Araştırma Makalesi
BibTex RIS Kaynak Göster

Konya’nın (Türkiye) batısında, Sağlık ve Yatağan bölgesinde Miyosen lavları içindeki gazboşlukları içeren mafik anklavların saha, mineralojik ve petrografik özellikleri

Yıl 2024, Cilt: 14 Sayı: 4, 1235 - 1246, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1534455

Öz

Konya'nın batısında, dalma-batma ile ilişkili Neojen Erenlerdağı volkanik aktivitesinin bir parçası olarak lav dom kompleksinde, iyi gelişmiş soğuma zonları içeren, değişken boyutlarda (birkaç cm'den birkaç metreye kadar) ve şekillerde (elips/yuvarlak-açılı) çeşitli Mafik Mikrokristalli Anklavlar (MMEs) oluşurlar. Magmadan muhtemelen gazın ayrılmasından sonraki büzülme nedeniyle, bazen kalsit ile doldurulmuş olan MME'nin içinde/etrafında bir kısım köşeli-yuvarlak boşluklar gelişmiştir. Petroğrafik ve modal görüntü analizi, mikro-boşluklu MME'nin diktitaksitik benzeri ve yarıözşekilli tanesel doku içinde plajiyoklaz (%10-84, 0.09-3.1 mm), amfibol (%10-25, 0.16-1.64 mm), klinopiroksen (%7-20, 0.37-0.77 mm), kuvars (%0-10, 0.2-0.6 mm), biyotit (%0-5, 0.81-16 mm), epidot (%0-10, 0.1-0.7 mm), piemontit (%0-9, 0.17-0.55 mm), allanit (%0-9, 0.17-0.55 mm) ve opak demir cevheri (%4-54, 0.03-0.67 mm) ile tali apatit ve zirkon içerdiğini göstermektedir. MME ayrıca, diktitaksitik benzeri bir dokuda plajiyoklaz (%20-82), kahverengi amfibol (%9-25), klinopiroksen (%5), kuvars (%3-10), epidot (%10-25) ve opak demir cevherinden (%10-35) oluşan daha yaşlı ve daha küçük anklav (MME) da içerir. MME’ ların, muhtemelen aşırı basınç birikimiyle silisik domların püskürmelerini tetikleyen, püskürme eş zamanlı mafik (bazaltik?) magmanın alt kabukta dasitik bir magma rezervuarının altına girmesi ile oluştuğu ileri sürülmüştür.

Proje Numarası

10401023

Kaynakça

  • Andrews, B. J., & Manga, M. (2014). Thermal and rheological controls on the formation of mafic enclaves or banded pumice. Contributions to Mineralogy and Petrology, 167(1), 1-16. https://doi.org/10.1007/s00410-013-0961-7
  • Bacon, C. R. (1986). Magmatic Inclusions in Silicic and Intermediate Volcanic-Rocks. Journal of Geophysical Research-Solid Earth and Planets, 91(B6), 6091-6112. https://doi.org/10.1029/JB091iB06p06091
  • Barbarin, B., & Didier, J. (1992). Genesis and Evolution of Mafic Microgranular Enclaves through Various Types of Interaction between Coexisting Felsic and Mafic Magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 83, 145-153.
  • Bedard, L. P. (1993). Significance of Enclave Roundness - an Inherent Characteristic. Journal of Geology, 101(1), 121-125.
  • Buriánek, D., & Kropác, K. (2019). Petrogenesis of Miocene subvolcanic rocks in the Western Outer Carpathians (southeastern Moravia, Czech Republic). Journal of Geosciences, 64(2), 105-125. https://doi.org/10.3190/jgeosci.286
  • Campbell, I. H., & Turner, J. S. (1986). The influence of viscosity on fountains in magma chambers. Journal of Petrology, 27(1), 1-30.
  • Cao, M., Evans, N. J., Reddy, S. M., Fougerouse, D., Hollings, P., Saxey, D. W., McInnes, B. I. A., Cooke, D. R., McDonald, B. J., & Qin, K. (2019). Micro- and nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: Implications for magmatic processes. American Mineralogist, 104(3), 391-402. https://doi.org/10.2138/am-2019-6609
  • Chen, Y. D., Price, R. C., White, A. J. R., & Chappell, B. W. (1990). Mafic inclusions from the Glenbog and Blue Gum granite suites, southeastern Australia. Journal of Geophysical Research, 95(B11), 17757-17785. https://doi.org/10.1029/JB095iB11p17757
  • Clynne, M. A. (1999). A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40(1), 105-132. https://doi.org/10.1093/petrology/40.1.105
  • Coombs, M. L., Eichelberger, J. C., & Rutherford, M. J. (2003). Experimental and textural constraints on mafic enclave formation in volcanic rocks. Journal of Volcanology and Geothermal Research, 119(1-4), 125-144.
  • Deer, W. A., Howie, R., & Zussman, J. (1986). Rock-Forming Minerals. Volume 1B. Disilicates and ring silicates. London, Longman Scientific and Technical.
  • Didier, J. (1987). Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 76(1), 41-50.
  • Didier, J., & Barbarin, B. (1991). Enclaves and granite petrology. Elsevier.
  • Donaldson, C. H., Reavy, R. J., & O'Mahony, M. J. (2003). Plutonic Geology. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition) (pp. 491-508). Academic Press. https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00588-3
  • Eichelberger, J. (1980). Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature, 288(5790), 446-450.
  • Feeley, T. C., & Sharp, Z. D. (1996). Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology, 24(11), 1021-1024. https://doi.org/10.1130/0091-7613(1996)024<1021:Cahief>2.3.Co;2
  • Guild, F. (1935). Piedmontite in Arizona. American Mineralogist: Journal of Earth and Planetary Materials, 20(10), 679-692.
  • Hodge, K. F., Carazzo, G., & Jellinek, A. M. (2012). Experimental constraints on the deformation and breakup of injected magma. Earth and Planetary Science Letters, 325, 52-62.
  • Keskinen, M., & Liou, J. (1987). Stability relations of Mn–Fe–Al piemontite. Journal of Metamorphic Geology, 5(4), 495-507.
  • Kocak, K. (2006). Hybridization of mafic microgranular enclaves: mineral and whole-rock chemistry evidence from the Karamadazi Granitoid, Central Turkey. International Journal of Earth Sciences, 95(4), 587-607. https://doi.org/10.1007/s00531-006-0090-x
  • Kocak, K., & Zedef, V. (2016). Interaction of the lithospheric mantle and crustal melts for the generation of the Horoz pluton (Nigde, Turkey): whole-rock geochemical and Sr-Nd-Pb isotopic evidence. Estonian Journal of Earth Sciences, 65(3), 138-160. https://doi.org/10.3176/earth.2016.14
  • Kocak, K., Zedef, V., & Kansun, G. (2011). Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1-4), 149-167. https://doi.org/10.1007/s00710-011-0165-7
  • Koçak, K. (2016). Geochemical characteristics of the mafic enclaves and their hosts from Neogene Erenlerdagı volcanites, around Yatagan village and Sağlık town (Konya), central Turkey. 14th Intern. Congress, Thessaloniki, May 2016 (1887-1894), Thessaloniki.
  • L'Heureux, I., & Fowler, A. D. (1994). A nonlinear dynamical model of oscillatory zoning in plagioclase [Article]. American Mineralogist, 79(9-10), 885-891.
  • Laumonier, M., Scaillet, B., Pichavant, M., Champallier, R., Andujar, J., & Arbaret, L. (2014). On the conditions of magma mixing and its bearing on andesite production in the crust. Nature communications, 5(1), 5607.
  • Lindgren, W. (1933). Mineral deposits. McGraw-Hill Book Co.
  • Liou, J. G. (1993). Stabilities of natural epidotes. Abhand Geol Bund, 49, 7-16.
  • Lofgren, G. (1974). An experimental study of plagioclase crystal morphology; isothermal crystallization. American Journal of Science, 274(3), 243-273.
  • Nakamura, M., & Shimakita, S. (1998). Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth and Planetary Science Letters, 161(1), 119-133. https://doi.org/https://doi.org/10.1016/S0012-821X(98)00144-7
  • Nakovnik, N. I. (1963). Vertical zonation of products of postmagmatic metasomatism, and the place in it of secondary quartz and prophylites (in Russian). Zap Vses Mineralog Obshch, 92, 394-409.
  • Ridolfi, F., Puerini, M., Renzulli, A., Menna, M., & Toulkeridis, T. (2008). The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176(1), 94-106. https://doi.org/10.1016/j.jvolgeores.2008.03.003
  • Saito, G., Kohei, K., & Hiroshi, S. (2003). Volatile evolution of Satsuma-Iwojima volcano: Degassing process and mafic-felsic magma interaction. In Developments in Volcanology (Vol. 5, pp. 129-146). Elsevier.
  • Sellés, D., Rodríguez, A., Dungan, M. A., Naranjo, J. A., & Gardeweg, M. (2004). Geochemistry of Nevado de Longaví Volcano (36.2 S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Revista Geologica De Chile, 31(2), 293-315.
  • Sen, E., Aydar, E., Sen, P., & Gourgaud, A. (2023). Insight into a rift volcanism with the petrogenesis of ultramafic enclaves and the host basalts: Kula Volcanic Field, Western Anatolia, Turkey. Italian Journal of Geosciences, 142(2), 291-315. https://doi.org/10.3301/Ijg.2023.16
  • Shcherbakov, V. D., Plechov, P. Y., Izbekov, P. E., & Shipman, J. S. (2011). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162(1), 83-99. https://doi.org/10.1007/s00410-010-0584-1
  • Sklyarov, E. V., & Fedorovskii, V. S. (2006). Magma mingling: tectonic and geodynamic implications. . Geotectonics 40(2), 120–134.
  • Sparks, S. R., Sigurdsson, H., & Wilson, L. (1977). Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267(5609), 315-318.
  • Vernon, R. (2004). Microstructures of deformed rocks. A practical guide to rock microstructure. Cambridge University Press, Cambridge, 295-474.
  • Wyllie, P. J., Cox, K. G., & Biggar, G. M. (1962). The Habit of Apatite in Synthetic Systems and Igneous Rocks. Journal of Petrology, 3(2), 238-243.https://doi.org/10.1093/petrology/3.2.238

Field, mineralogical and petrographic features of the micro-vesiculated mafic enclaves in the Miocene lava around Sağlik and Yatağan area, western Konya/Türkiye

Yıl 2024, Cilt: 14 Sayı: 4, 1235 - 1246, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1534455

Öz

Various Mafic Microcrystalline Enclaves (MMEs) occur in variable sizes (from a few cm to a few meters) and shapes (ellipse/rounded-angular) with well-developed chilled margin in lava dome complex as part of the subduction-related Neogene Erenlerdagi volcanic activity at the west of Konya. In/around MME, some angular-rounded space developed, possibly due to shrinking after magma degassing, and sometimes filled by calcite. Petrographical and modal image analysis shows that the micro-vesiculated MME contains plagioclase (10-84 %, 0.09-3.1 mm), amphibole (10-25%, 0.16-1.64 mm), clinopyroxene (7-20%, 0.37-0.77 mm), quartz (0-10%, 0.2-0.6 mm), biotite (0-5%, 0.81-1.63 mm), epidote (0-10%, 0.1-0.7 mm), piemontite (0-9%, 0.17-0.55mm), allanite (0-9%, 0.17-0.55 mm) and opaque iron ore (4-54%, 0.03-0.67 mm) as major constituents with accessory apatite and zircon in a diktytaxitic-like and hypidiomorph granular texture. The MME also contain older and smaller enclaves (MMEs), which are composed of plagioclase (20-82%), brownish amphibole (9-25%), clinopyroxene (5%), quartz (3-10%), epidote (10-25%), and opaque iron ore (10-35%) in a diktytaxitic-like texture. MMEs are suggested to be formed by syn-eruptive mafic (basaltic?) magma underplating of a dacitic magma reservoir at the lower crust, possibly triggering the eruptions of silicic domes by an overpressure build-up.

Etik Beyan

Author follows all ethical guidelines including authorship, citation, data reporting, and publishing original research.

Destekleyen Kurum

Selçuk Uni.

Proje Numarası

10401023

Teşekkür

In this study, the financial support was provided by Scientific Research Projects Coordination Office of Selcuk Uni.

Kaynakça

  • Andrews, B. J., & Manga, M. (2014). Thermal and rheological controls on the formation of mafic enclaves or banded pumice. Contributions to Mineralogy and Petrology, 167(1), 1-16. https://doi.org/10.1007/s00410-013-0961-7
  • Bacon, C. R. (1986). Magmatic Inclusions in Silicic and Intermediate Volcanic-Rocks. Journal of Geophysical Research-Solid Earth and Planets, 91(B6), 6091-6112. https://doi.org/10.1029/JB091iB06p06091
  • Barbarin, B., & Didier, J. (1992). Genesis and Evolution of Mafic Microgranular Enclaves through Various Types of Interaction between Coexisting Felsic and Mafic Magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 83, 145-153.
  • Bedard, L. P. (1993). Significance of Enclave Roundness - an Inherent Characteristic. Journal of Geology, 101(1), 121-125.
  • Buriánek, D., & Kropác, K. (2019). Petrogenesis of Miocene subvolcanic rocks in the Western Outer Carpathians (southeastern Moravia, Czech Republic). Journal of Geosciences, 64(2), 105-125. https://doi.org/10.3190/jgeosci.286
  • Campbell, I. H., & Turner, J. S. (1986). The influence of viscosity on fountains in magma chambers. Journal of Petrology, 27(1), 1-30.
  • Cao, M., Evans, N. J., Reddy, S. M., Fougerouse, D., Hollings, P., Saxey, D. W., McInnes, B. I. A., Cooke, D. R., McDonald, B. J., & Qin, K. (2019). Micro- and nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: Implications for magmatic processes. American Mineralogist, 104(3), 391-402. https://doi.org/10.2138/am-2019-6609
  • Chen, Y. D., Price, R. C., White, A. J. R., & Chappell, B. W. (1990). Mafic inclusions from the Glenbog and Blue Gum granite suites, southeastern Australia. Journal of Geophysical Research, 95(B11), 17757-17785. https://doi.org/10.1029/JB095iB11p17757
  • Clynne, M. A. (1999). A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40(1), 105-132. https://doi.org/10.1093/petrology/40.1.105
  • Coombs, M. L., Eichelberger, J. C., & Rutherford, M. J. (2003). Experimental and textural constraints on mafic enclave formation in volcanic rocks. Journal of Volcanology and Geothermal Research, 119(1-4), 125-144.
  • Deer, W. A., Howie, R., & Zussman, J. (1986). Rock-Forming Minerals. Volume 1B. Disilicates and ring silicates. London, Longman Scientific and Technical.
  • Didier, J. (1987). Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 76(1), 41-50.
  • Didier, J., & Barbarin, B. (1991). Enclaves and granite petrology. Elsevier.
  • Donaldson, C. H., Reavy, R. J., & O'Mahony, M. J. (2003). Plutonic Geology. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition) (pp. 491-508). Academic Press. https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00588-3
  • Eichelberger, J. (1980). Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature, 288(5790), 446-450.
  • Feeley, T. C., & Sharp, Z. D. (1996). Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology, 24(11), 1021-1024. https://doi.org/10.1130/0091-7613(1996)024<1021:Cahief>2.3.Co;2
  • Guild, F. (1935). Piedmontite in Arizona. American Mineralogist: Journal of Earth and Planetary Materials, 20(10), 679-692.
  • Hodge, K. F., Carazzo, G., & Jellinek, A. M. (2012). Experimental constraints on the deformation and breakup of injected magma. Earth and Planetary Science Letters, 325, 52-62.
  • Keskinen, M., & Liou, J. (1987). Stability relations of Mn–Fe–Al piemontite. Journal of Metamorphic Geology, 5(4), 495-507.
  • Kocak, K. (2006). Hybridization of mafic microgranular enclaves: mineral and whole-rock chemistry evidence from the Karamadazi Granitoid, Central Turkey. International Journal of Earth Sciences, 95(4), 587-607. https://doi.org/10.1007/s00531-006-0090-x
  • Kocak, K., & Zedef, V. (2016). Interaction of the lithospheric mantle and crustal melts for the generation of the Horoz pluton (Nigde, Turkey): whole-rock geochemical and Sr-Nd-Pb isotopic evidence. Estonian Journal of Earth Sciences, 65(3), 138-160. https://doi.org/10.3176/earth.2016.14
  • Kocak, K., Zedef, V., & Kansun, G. (2011). Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1-4), 149-167. https://doi.org/10.1007/s00710-011-0165-7
  • Koçak, K. (2016). Geochemical characteristics of the mafic enclaves and their hosts from Neogene Erenlerdagı volcanites, around Yatagan village and Sağlık town (Konya), central Turkey. 14th Intern. Congress, Thessaloniki, May 2016 (1887-1894), Thessaloniki.
  • L'Heureux, I., & Fowler, A. D. (1994). A nonlinear dynamical model of oscillatory zoning in plagioclase [Article]. American Mineralogist, 79(9-10), 885-891.
  • Laumonier, M., Scaillet, B., Pichavant, M., Champallier, R., Andujar, J., & Arbaret, L. (2014). On the conditions of magma mixing and its bearing on andesite production in the crust. Nature communications, 5(1), 5607.
  • Lindgren, W. (1933). Mineral deposits. McGraw-Hill Book Co.
  • Liou, J. G. (1993). Stabilities of natural epidotes. Abhand Geol Bund, 49, 7-16.
  • Lofgren, G. (1974). An experimental study of plagioclase crystal morphology; isothermal crystallization. American Journal of Science, 274(3), 243-273.
  • Nakamura, M., & Shimakita, S. (1998). Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth and Planetary Science Letters, 161(1), 119-133. https://doi.org/https://doi.org/10.1016/S0012-821X(98)00144-7
  • Nakovnik, N. I. (1963). Vertical zonation of products of postmagmatic metasomatism, and the place in it of secondary quartz and prophylites (in Russian). Zap Vses Mineralog Obshch, 92, 394-409.
  • Ridolfi, F., Puerini, M., Renzulli, A., Menna, M., & Toulkeridis, T. (2008). The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176(1), 94-106. https://doi.org/10.1016/j.jvolgeores.2008.03.003
  • Saito, G., Kohei, K., & Hiroshi, S. (2003). Volatile evolution of Satsuma-Iwojima volcano: Degassing process and mafic-felsic magma interaction. In Developments in Volcanology (Vol. 5, pp. 129-146). Elsevier.
  • Sellés, D., Rodríguez, A., Dungan, M. A., Naranjo, J. A., & Gardeweg, M. (2004). Geochemistry of Nevado de Longaví Volcano (36.2 S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Revista Geologica De Chile, 31(2), 293-315.
  • Sen, E., Aydar, E., Sen, P., & Gourgaud, A. (2023). Insight into a rift volcanism with the petrogenesis of ultramafic enclaves and the host basalts: Kula Volcanic Field, Western Anatolia, Turkey. Italian Journal of Geosciences, 142(2), 291-315. https://doi.org/10.3301/Ijg.2023.16
  • Shcherbakov, V. D., Plechov, P. Y., Izbekov, P. E., & Shipman, J. S. (2011). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162(1), 83-99. https://doi.org/10.1007/s00410-010-0584-1
  • Sklyarov, E. V., & Fedorovskii, V. S. (2006). Magma mingling: tectonic and geodynamic implications. . Geotectonics 40(2), 120–134.
  • Sparks, S. R., Sigurdsson, H., & Wilson, L. (1977). Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267(5609), 315-318.
  • Vernon, R. (2004). Microstructures of deformed rocks. A practical guide to rock microstructure. Cambridge University Press, Cambridge, 295-474.
  • Wyllie, P. J., Cox, K. G., & Biggar, G. M. (1962). The Habit of Apatite in Synthetic Systems and Igneous Rocks. Journal of Petrology, 3(2), 238-243.https://doi.org/10.1093/petrology/3.2.238
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mineraloji-Petrografi
Bölüm Makaleler
Yazarlar

Kerim Kocak 0000-0002-4379-8791

Proje Numarası 10401023
Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 16 Ağustos 2024
Kabul Tarihi 4 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Kocak, K. (2024). Field, mineralogical and petrographic features of the micro-vesiculated mafic enclaves in the Miocene lava around Sağlik and Yatağan area, western Konya/Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1235-1246. https://doi.org/10.17714/gumusfenbil.1534455