Araştırma Makalesi
BibTex RIS Kaynak Göster

Atık soda cam dolgusu kullanılarak poliüretan köpüklerin ses iletim kaybının artırılması

Yıl 2024, Cilt: 14 Sayı: 4, 1274 - 1286, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1549633

Öz

Ses iletim mekanizmaları ve ses iletim kayıpları, akustik konforun sağlanmasında büyük önem taşır. Araştırmalar, ses iletim kaybını azaltacak malzeme ve yapılar geliştirmeye odaklanmıştır. Artan atık miktarı ekolojik dengeyi bozar; bu durum küresel ısınmayı, hava ve toprak kirliliğini beraberinde getirir. Bu çevresel etkiler, başta insan olmak üzere tüm canlıların yaşamını olumsuz etkiler ve ekonomiye de zarar verir. Küresel kirlilikle mücadele, bilim insanlarının öncelikli hedeflerinden biri haline gelmiştir. Geri dönüşüm, hem insan sağlığını hem de doğal kaynakları korumanın yanı sıra ekonomik açıdan da önemli faydalar sağlar. Bu çalışmada, otomotiv endüstrisi ve diğer birçok alanda kullanılan poliüretan köpükler, izosiyanat/poliol oranı sabit tutularak çeşitli oranlarda atık soda camı tozu eklenerek üretilmiştir. Üretilen köpüklerin dayanıklılıkları görünür yoğunluk ölçümü, ıslanabilirlikleri temas açısı analizi, organik bağ yapıları FT-IR spektroskopisi ve akustik özellikleri ses iletim kaybı analizi ile test edilmiştir. Soda camı tozunun köpükler ile reaksiyona girmediği, üretilen köpüklerin hidrofobik özellik gösterdikleri tespit edilmiştir. Katkılı köpüklerin akustik özellikleri katkısız köpüğe göre neredeyse tüm frekans aralığında (65-6300 Hz) daha yüksek çıkmıştır. PU-SG4 kodlu numune, düşük, orta ve yüksek frekans bölgelerinde sırasıyla 9.28 dB, 9.10 dB ve 13.48 dB değerlerine ulaşarak en iyi akustik özellikleri sergileyen numunedir. Yüksek frekans aralığı bölgesinde soda cam katkılı köpük kompozitlerin tamamı 13 dB'nin üzerinde ses iletim kaybına ulaşmıştır.

Kaynakça

  • Aguilar-Jurado, M. A., Gil-Madrona, P., Ortega-Dato, J. F., & Zamorano-Garcia, D. (2019). Effects of an Educational Glass Recycling Program against Environmental Pollution in Spain. Int J Environ Res Public Health, 16(24). https://doi.org/10.3390/ijerph16245108
  • Ahmed, K. S., & Rana, L. R. (2023). Fresh and hardened properties of concrete containing recycled waste glass: A review. Journal of Building Engineering, 70. https://doi.org/10.1016/j.jobe.2023.106327
  • Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Islam, M. R., Jeyaratnam, N., & Yuvaraj, A. R. (2016). Polyurethane types, synthesis and applications – a review. RSC Advances, 6(115), 114453-114482. https://doi.org/10.1039/c6ra14525f
  • Alsuhaibani, A. M., Refat, M. S., Qaisrani, S. A., Jamil, F., Abbas, Z., Zehra, A., Baluch, K., Kim, J. G., & Mubeen, M. (2023). Green buildings model: Impact of rigid polyurethane foam on indoor environment and sustainable development in energy sector. Heliyon, 9(3), e14451. https://doi.org/10.1016/j.heliyon.2023.e14451
  • Ates, M., Karadag, S., Eker, A. A., & Eker, B. (2022). Polyurethane foam materials and their industrial applications. Polymer International, 71(10), 1157-1163. https://doi.org/10.1002/pi.6441
  • Batra, B. (2024). Polyurethane Applications-A Review. International Journal for Multidisciplinary Research (IJFMR), 6.
  • Bildirici, M. E., & Gökmenoğlu, S. M. (2017). Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries. Renewable and Sustainable Energy Reviews, 75, 68-85. https://doi.org/10.1016/j.rser.2016.10.052
  • Butler, C. D. (2018). Climate Change, Health and Existential Risks to Civilization: A Comprehensive Review (1989(-)2013). Int J Environ Res Public Health, 15(10). https://doi.org/10.3390/ijerph15102266
  • Ceyhan, M., Doğru, T., Sevim, H., Öğütgen, M.K., & Aydin, İ. (2021). Obtaining Sound Transmission Loss of Inner Dash Insulator via Numerical Methods. Uluslararasi Bilim, Teknoloji Ve Tasarim Dergisi, 2, 69-86. http://uludag.edu.tr/istd
  • Chau, T. T., Bruckard, W. J., Koh, P. T., & Nguyen, A. V. (2009). A review of factors that affect contact angle and implications for flotation practice. Adv Colloid Interface Sci, 150(2), 106-115. https://doi.org/10.1016/j.cis.2009.07.003
  • Chen, S., & Jiang, Y. (2016). The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polymer Composites, 39(4), 1370-1381. https://doi.org/10.1002/pc.24078
  • Chen, S., Jiang, Y., Chen, J., & Wang, D. (2015). The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams. Advances in Materials Science and Engineering, 2015, 1-9. https://doi.org/10.1155/2015/317561
  • Choe, H., Lee, J.H., Kim, J. H. (2020). Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties. Composites Science and Technology, 194, 108153, https://doi.org/10.1016/j.compscitech.2020.108153.
  • Coman, A. E., Peyrton, J., Hubca, G., Sarbu, A., Gabor, A. R., Nicolae, C. A., Iordache, T. V., & Averous, L. (2021). Synthesis and characterization of renewable polyurethane foams using different biobased polyols from olive oil. European Polymer Journal, 149. https://doi.org/10.1016/j.eurpolymj.2021.110363
  • Consulting, I. (2010). Recycling:Why glass always has a happy CO2 ending. European Consumers Survey. www.feve.org
  • Cunha, B. Z., Zine, A.-M., Ichchou, M., Droz, C., & Foulard, S. (2022). On Machine-Learning-Driven Surrogates for Sound Transmission Loss Simulations. Applied Sciences, 12(21). https://doi.org/10.3390/app122110727
  • Członka, S., Strąkowska, A., & Kairytė, A. (2020). Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polymer Testing, 87. https://doi.org/10.1016/j.polymertesting.2020.106534
  • Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93-101. https://doi.org/10.1016/j.aiepr.2020.07.002
  • de Oliveira, B. P., Balieiro, L. C. S., Maia, L. S., Zanini, N. C., Teixeira, E. J. O., da Conceição, M. O. T., Medeiros, S. F., & Mulinari, D. R. (2022). Eco-friendly polyurethane foams based on castor polyol reinforced with açaí residues for building insulation. Journal of Material Cycles and Waste Management, 24(2), 553-568. https://doi.org/10.1007/s10163-021-01341-1
  • Dzunuzovic, J. V., Stefanovic, I. S., Dzunuzovic, E. S., Kovac, T. S., Malenov, D. P., Basagni, A., & Marega, C. (2024). Fabrication of Polycaprolactone-Based Polyurethanes with Enhanced Thermal Stability. Polymers (Basel), 16(13). https://doi.org/10.3390/polym16131812
  • Ekici, B., Kentli, A., & Küçük, H. (2012). Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Archives of Acoustics, 37(4), 515-520. https://doi.org/10.2478/v10168-012-0052-1
  • Ersoy, B., Çiftçi, H., & Evcin, A. (2022). Camın Çeşitli Sıvılar ile Islanabilirliği ve Kullanılan Temas Açısı Test Sıvılarının Serbest Yüzey Enerjisi Değerine Etkisi. Journal of Characterization, 2(2), 147-160. https://doi.org/10.29228/jchar.62777
  • Głowacz-Czerwonka, D., Zakrzewska, P., Oleksy, M., Pielichowska, K., Kuźnia, M., & Telejko, T. (2023). The influence of biowaste-based fillers on the mechanical and fire properties of rigid polyurethane foams. Sustainable Materials and Technologies, 36. https://doi.org/10.1016/j.susmat.2023.e00610
  • Husainie, S. M., Deng, X., Ghalia, M. A., Robinson, J., & Naguib, H. E. (2021). Natural fillers as reinforcement for closed-molded polyurethane foam plaques: Mechanical, morphological, and thermal properties. Materials Today Communications, 27. https://doi.org/10.1016/j.mtcomm.2021.102187
  • International, A. (2020). ASTM D1622−20 Standard Test Method for Apparent Density of Rigid Cellular Plastics.
  • International, A. (2024). ASTM E2611-24 Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method.
  • Izarra, I., Borreguero, A. M., Garrido, I., Rodríguez, J. F., & Carmona, M. (2021). Comparison of flexible polyurethane foams properties from different polymer polyether polyols. Polymer Testing, 100. https://doi.org/10.1016/j.polymertesting.2021.107268
  • Jiang, R., Zheng, X., Zhu, S., Li, W., Zhang, H., Liu, Z., & Zhou, X. (2023). Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect, 8(11). https://doi.org/10.1002/slct.202204132
  • Jing, X., Xia, Y., Chen, F., Yang, C., Yang, Z., & Jaffery, S. H. I. (2022). Preparation of superhydrophobic glass surface with high adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633. https://doi.org/10.1016/j.colsurfa.2021.127861
  • Koru, M., Serçe, O., İpek, O., Karabulut, H., & Hidiroğlu, M. (2020). Determining the Effect of Air Chambers on Rubber Insulation in Automotive Parts for Sound Absorption Coefficient and Transmission Loss. Mühendislik Bilimleri ve Tasarım Dergisi, 8(4), 1053-1061. https://doi.org/10.21923/jesd.757401
  • Kuranchie, C., Yaya, A., & Bensah, Y. D. (2021). The effect of natural fibre reinforcement on polyurethane composite foams – A review. Scientific African, 11. https://doi.org/10.1016/j.sciaf.2021.e00722
  • Maamoun, A. A., Naeim, D. M., Mahmoud, A. A., Esawi, A. M. K., & Arafa, M. (2024). Improving the performance of triboelectric nanogenerators using flexible polyurethane nanocomposites foam filled with montmorillonite. Nano Energy, 124. https://doi.org/10.1016/j.nanoen.2024.109426
  • Marsolea Cristea, A. C., Mocanu, A., Stanescu, P. O., Brincoveanu, O., Orbeci, C., Irodia, R., Pirvu, C., Dinescu, A., Bobirica, C., & Rusen, E. (2023). Synthesis and characterization of polyurethane flexible foams provided from PET derivatives, fly ash, and glass wastes. Heliyon, 9(12), e23097. https://doi.org/10.1016/j.heliyon.2023.e23097
  • Nava-Castro, K. E., Ramirez-Nieto, R., Mendez-Garcia, L. A., Giron-Perez, M. I., Segovia-Mendoza, M., Navidad-Murrieta, M. S., & Morales Montor, J. (2019). Environmental Pollution as a Risk Factor in Testicular Tumour Development: Focus on the Interaction between Bisphenol A and the Associated Immune Response. International Journal Environmental Research and Public Health, 16(21). https://doi.org/10.3390/ijerph16214113
  • Orfali, W. A. (2015). Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder. Physics Procedia, 70, 699-702, https://doi.org/10.1016/j.phpro.2015.08.091.
  • Pinto, R. C., Pereira, P. H. F., Maia, L. S., Silva, T. L. S. E., Faria, M. I. S. D., Rosa, D. S., & Mulinari, D. R. (2024). A promising use of Kimberlite clay on sustainable polyurethane foams. Applied Clay Science, 258. https://doi.org/10.1016/j.clay.2024.107472
  • Polaczek, K., Kurańska, M., & Prociak, A. (2022). Open-cell bio-polyurethane foams based on bio-polyols from used cooking oil. Journal of Cleaner Production, 359. https://doi.org/10.1016/j.jclepro.2022.132107
  • Postaue, N., Schneider, R., Borba, C. E., da Silva, C., & Cardozo-Filho, L. (2024). Application of KF/waste glass catalyst in the synthesis of fatty acid esters under pressurized conditions without glycerol generation. Renewable Energy, 234. https://doi.org/10.1016/j.renene.2024.121183
  • Rastegarfar, N., Behrooz, R., & Barikani, M. (2018). Characterization of polyurethane foams prepared from liquefied sawdust by crude glycerol and polyethylene glycol. Journal of Polymer Research, 25(7). https://doi.org/10.1007/s10965-018-1516-4
  • Salino, R. E., & Catai, R. E. (2023). A study of polyurethane waste composite (PUR) and recycled plasterboard sheet cores with polyurethane foam for acoustic absorption. Construction and Building Materials, 387. https://doi.org/10.1016/j.conbuildmat.2023.131201
  • Sönmez, Ö. S. (2020). Cam Tozu Katkili Raku Sir Uygulamalari. Social Mentality and Researcher Thinkers Journal, 6(38), 2263-2268. https://doi.org/10.31576/smryj.696
  • Subhani, M., Ali, S., Allan, R., Grace, A., & Rahman, M. (2024). Physical and mechanical properties of self-compacting geopolymer concrete with waste glass as partial replacement of fine aggregate. Construction and Building Materials, 437. https://doi.org/10.1016/j.conbuildmat.2024.136956
  • Sung, G., Kim, J. W., Kim, J. H. (2016) Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. Journal of Industrial and Engineering Chemistry, 44, , 99-104. https://doi.org/10.1016/j.jiec.2016.08.014.
  • Tamaddoni Moghaddam, S., Ghasemi, H., Hussein, F. B., & Abu-Zahra, N. (2023). Effect of reaction parameters on Arsenic removal capacity from aqueous solutions using modified magnetic PU foam nanocomposite. Results in Materials, 17. https://doi.org/10.1016/j.rinma.2023.100373
  • Terro, M. J. (2006). Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment, 41(5), 633-639. https://doi.org/10.1016/j.buildenv.2005.02.018
  • Triassi, M., Alfano, R., Illario, M., Nardone, A., Caporale, O., & Montuori, P. (2015). Environmental pollution from illegal waste disposal and health effects: a review on the "triangle of death". International Journal Environmental Research and Public Health, 12(2), 1216-1236. https://doi.org/10.3390/ijerph120201216
  • Türkiye Cumhuriyeti Çevre, Ş. v. İ. D. B. (2024). 2023 Faaliyet Raporu. https://webdosya.csb.gov.tr/db/destek/menu/2023-faaliyet_20240201021328.pdf
  • Uzun, M., Çöğürcü, M. T., & Keskin, Ü. S. (2018). Cam tozunun beton basınç dayanımına etkisi. Beykent Üniversitesi Fen Bilimleri Dergisi, 11, 42-51.
  • Wang, Z., Wang, C., Gao, Y., Li, Z., Shang, Y., & Li, H. (2023). Porous Thermal Insulation Polyurethane Foam Materials. Polymers (Basel), 15(18). https://doi.org/10.3390/polym15183818
  • Zhu, T., Chen, S., Zhu, W., Wang, Y., & Jiang, Y. (2019). Sound Absorption Property of Polyurethane Foam with Polyethylene Fiber. Materials Science, 25(1). https://doi.org/10.5755/j01.ms.25.1.19720
  • Zhu, W., Chen, S., Wang, Y., Zhu, T., & Jiang, Y. (2023). Sound Absorption Behavior of Polyurethane Foam Composites with Different Ethylene Propylene Diene Monomer Particles. Archives of Acoustics. https://doi.org/10.24425/123912

Enhancing sound transmission loss of polyurethane foams using waste soda glass filler

Yıl 2024, Cilt: 14 Sayı: 4, 1274 - 1286, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1549633

Öz

Sound transmission mechanisms and sound transmission losses are of great importance in providing acoustic comfort. Research has focused on developing materials and structures that will reduce sound transmission loss. The increasing amount of waste disrupts the ecological balance; this situation brings about global warming, air and soil pollution. These environmental effects negatively affect the lives of all living things, especially humans, and also harm the economy. Combating global pollution has become one of the primary goals of scientists. Recycling provides significant economic benefits as well as protecting both human health and natural resources. In this study, polyurethane foams used in the automotive industry and many other areas were produced by adding waste soda glass powder at various rates while keeping the isocyanate/polyol ratio constant. The durability of the produced foams was tested by apparent density measurement, wettability by contact angle analysis, organic bond structures by FT-IR spectroscopy and acoustic properties by sound transmission loss analysis. It was determined that soda glass powder did not react with the foams and that the produced foams exhibited hydrophobic properties. The acoustic properties of the filler foams were higher than the neat foam in almost the entire frequency range (65-6300 Hz). The sample coded PU-SG4 is the sample that exhibits the best acoustic properties by reaching 9.28 dB, 9.10 dB and 13.48 dB values in the low, medium and high frequency regions, respectively. In the high frequency range region, all of the soda glass added foam composites reached a sound transmission loss of over 13 dB.

Etik Beyan

The author declares that the materials and methods used in this study do not require ethics committee approval and/or special legal permission.

Teşekkür

I would like to thank “Fompak Ambalaj Ve Poliüretan San. Ve Tic. A.Ş.” company for their support for chemicals. The author sincerely thanks the valuable Editor and Referees for their contributions during the review and evaluation of the manuscript.

Kaynakça

  • Aguilar-Jurado, M. A., Gil-Madrona, P., Ortega-Dato, J. F., & Zamorano-Garcia, D. (2019). Effects of an Educational Glass Recycling Program against Environmental Pollution in Spain. Int J Environ Res Public Health, 16(24). https://doi.org/10.3390/ijerph16245108
  • Ahmed, K. S., & Rana, L. R. (2023). Fresh and hardened properties of concrete containing recycled waste glass: A review. Journal of Building Engineering, 70. https://doi.org/10.1016/j.jobe.2023.106327
  • Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Islam, M. R., Jeyaratnam, N., & Yuvaraj, A. R. (2016). Polyurethane types, synthesis and applications – a review. RSC Advances, 6(115), 114453-114482. https://doi.org/10.1039/c6ra14525f
  • Alsuhaibani, A. M., Refat, M. S., Qaisrani, S. A., Jamil, F., Abbas, Z., Zehra, A., Baluch, K., Kim, J. G., & Mubeen, M. (2023). Green buildings model: Impact of rigid polyurethane foam on indoor environment and sustainable development in energy sector. Heliyon, 9(3), e14451. https://doi.org/10.1016/j.heliyon.2023.e14451
  • Ates, M., Karadag, S., Eker, A. A., & Eker, B. (2022). Polyurethane foam materials and their industrial applications. Polymer International, 71(10), 1157-1163. https://doi.org/10.1002/pi.6441
  • Batra, B. (2024). Polyurethane Applications-A Review. International Journal for Multidisciplinary Research (IJFMR), 6.
  • Bildirici, M. E., & Gökmenoğlu, S. M. (2017). Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries. Renewable and Sustainable Energy Reviews, 75, 68-85. https://doi.org/10.1016/j.rser.2016.10.052
  • Butler, C. D. (2018). Climate Change, Health and Existential Risks to Civilization: A Comprehensive Review (1989(-)2013). Int J Environ Res Public Health, 15(10). https://doi.org/10.3390/ijerph15102266
  • Ceyhan, M., Doğru, T., Sevim, H., Öğütgen, M.K., & Aydin, İ. (2021). Obtaining Sound Transmission Loss of Inner Dash Insulator via Numerical Methods. Uluslararasi Bilim, Teknoloji Ve Tasarim Dergisi, 2, 69-86. http://uludag.edu.tr/istd
  • Chau, T. T., Bruckard, W. J., Koh, P. T., & Nguyen, A. V. (2009). A review of factors that affect contact angle and implications for flotation practice. Adv Colloid Interface Sci, 150(2), 106-115. https://doi.org/10.1016/j.cis.2009.07.003
  • Chen, S., & Jiang, Y. (2016). The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polymer Composites, 39(4), 1370-1381. https://doi.org/10.1002/pc.24078
  • Chen, S., Jiang, Y., Chen, J., & Wang, D. (2015). The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams. Advances in Materials Science and Engineering, 2015, 1-9. https://doi.org/10.1155/2015/317561
  • Choe, H., Lee, J.H., Kim, J. H. (2020). Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties. Composites Science and Technology, 194, 108153, https://doi.org/10.1016/j.compscitech.2020.108153.
  • Coman, A. E., Peyrton, J., Hubca, G., Sarbu, A., Gabor, A. R., Nicolae, C. A., Iordache, T. V., & Averous, L. (2021). Synthesis and characterization of renewable polyurethane foams using different biobased polyols from olive oil. European Polymer Journal, 149. https://doi.org/10.1016/j.eurpolymj.2021.110363
  • Consulting, I. (2010). Recycling:Why glass always has a happy CO2 ending. European Consumers Survey. www.feve.org
  • Cunha, B. Z., Zine, A.-M., Ichchou, M., Droz, C., & Foulard, S. (2022). On Machine-Learning-Driven Surrogates for Sound Transmission Loss Simulations. Applied Sciences, 12(21). https://doi.org/10.3390/app122110727
  • Członka, S., Strąkowska, A., & Kairytė, A. (2020). Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polymer Testing, 87. https://doi.org/10.1016/j.polymertesting.2020.106534
  • Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93-101. https://doi.org/10.1016/j.aiepr.2020.07.002
  • de Oliveira, B. P., Balieiro, L. C. S., Maia, L. S., Zanini, N. C., Teixeira, E. J. O., da Conceição, M. O. T., Medeiros, S. F., & Mulinari, D. R. (2022). Eco-friendly polyurethane foams based on castor polyol reinforced with açaí residues for building insulation. Journal of Material Cycles and Waste Management, 24(2), 553-568. https://doi.org/10.1007/s10163-021-01341-1
  • Dzunuzovic, J. V., Stefanovic, I. S., Dzunuzovic, E. S., Kovac, T. S., Malenov, D. P., Basagni, A., & Marega, C. (2024). Fabrication of Polycaprolactone-Based Polyurethanes with Enhanced Thermal Stability. Polymers (Basel), 16(13). https://doi.org/10.3390/polym16131812
  • Ekici, B., Kentli, A., & Küçük, H. (2012). Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Archives of Acoustics, 37(4), 515-520. https://doi.org/10.2478/v10168-012-0052-1
  • Ersoy, B., Çiftçi, H., & Evcin, A. (2022). Camın Çeşitli Sıvılar ile Islanabilirliği ve Kullanılan Temas Açısı Test Sıvılarının Serbest Yüzey Enerjisi Değerine Etkisi. Journal of Characterization, 2(2), 147-160. https://doi.org/10.29228/jchar.62777
  • Głowacz-Czerwonka, D., Zakrzewska, P., Oleksy, M., Pielichowska, K., Kuźnia, M., & Telejko, T. (2023). The influence of biowaste-based fillers on the mechanical and fire properties of rigid polyurethane foams. Sustainable Materials and Technologies, 36. https://doi.org/10.1016/j.susmat.2023.e00610
  • Husainie, S. M., Deng, X., Ghalia, M. A., Robinson, J., & Naguib, H. E. (2021). Natural fillers as reinforcement for closed-molded polyurethane foam plaques: Mechanical, morphological, and thermal properties. Materials Today Communications, 27. https://doi.org/10.1016/j.mtcomm.2021.102187
  • International, A. (2020). ASTM D1622−20 Standard Test Method for Apparent Density of Rigid Cellular Plastics.
  • International, A. (2024). ASTM E2611-24 Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method.
  • Izarra, I., Borreguero, A. M., Garrido, I., Rodríguez, J. F., & Carmona, M. (2021). Comparison of flexible polyurethane foams properties from different polymer polyether polyols. Polymer Testing, 100. https://doi.org/10.1016/j.polymertesting.2021.107268
  • Jiang, R., Zheng, X., Zhu, S., Li, W., Zhang, H., Liu, Z., & Zhou, X. (2023). Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect, 8(11). https://doi.org/10.1002/slct.202204132
  • Jing, X., Xia, Y., Chen, F., Yang, C., Yang, Z., & Jaffery, S. H. I. (2022). Preparation of superhydrophobic glass surface with high adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633. https://doi.org/10.1016/j.colsurfa.2021.127861
  • Koru, M., Serçe, O., İpek, O., Karabulut, H., & Hidiroğlu, M. (2020). Determining the Effect of Air Chambers on Rubber Insulation in Automotive Parts for Sound Absorption Coefficient and Transmission Loss. Mühendislik Bilimleri ve Tasarım Dergisi, 8(4), 1053-1061. https://doi.org/10.21923/jesd.757401
  • Kuranchie, C., Yaya, A., & Bensah, Y. D. (2021). The effect of natural fibre reinforcement on polyurethane composite foams – A review. Scientific African, 11. https://doi.org/10.1016/j.sciaf.2021.e00722
  • Maamoun, A. A., Naeim, D. M., Mahmoud, A. A., Esawi, A. M. K., & Arafa, M. (2024). Improving the performance of triboelectric nanogenerators using flexible polyurethane nanocomposites foam filled with montmorillonite. Nano Energy, 124. https://doi.org/10.1016/j.nanoen.2024.109426
  • Marsolea Cristea, A. C., Mocanu, A., Stanescu, P. O., Brincoveanu, O., Orbeci, C., Irodia, R., Pirvu, C., Dinescu, A., Bobirica, C., & Rusen, E. (2023). Synthesis and characterization of polyurethane flexible foams provided from PET derivatives, fly ash, and glass wastes. Heliyon, 9(12), e23097. https://doi.org/10.1016/j.heliyon.2023.e23097
  • Nava-Castro, K. E., Ramirez-Nieto, R., Mendez-Garcia, L. A., Giron-Perez, M. I., Segovia-Mendoza, M., Navidad-Murrieta, M. S., & Morales Montor, J. (2019). Environmental Pollution as a Risk Factor in Testicular Tumour Development: Focus on the Interaction between Bisphenol A and the Associated Immune Response. International Journal Environmental Research and Public Health, 16(21). https://doi.org/10.3390/ijerph16214113
  • Orfali, W. A. (2015). Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder. Physics Procedia, 70, 699-702, https://doi.org/10.1016/j.phpro.2015.08.091.
  • Pinto, R. C., Pereira, P. H. F., Maia, L. S., Silva, T. L. S. E., Faria, M. I. S. D., Rosa, D. S., & Mulinari, D. R. (2024). A promising use of Kimberlite clay on sustainable polyurethane foams. Applied Clay Science, 258. https://doi.org/10.1016/j.clay.2024.107472
  • Polaczek, K., Kurańska, M., & Prociak, A. (2022). Open-cell bio-polyurethane foams based on bio-polyols from used cooking oil. Journal of Cleaner Production, 359. https://doi.org/10.1016/j.jclepro.2022.132107
  • Postaue, N., Schneider, R., Borba, C. E., da Silva, C., & Cardozo-Filho, L. (2024). Application of KF/waste glass catalyst in the synthesis of fatty acid esters under pressurized conditions without glycerol generation. Renewable Energy, 234. https://doi.org/10.1016/j.renene.2024.121183
  • Rastegarfar, N., Behrooz, R., & Barikani, M. (2018). Characterization of polyurethane foams prepared from liquefied sawdust by crude glycerol and polyethylene glycol. Journal of Polymer Research, 25(7). https://doi.org/10.1007/s10965-018-1516-4
  • Salino, R. E., & Catai, R. E. (2023). A study of polyurethane waste composite (PUR) and recycled plasterboard sheet cores with polyurethane foam for acoustic absorption. Construction and Building Materials, 387. https://doi.org/10.1016/j.conbuildmat.2023.131201
  • Sönmez, Ö. S. (2020). Cam Tozu Katkili Raku Sir Uygulamalari. Social Mentality and Researcher Thinkers Journal, 6(38), 2263-2268. https://doi.org/10.31576/smryj.696
  • Subhani, M., Ali, S., Allan, R., Grace, A., & Rahman, M. (2024). Physical and mechanical properties of self-compacting geopolymer concrete with waste glass as partial replacement of fine aggregate. Construction and Building Materials, 437. https://doi.org/10.1016/j.conbuildmat.2024.136956
  • Sung, G., Kim, J. W., Kim, J. H. (2016) Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. Journal of Industrial and Engineering Chemistry, 44, , 99-104. https://doi.org/10.1016/j.jiec.2016.08.014.
  • Tamaddoni Moghaddam, S., Ghasemi, H., Hussein, F. B., & Abu-Zahra, N. (2023). Effect of reaction parameters on Arsenic removal capacity from aqueous solutions using modified magnetic PU foam nanocomposite. Results in Materials, 17. https://doi.org/10.1016/j.rinma.2023.100373
  • Terro, M. J. (2006). Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment, 41(5), 633-639. https://doi.org/10.1016/j.buildenv.2005.02.018
  • Triassi, M., Alfano, R., Illario, M., Nardone, A., Caporale, O., & Montuori, P. (2015). Environmental pollution from illegal waste disposal and health effects: a review on the "triangle of death". International Journal Environmental Research and Public Health, 12(2), 1216-1236. https://doi.org/10.3390/ijerph120201216
  • Türkiye Cumhuriyeti Çevre, Ş. v. İ. D. B. (2024). 2023 Faaliyet Raporu. https://webdosya.csb.gov.tr/db/destek/menu/2023-faaliyet_20240201021328.pdf
  • Uzun, M., Çöğürcü, M. T., & Keskin, Ü. S. (2018). Cam tozunun beton basınç dayanımına etkisi. Beykent Üniversitesi Fen Bilimleri Dergisi, 11, 42-51.
  • Wang, Z., Wang, C., Gao, Y., Li, Z., Shang, Y., & Li, H. (2023). Porous Thermal Insulation Polyurethane Foam Materials. Polymers (Basel), 15(18). https://doi.org/10.3390/polym15183818
  • Zhu, T., Chen, S., Zhu, W., Wang, Y., & Jiang, Y. (2019). Sound Absorption Property of Polyurethane Foam with Polyethylene Fiber. Materials Science, 25(1). https://doi.org/10.5755/j01.ms.25.1.19720
  • Zhu, W., Chen, S., Wang, Y., Zhu, T., & Jiang, Y. (2023). Sound Absorption Behavior of Polyurethane Foam Composites with Different Ethylene Propylene Diene Monomer Particles. Archives of Acoustics. https://doi.org/10.24425/123912
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Teknolojisi
Bölüm Makaleler
Yazarlar

Ayşenur Yeşilyurt 0000-0002-1370-7588

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 13 Eylül 2024
Kabul Tarihi 29 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Yeşilyurt, A. (2024). Enhancing sound transmission loss of polyurethane foams using waste soda glass filler. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1274-1286. https://doi.org/10.17714/gumusfenbil.1549633