerinin incelenmesi [Yüksek Lisans Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü].
  • Wang, M. Y., Xie, L., Qian, B., Ma, Y., & Zhou, N. (2016). Extrusion foaming behavior of a polypropylene/nanoclay microcellular foam. Journal of Applied Polymer Science, 133(41).
  • Yetgin, S. H., & Ünal, H. (2008). Polimer esaslı köpük malzemeler. Dumlupınar Üniversitesi Fen Bilimleri Ensitüsü Dergisi, 17, 117-128.
  • Yetgin, S.H. (2012). Otomotiv sektörü için polimer köpük malzeme üretimi ve karakterizasyonu [Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü].
  • Yetgin, S.H., Ünal, H., & Ermiş, K. (2024). The effect of nano-clay filler addition on the foaming and mechanical properties of polypropylene. Polymer International, 73, 719-726. https://doi.org/10.1002/pi.6642
  • Zhang, Z. Z., Wang, Y. M., Ma, L. Y., Zhang, X., Lin, L., & Phule A. D. (2020). Ultra-light, heat-resistant, flexible and thermal insulation graphene-fluororubber foam prepared by using N2 as a blowing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604. https://doi.org/10.1016/j.colsurfa.2020.125310
  • Zhao, J., Wang G., Zhang L., Li B., Wang C., Zhao, G. & Park, C. B. (2019). Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding. European Polymer Journal, 119, 22-31.

Polipropilen/montmorillonit kompozit köpüğünün fiziksel, termal ve morfolojik özelliklerinin incelenmesi

Yıl 2024, Cilt: 14 Sayı: 4, 1207 - 1218, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1444336

Öz

Bu çalışmada polipropilen/montmorillonit (PP/MMT) polimer/seramik kompozitinden farklı oranlarda kimyasal köpürtme ajanı kullanarak plastik ekstrüzyon yöntemiyle üretilen polimer esaslı köpüklerin özellikleri incelenmiştir. Köpük üretiminin ilk adımında kompoziti oluşturan bileşenler, ekstrüzyon makinesinde homojen bir karışım elde etmek için eriyik olarak karıştırılmıştır. İkinci aşamada PP/MMT karışımına ağırlıkça (ağ.) %3, 6, 9 oranlarında ITP 825 ticari isimli kimyasal köpürtücü ajan (KKA) eklenerek ekstrüde edildikten sonra köpük formunda kompozit granüller elde edilmiştir. Nemi uzaklaştırmak için kurutma işlemine tabi tutulan köpük granüller, plastik enjeksiyon makinesinde test numune standartlarına uygun olarak kalıplanmıştır. Polimer esaslı köpüklerin fiziksel özelliklerini incelemek için; aşınma, partikül boyut analizi, termal özelliklerini incelemek için; ısıl çarpılma sıcaklığı (HDT), vicat yumuşama sıcaklığı, erime akış indeksi (MFI) ve mikro yapısını incelemek için; taramalı elektron mikroskobisi (SEM) testleri yapılmıştır. Kil ilavesinin polimerin termal direncini artırdığı görülmüştür fakat gözenek artışı ile termal özellikler olumsuz etkilenmiştir. Ağ. %5 MMT ilavesiyle polimer/seramik kompozitlerin HDT ve Vicat değerleri sırasıyle %3,8 ve %1,4 oranında artış göstermiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012301643

Teşekkür

Yapılan çalışma kapsamındaki üretim ve karakterizasyon aşamaları Marmara Üniversitesi Teknoloji Fakültesi Metalürji ve Malzeme Mühendisliği Polimer Test Teknikleri Laboratuvarında gerçekleştirilmiş olup 1919B012301643 proje numarası ile TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı tarafından desteklenmiştir.

Kaynakça

  • Akkoyun, M., Badem, İ., Öztoksoy, M. E., & Aslan, Y. (2020). Polypropylene/chemical blowing agent foams: effect of the ınjection speed and core back distance on microstructure and mechanical properties. International Journal of Engineering Research and Development, 12(2), 638-647.
  • Antunes, M., Abbasi, H., & Velasco, J. I. (2021) The effect of microcellular structure on the dynamic mechanical thermal properties of high-performance nanocomposite foams made of graphene nanoplatelets-filled polysulfone. Polymers, 13(3), 437.
  • Ashby, M. F., & Lu, T. J. (2003). Metal foams: a survey. Science and Technology of China, Series B, 46(6), 521-532.
  • Ateş, M., Karadağ, S., Akdoğan Eker, A., & Eker, B. (2022). Polyurethane foam materials and their industrial applications. Polymer International, 71(10), 1157-1163.
  • Badem, İ. (2019). Polipropilen köpüklerde proses parametrelerinin mekanik, mikroyapı ve yüzey kalite özelliklerine etkisinin araştırılması [Yüksek Lisans Tezi, Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Başer, T. A. (2012). Alüminyum alaşımları ve otomotiv endüstrisinde kullanımı. Mühendis ve Makine, 53(635), 51-58.
  • Bledzki, A. K., & Faruk, Ö. (2006). Injection moulded microcellular wood fibre–polypropylene composites. Composites Part A: Applied Science and Manufacturing, 37(9), 1358-1367.
  • Chen, S, Zhu, W., & Cheng, Y. (2018). Multi-objective optimization of acoustic performances of polyurethane foam composites. Polymers, 10(7), 788.
  • Chung, C., Hwang, S., Chen, S., & Lai, M. (2021). Effects of injection molding process parameters on the chemical foaming behavior of polypropylene and polystyrene. Polymers, 13(14). https://doi.org/10.3390/polym13142331
  • Çakır, S. (2021). Otomotiv sektöründe kullanılan polipropilen esaslı iç trim parçalarının kimyasal köpük yapıc katkı kullanılarak enjeksiyon kalıplama yöntemi ile üretilmesi ve özelliklerinin belirlenmesi [Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü].
  • Dias, E., Chalse, H., Mutka, S., Mundhe, Y., Ambhore, N., Kulkarni, A., & Mache, A. (2023). Review on synthetic/natural fibers polymer composite filled with nanoclay and their mechanical performance. Materials Today: Proceedings, 77(3), 916-925.
  • Ema, Y., Ikeya, M., & Okamoto, M. (2006). Foam processing and cellular structure of polylactide-based nanocomposites. Polymer, 47(15), 5350-5359.
  • Fu, X. A., & Qutubuddin, S. (2001). Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer, 42(10), 4501-4507.
  • Guo, Z. (2008). Experimental analysis of polymer nanocomposite foaming using carbon dioxide [Yüksek Lisans Tezi, Ohio State Üniversitesi]
  • Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer–nanoclay composites. Applied Science, 8(9). https://doi.org/10.3390/app8091696
  • Güven, Ş. (2011). Toz metalurjisi ve metalik köpükler. Teknik Bilimler Dergisi, 1(2), 22-28.
  • Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite Structures, 262. https://doi.org/10.1016/j.compstruct.2021.113640
  • Jiang, M., He, L., Gong, W., Dong, L., Xie, H., & Xiong, C. (2012). Enhancement of polymer foam quality by modifying structural and decomposition characteristics of chemical blowing agent. Polymer-Plastics Technology and Engineering, 51(3), 263-267.
  • Jin, F. L., Zhao, M., Park, M., & Park, S. J. (2019). Recent trends of foaming in polymer processing: a review. Polymers, 11(6). https://doi.org/10.3390/polym11060953
  • Kanny, K., Jawahar, P., & Moodley, V. (2008) Mechanical and tribological behavior of clay–polypropylene nanocomposites. Journal of Materials Science, 43(22), 7230-7238.
  • Koçyi̇ği̇t, N. (2022). A review of micro and nanoporous polymeric foams: properties, preparation techniques, foaming agents and usage areas. Revista de Investigación de la Universidad del Quindío, 34(S5), 217-230.
  • Körner, C., & Singer, R. F. (2000). Processing of metal foams—challenges and opportunities. Advanced Engineering Materials, 2(4), 159-165.
  • Kumar, V. S. (2014). Thermal properties of polypropylene/MMT nanocomposites. International Journal of Science and Technology, 7(is7), 136-139.
  • Kumar, A., Patham, B., Mohanty, S., & Nayak, S. K. (2019). Effect of temperature on thermal, mechanical and morphological properties of polypropylene foams prepared by single step and two step batch foaming process. Journal of Polymer Research, 26. https://doi.org/10.1007/s10965-019-1699-3
  • Lee, L. J., Zheng, C., Cao, X., Han, X., Shen, J., & Xu, G. (2005). Polymer nanocomposite foams. Composites Science and Technology, 65(15-16), 2344-2363.
  • Majeed, K., Ahmed, A., Bakar, M. S. A., Mahlia, T. M. I., Saba, N., Hassan, A., Jawaid, M., Hussain, M., Iqbal, J., & Ali, Z. (2019). Mechanical and thermal properties of montmorillonite-reinforced polypropylene/rice husk hybrid nanocomposites. Polymers, 11(10), 1557.
  • Miller, D., & Kumar, V. (2011). Microcellular and nano cellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide II. tensile and impact properties. Polymer, 52(13), 2910-2919.
  • Nadeau, A. (2006). A study of direct gas ınjection foam extrusion of polyolefins for a wire coating application [Yüksek Lisans Tezi, Massachusetts Lowell Üniversitesi Plastik Mühendisliği Bölümü].
  • Nofar, M. R., Majithiya, K., & Park, C. B. (2012). The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. Journal of Cellular Plastics, 48(3), 271-287.
  • Nourmohammadi, M., Jahanmardi, R., Moeenfard, H., Zohuri, G. H., & Bazgir, S. (2022). Development of optimal polymeric foams with superior sound absorption and transmission loss. Journal of Applied Polymer Science, 139(28).
  • Sivertsen, K. (2007). Polymer foams [Yüksek Lisans Tezi, Massachusetts Institute of Technology Polymer Physics].
  • Suethao, S., Phongphanphanee, S., Wong-Ekkabut, J., & Smitthipong, W. (2021). The relationship between the morphology and elasticity of natural rubber foam based on the concentration of the chemical blowing agent. Polymers, 13(7). https://doi.org/10.3390/polym13071091
  • Thompson, M. R., Qin, X., Zhang, G., & Hrymak, A. N. (2006). Aspects of foaming a glass-reinforced polypropylene with chemical blowing agents. Journal of Applied Polymer Science, 102(5), 4696-4706.
  • Ulutaş, E. (2019). Geri dönüşümlü polipropilen/çeltik polimer kompozitinin mekanik, termal ve morfolojik özelliklerinin incelenmesi [Yüksek Lisans Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü].
  • Wang, M. Y., Xie, L., Qian, B., Ma, Y., & Zhou, N. (2016). Extrusion foaming behavior of a polypropylene/nanoclay microcellular foam. Journal of Applied Polymer Science, 133(41).
  • Yetgin, S. H., & Ünal, H. (2008). Polimer esaslı köpük malzemeler. Dumlupınar Üniversitesi Fen Bilimleri Ensitüsü Dergisi, 17, 117-128.
  • Yetgin, S.H. (2012). Otomotiv sektörü için polimer köpük malzeme üretimi ve karakterizasyonu [Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü].
  • Yetgin, S.H., Ünal, H., & Ermiş, K. (2024). The effect of nano-clay filler addition on the foaming and mechanical properties of polypropylene. Polymer International, 73, 719-726. https://doi.org/10.1002/pi.6642
  • Zhang, Z. Z., Wang, Y. M., Ma, L. Y., Zhang, X., Lin, L., & Phule A. D. (2020). Ultra-light, heat-resistant, flexible and thermal insulation graphene-fluororubber foam prepared by using N2 as a blowing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604. https://doi.org/10.1016/j.colsurfa.2020.125310
  • Zhao, J., Wang G., Zhang L., Li B., Wang C., Zhao, G. & Park, C. B. (2019). Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding. European Polymer Journal, 119, 22-31.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Polimerler ve Plastikler
Bölüm Makaleler
Yazarlar

Elif Ulutaş 0000-0001-7753-8878

Münir Taşdemir 0000-0001-8635-7251

Ömer Faruk Korkmaz 0009-0008-6268-9436

Nurefşan Kuvvet 0009-0002-9753-8247

Muhammed Cuma Duran 0009-0003-0842-0798

Proje Numarası 1919B012301643
Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 28 Şubat 2024
Kabul Tarihi 28 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Ulutaş, E., Taşdemir, M., Korkmaz, Ö. F., Kuvvet, N., vd. (2024). Polipropilen/montmorillonit kompozit köpüğünün fiziksel, termal ve morfolojik özelliklerinin incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1207-1218. https://doi.org/10.17714/gumusfenbil.1444336