Yosun gübresi ve mikoriza uygulanmasının mercimek bitkisi rizosfer bölgesinin biyolojik aktivitesine etkileri
Yıl 2025,
Cilt: 15 Sayı: 1, 11 - 20, 15.03.2025
Çiğdem Küçük
,
Meryem Demir
Öz
Bu çalışmada, mercimek bitkisinin gelişimi ve rizorferdeki bazı mikrobiyolojik özellikler üzerinde yosun gübresi ve mikorizanın ayrı ayrı ve birlikte etkisini belirlemek amaçlanmıştır. Deneme doğal ışık alan serada tesadüf parselleri deneme desenine göre 5 tekerrürlü olarak yürütülmüştür. Denemede ticari olarak satılan yosun ve mikoriza gübreleri kullanılmıştır. Biyostimülant olarak satılan sıvı yosun gübresi, su ile birlikte topraklara dört dozda (%0, %1, %2 ve %4), mikoriza ise 2 dozda (mikorizalı ve mikorizasız) uygulanmıştır. Bitkiler ekimden 15 hafta sonra hasat edilmiştir. Elde edilen sonuçların istatistiksel değerlendirmesine göre, uygulamaların kontrole göre önemli (p<0.05) derecede farklılık gösterdiği belirlenmiştir. En yüksek yeşil aksam ağırlığı yosun gübresinin %1’lik uygulanması ile elde edilmiştir. Mikoriza ve %0.2’lik yosun gübresinin birlikte uygulanması ile bitki yeşil aksam boyu ve kök uzunluğu diğer uygulamalara göre daha fazla artmıştır. Mikoriza ve %1’lik yosun gübresinin birlikte uygulanması kök kuru ağırlığı, yaprakların klorofil içerikleri, kök bölgesi (rizosfer) β-glukosidaz, dehidrogenaz, alkalin fosfataz enzim aktiviteleri ve CO2 içeriği üzerine etkili olmuştur. Mikoriza ve yosun gübresinin birlikte uygulanması, mercimek bitkilerinin temel gelişme özelliklerini de iyileştireceğini göstermektedir.
Etik Beyan
Çalışma, etik kurul izni veya herhangi bir özel izin gerektirmemektedir.
Destekleyen Kurum
Bu çalışma Harran Üniversitesi, Bilimsel Araştırma Projeleri birimi (HÜBAP) tarafından 21257 numaralı proje ile maddi olarak desteklenmiştir.
Proje Numarası
Harran Üniversitesi, Bilimsel Araştırma Projeleri birimi (HÜBAP) tarafından 21257 numaralı proje
Teşekkür
Bu çalışma, Harran Üniversitesi, Bilimsel Araştırma Projeleri birimi (HÜBAP) tarafından 21257 numaralı proje ile maddi olarak desteklenmiştir. Makalenin inceleme ve değerlendirme aşamasında yapmış oldukları katkılardan dolayı editör ve hakem/hakemlere teşekkür ederiz.
Kaynakça
- Abd El-Gawad, H.G., & Osman, H.S. (2014). Effect of exogenous application of boric acid and seaweed extract on growth, biochemical content and yield of eggplant. Journal Horticultural Science & Ornamantel Plants, 6, 133-143. https://doi.org/10.5829/idosi.jhsop.2014.6.3.1147
- Acosta-Martinez, V., Cruz, L., Sotomayor-Ramirez, D., & Pérez-Alegría, L. (2007). Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35, 35-45. https://doi.org/10.1016/j.apsoil.2006.05.012.
- Ağirağaç, Z., & Zorer Çelebi, Ş. (2024). Combined applications and Multi-Faceted evaluations of humic acid, seaweed, and vermicompost with chemical and organo-mineral fertilizers on corn, part I: chlorophyll concentration. Journal of Plant Nutrition, 1-12.
- Ağırağaç, Z., Çelebi, Ş. Z. (2022). Karasal İklimde Yetiştirilen İkinci Ürün Mısırın Silaj Verimi Üzerine Deniz Yosunu Uygulamasının Etkisi. ISPEC Journal of Agricultural Sciences, 6(1), 7-19.
- Al-Karaki, G. (2013). Application of mycorrhizae in sustainable date palm cultivation. Emirates Journal of Food and Agriculture, 25, 854. https://doi.org/10.9755/ejfa.v25i11.16499.
- Alam, M.Z., Braun, G., Norrie, J., & Hodges, D.M. (2013). Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Canadian Journal Plant Science, 93, 23–36. https://doi.org/10.4141/cjps2011-260.
- Ait-El-Mokhtar, M., Ben-Laouane, R., Anli, M., Boutasknit, A., & Wahbi, S., Meddich, A. (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253, 429-438. https://doi.org/10.3389/fsufs.2020.00131.
- Anlı, M., El Kaouna, M., Ait-El-Mokhtar, M., Boutasknit, A., Ben-Laouane, R., Toubali, S., Baslam, M., Lyamlouli, K., Hafidi, M., & Meddich, A. (2020). Seaweed extract application and arbuscular mycorrhizal fungal inoculation: a tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv Boufgous. South African Journal Botany, 132, 15-21. https://doi.org/10.1016/j.sajb.2020.04.004.
- Baligar, V.C., Fageria, N.K., & He, Z.L. (2001). Nutrient use effıcıency in plants. Communications in Soil Science and Plant Analysis, 32, 921-950. https://doi.org/10.1081/CSS-100104098.
- Begum, M., Bordoloi, B.C., Singha, D.D., & Ojha, N.J. (2018). Role of seaweed extract on growth, yield and quality of some agriculturalcrops: A review. Agriculture Review, 39, 321–326. https://doi.org/10.18805/ag.R-1838.
- Carrasco-Gil, S., Hernandez-Apaolaza, L., & Lucena, J. J. (2018). Effect of several commercial seaweed extracts in the mitigation of ironchlorosis of tomato plants (Solanum lycopersicum L.). Plant Growth Regulation, 86, 401–411. https://doi.org/10.3390/agronomy11030507.
- Chen, C.L., Song, W.L., Sun, L., Qin, S., Ren, C.G., Yang, J.C., Feng, D.W., Liu, N., Yan, J., & Cui, B.B. (2022). Effect of Seaweed Extract Supplement on Rice Rhizosphere Bacterial Community in Tillering and Heading Stages. Agronomy 12, 342. https://doi.org/10.3390/agronomy12020342
- Cordell, D., Drangert, J.O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environ. Change, 19, 292-305. https://10.1016/j.gloenvcha.2008.10.009.
- De Pascale, S., Rouphael, Y., & Colla, G. (2017). Plant biostimulants: innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82, 277–285. https://doi.org/10.17660/eJHS.2017/82.6.2.
- Elkoca, E. (1997). Fasulye (Phaseolus vulgaris L)’de tuza dayanıklılık üzerine bir araştırma [Yüksek Lisans Tezi Atatürk Üniversitesi Fen Bilimleri Enstitüsü].
- Gianfreda, L., Rao, M.A., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 341, 265-279. https://doi.org/10.1016/j.scitotenv.2004.10.005.
- Goertz, S.H., & Coons, J.M. (1991). Tolerance of tepary and navy beans to NaCl during germination and emergence. Horticulturae Science, 26(3), 246-249. https://doi.org/10.21273/HORTSCI.26.3.246.
- Golubkina, N., Logvinenko, L., Novitsky, M., Zamana, S., Sokolov, S., Molchanova, A., Shevchuk, O., Sekara, A., Tallarita, A., & Carusa, G. (2020). Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants, 9, 375. https://doi.org/10.3390/plants9030375.
- Gonzalez-Gonzalez, H.F., Ocampo-Alvarez, H., Santacruz-Ruvalcaba, F., Sanchez-Hernandez, C.V., Casarrubias-Castillo, K., Beceril-Espinosa, A., Castaneda-Nava, J.J., & Hernandez-Herrera, R.M. (2020). Physiological, Ecological, and Biochemical Implications in Tomato Plants of Two Plant Biostimulants: Arbuscular Mycorrhizal Fungi and Seaweed Extract. Frontiers in Plant Science, 11, 1-18. https://doi.org/10.3389/fpls.2020.00999.
- Gülaç, Z.N. (2022). Ürün Raporu Mercimek 2022. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, p.32. ttps://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2022%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/Mercimek%20%C3%9Cr%C3%BCn%20Raporu-TEPGE-358.pdf.
- Hussain, H. I., Kasinadhuni, N. & Arioli, T. (2021). The effect of seaweed extract on tomato plant growth, productivity and soil. Journal Applied Phycology, 33,1305–1314. https://doi.org/10.1007/s10811-021-02387-2.
- Khan, U.P., Rayirath, S., Subramanian, M.N., Jithesh, P., Rayorath, D.M., Hodges, A.T., Critchley, J., CraigiJ., Norrie, B., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regulation, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x.
- Küçük, Ç., Uslu, P., & Sezen, G. (2024). Cladophora sp. ve Arbüsküler Mikorizal Fungus (AMF) Spor Aşılamasının Mısır Bitkisinin (Zea mays L.) Gelişim Parametreleri ve Bazı Rizosfer Toprak Enzimlerine Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28(2), 189-1965. https://doi.org/ 10.19113/sdufenbed.1473028.
- Küçük, Ç., & Şinşek, N. (2020). The effects of different agricultural wastes on some microbiological properties of soil. Journal on Mathematic, Engineering and Natural Sciences 15, 451-460. https://ejons.org/index.php/ejons/article/view/129.
- Küçük, Ç., & Cevheri, C. (2019). Investigation of some soil microbiological properties of rhizosphere soil of halophytic forage plants. Sigma Journal of Engineering and Natural Sciences, 37(1), 7-14. https://dergipark.org.tr/en/download/article-file/2031899.
- Lucini, L., Colla, G., Morebo, M. B. M., Bernardo, L., Cardarelli, M., & Terzi, V. (2019). Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates. Phytochemistry, 157, 158–167. https://doi.org/10.1016/j.phytochem.2018.10.033.
- Meddich, A., Jaiti, F., Bourzik, W., El Asli, A., & Hafidi, M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae, 192, 468-474. https://doi.org/10.1016/j.scienta.2015.06.024.
- Oyetunji, O.J., Ekanayake, I.J., & Osonubi, O. (2007). Chlorophyll fluorescence analysis for assessing water deficit and arbuscular mycorrhizal fungi (AMF) inoculation in cassava (Manihot esculenta Crantz). Journal of Advanced Research, 1, 108-117.
- Rady, M.M., Taha, S.S., & Kusvuran, S. (2018). Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions. Scientia Horticulturae, 233, 61-69. https://doi.org/10.1016/j.scienta.2018.01.047.
- Rasouli, F., Nasiri, Y., Hassanpouraghdam, M.B., Asadi, M., Qaderi, T., Trifa, A., Strzemski, M., Dresler, S., & Szczepanek, M. (2023). Seaweed extract and arbuscular mycorrhiza co-application affect the growth responses and essential oil composition of Foeniculum vulgare L.. Scientific Reports 13, 11902. https://doi.org/10.1038/s41598-023-39194-3
- Rivera-Becerril, F., Van-Tunien, O., Rivera-Becerril, F., Van-Tuinen, O., Chataignier, N. Rouard, J. Béguet, C. Kuszala, G. Soulas, V. Gianinazzi-Pearson, F. & Martin Laurent, F. (2017). Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Science of the Total Environment, 577, 84-93. https://doi.org/10.1016/j.scitotenv.2016.10.098.
- Roshdy, K.A. 2014. Effect of spraying silicon and seaweed extract on growth and fruiting of grandnaine banana. The Egyptian Journal of Agricultural Research, 92, 979-991. https://doi.org/10.21608/ejar.2014.156427.
- Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., De Pascale, S. (2017). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 29, 459-470. https://doi.org/10.3390/agronomy13112745.
- Rouphael, Y., & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655.
- Shuab, R., Lone, R., & Koul, K.K. (2017). Influence of arbuscular mycorrhizal fungi on storage metabolites, mineral nutrition, and nitrogen-assimilating enzymes in potato (Solanum tuberosum L.) plant. Journal of Plant Nutrition, 40, 1386-1396. https://doi.org/10.1080/01904167.2016.1263317.
- Subhashini, D.V. (2016). Effect of NPK fertilizers and co-inoculation with phosphate-solubilizing arbuscular mycorrhizal fungus and potassium-mobilizing bacteria on growth, yield, nutrient acquisition, and quality of tobacco (Nicotiana tabacum L.). Communications in Soil Science and Plant Analysis, 47, 328-337. https://doi.org/10.1080/00103624.2015.1123724.
- Shukla, P.S., Mantin, E.G., Adil, M., Bajpai, S., Critchley, A.T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 655. https://doi.org/10.3389/fpls.2019.00655.
- Sumbul, A., Mahmood, I., Rizvi, R., & Ansari, R.A. (2017). Mycorrhiza: an alliance for the nutrient management in plants. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics in Agroecosystem, (ss. 1-537). Springer, https://link.springer.com/chapter/10.1007/978-981-10-4059-7_19.
- Sukumar, P., Legue, V., Vayssieres, A., Martin, F., Tuskan, G.A., & Kalluri, U.C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environment, 36, 909–919. https://doi.org/10.1111/pce.12036.
- Van Der Heijden, M.G.A., Martin, F.M., Selosse, M.A., & Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423. https://doi.org/10.1111/nph.13288.
- Wicaksono, W.A., Sansom, C.E., Jones, E., Perry, N.B., Monk, J., Ridgway, H.J. (2018). Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): effects on plant growth and essential oil content. Symbiosis, 75, 39-50. https://doi.org/10.1007/s13199-017-0506-3.
- Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., & Brown, P.H. (2017). Biostimulants in plant science: a global perspective Frontiers Plant Science, 7, 1-32. https://doi.org/10.3389/fpls.2016.02049.
- Zhao, Y. (2018). Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. The Annual Review of Plant Biology, 69, 417-435. https://doi.org/10.1146/annurev-arplant-042817-040226.
Effects of seaweed fertilizer and mycorrhiza application on the biological activity of lentil rhizosphere soil
Yıl 2025,
Cilt: 15 Sayı: 1, 11 - 20, 15.03.2025
Çiğdem Küçük
,
Meryem Demir
Öz
The aim of this study was to determine the effects of seaweed fertilizer and mycorrhiza on the development of lentil plants and some microbiological properties in the rhizosphere, separately and together. The experiment was carried out in a greenhouse with natural light according to a randomized plot design with 5 replications. Commercially available seaweed and mycorrhizal fertilizers were used in the experiment. Liquid seaweed fertilizer sold as a biostimulant was applied to the soil with water at four doses (0%, 1%, 2% and 4%), while mycorrhiza was applied at two doses (with and without mycorrhiza). Plants were harvested 15 weeks after planting. According to the statistical evaluation of the results obtained, it was determined that the applications showed significant (p<0.05) differences compared to the control. The highest green parts weight was obtained with 1% seaweed fertilizer application. With the combined application of mycorrhiza and 0.2% seaweed fertilizer, plant green parts length and root length increased more than other applications. The combined application of mycorrhiza and 1% seaweed fertilizer was effective on root dry weight, chlorophyll contents of leaves, root zone (rhizosphere) β-glucosidase, dehydrogenase, alkaline phosphatase enzyme activities and CO2 content. Although the application doses of seaweed fertilizer showed differences in their effects on the basic growth parameters of lentil plants, the combined application of mycorrhiza and seaweed fertilizer showed that it increased both plant development and microbiological properties of rhizosphere soil.
Proje Numarası
Harran Üniversitesi, Bilimsel Araştırma Projeleri birimi (HÜBAP) tarafından 21257 numaralı proje
Kaynakça
- Abd El-Gawad, H.G., & Osman, H.S. (2014). Effect of exogenous application of boric acid and seaweed extract on growth, biochemical content and yield of eggplant. Journal Horticultural Science & Ornamantel Plants, 6, 133-143. https://doi.org/10.5829/idosi.jhsop.2014.6.3.1147
- Acosta-Martinez, V., Cruz, L., Sotomayor-Ramirez, D., & Pérez-Alegría, L. (2007). Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35, 35-45. https://doi.org/10.1016/j.apsoil.2006.05.012.
- Ağirağaç, Z., & Zorer Çelebi, Ş. (2024). Combined applications and Multi-Faceted evaluations of humic acid, seaweed, and vermicompost with chemical and organo-mineral fertilizers on corn, part I: chlorophyll concentration. Journal of Plant Nutrition, 1-12.
- Ağırağaç, Z., Çelebi, Ş. Z. (2022). Karasal İklimde Yetiştirilen İkinci Ürün Mısırın Silaj Verimi Üzerine Deniz Yosunu Uygulamasının Etkisi. ISPEC Journal of Agricultural Sciences, 6(1), 7-19.
- Al-Karaki, G. (2013). Application of mycorrhizae in sustainable date palm cultivation. Emirates Journal of Food and Agriculture, 25, 854. https://doi.org/10.9755/ejfa.v25i11.16499.
- Alam, M.Z., Braun, G., Norrie, J., & Hodges, D.M. (2013). Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Canadian Journal Plant Science, 93, 23–36. https://doi.org/10.4141/cjps2011-260.
- Ait-El-Mokhtar, M., Ben-Laouane, R., Anli, M., Boutasknit, A., & Wahbi, S., Meddich, A. (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253, 429-438. https://doi.org/10.3389/fsufs.2020.00131.
- Anlı, M., El Kaouna, M., Ait-El-Mokhtar, M., Boutasknit, A., Ben-Laouane, R., Toubali, S., Baslam, M., Lyamlouli, K., Hafidi, M., & Meddich, A. (2020). Seaweed extract application and arbuscular mycorrhizal fungal inoculation: a tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv Boufgous. South African Journal Botany, 132, 15-21. https://doi.org/10.1016/j.sajb.2020.04.004.
- Baligar, V.C., Fageria, N.K., & He, Z.L. (2001). Nutrient use effıcıency in plants. Communications in Soil Science and Plant Analysis, 32, 921-950. https://doi.org/10.1081/CSS-100104098.
- Begum, M., Bordoloi, B.C., Singha, D.D., & Ojha, N.J. (2018). Role of seaweed extract on growth, yield and quality of some agriculturalcrops: A review. Agriculture Review, 39, 321–326. https://doi.org/10.18805/ag.R-1838.
- Carrasco-Gil, S., Hernandez-Apaolaza, L., & Lucena, J. J. (2018). Effect of several commercial seaweed extracts in the mitigation of ironchlorosis of tomato plants (Solanum lycopersicum L.). Plant Growth Regulation, 86, 401–411. https://doi.org/10.3390/agronomy11030507.
- Chen, C.L., Song, W.L., Sun, L., Qin, S., Ren, C.G., Yang, J.C., Feng, D.W., Liu, N., Yan, J., & Cui, B.B. (2022). Effect of Seaweed Extract Supplement on Rice Rhizosphere Bacterial Community in Tillering and Heading Stages. Agronomy 12, 342. https://doi.org/10.3390/agronomy12020342
- Cordell, D., Drangert, J.O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environ. Change, 19, 292-305. https://10.1016/j.gloenvcha.2008.10.009.
- De Pascale, S., Rouphael, Y., & Colla, G. (2017). Plant biostimulants: innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82, 277–285. https://doi.org/10.17660/eJHS.2017/82.6.2.
- Elkoca, E. (1997). Fasulye (Phaseolus vulgaris L)’de tuza dayanıklılık üzerine bir araştırma [Yüksek Lisans Tezi Atatürk Üniversitesi Fen Bilimleri Enstitüsü].
- Gianfreda, L., Rao, M.A., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 341, 265-279. https://doi.org/10.1016/j.scitotenv.2004.10.005.
- Goertz, S.H., & Coons, J.M. (1991). Tolerance of tepary and navy beans to NaCl during germination and emergence. Horticulturae Science, 26(3), 246-249. https://doi.org/10.21273/HORTSCI.26.3.246.
- Golubkina, N., Logvinenko, L., Novitsky, M., Zamana, S., Sokolov, S., Molchanova, A., Shevchuk, O., Sekara, A., Tallarita, A., & Carusa, G. (2020). Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants, 9, 375. https://doi.org/10.3390/plants9030375.
- Gonzalez-Gonzalez, H.F., Ocampo-Alvarez, H., Santacruz-Ruvalcaba, F., Sanchez-Hernandez, C.V., Casarrubias-Castillo, K., Beceril-Espinosa, A., Castaneda-Nava, J.J., & Hernandez-Herrera, R.M. (2020). Physiological, Ecological, and Biochemical Implications in Tomato Plants of Two Plant Biostimulants: Arbuscular Mycorrhizal Fungi and Seaweed Extract. Frontiers in Plant Science, 11, 1-18. https://doi.org/10.3389/fpls.2020.00999.
- Gülaç, Z.N. (2022). Ürün Raporu Mercimek 2022. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, p.32. ttps://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2022%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/Mercimek%20%C3%9Cr%C3%BCn%20Raporu-TEPGE-358.pdf.
- Hussain, H. I., Kasinadhuni, N. & Arioli, T. (2021). The effect of seaweed extract on tomato plant growth, productivity and soil. Journal Applied Phycology, 33,1305–1314. https://doi.org/10.1007/s10811-021-02387-2.
- Khan, U.P., Rayirath, S., Subramanian, M.N., Jithesh, P., Rayorath, D.M., Hodges, A.T., Critchley, J., CraigiJ., Norrie, B., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regulation, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x.
- Küçük, Ç., Uslu, P., & Sezen, G. (2024). Cladophora sp. ve Arbüsküler Mikorizal Fungus (AMF) Spor Aşılamasının Mısır Bitkisinin (Zea mays L.) Gelişim Parametreleri ve Bazı Rizosfer Toprak Enzimlerine Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28(2), 189-1965. https://doi.org/ 10.19113/sdufenbed.1473028.
- Küçük, Ç., & Şinşek, N. (2020). The effects of different agricultural wastes on some microbiological properties of soil. Journal on Mathematic, Engineering and Natural Sciences 15, 451-460. https://ejons.org/index.php/ejons/article/view/129.
- Küçük, Ç., & Cevheri, C. (2019). Investigation of some soil microbiological properties of rhizosphere soil of halophytic forage plants. Sigma Journal of Engineering and Natural Sciences, 37(1), 7-14. https://dergipark.org.tr/en/download/article-file/2031899.
- Lucini, L., Colla, G., Morebo, M. B. M., Bernardo, L., Cardarelli, M., & Terzi, V. (2019). Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates. Phytochemistry, 157, 158–167. https://doi.org/10.1016/j.phytochem.2018.10.033.
- Meddich, A., Jaiti, F., Bourzik, W., El Asli, A., & Hafidi, M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae, 192, 468-474. https://doi.org/10.1016/j.scienta.2015.06.024.
- Oyetunji, O.J., Ekanayake, I.J., & Osonubi, O. (2007). Chlorophyll fluorescence analysis for assessing water deficit and arbuscular mycorrhizal fungi (AMF) inoculation in cassava (Manihot esculenta Crantz). Journal of Advanced Research, 1, 108-117.
- Rady, M.M., Taha, S.S., & Kusvuran, S. (2018). Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions. Scientia Horticulturae, 233, 61-69. https://doi.org/10.1016/j.scienta.2018.01.047.
- Rasouli, F., Nasiri, Y., Hassanpouraghdam, M.B., Asadi, M., Qaderi, T., Trifa, A., Strzemski, M., Dresler, S., & Szczepanek, M. (2023). Seaweed extract and arbuscular mycorrhiza co-application affect the growth responses and essential oil composition of Foeniculum vulgare L.. Scientific Reports 13, 11902. https://doi.org/10.1038/s41598-023-39194-3
- Rivera-Becerril, F., Van-Tunien, O., Rivera-Becerril, F., Van-Tuinen, O., Chataignier, N. Rouard, J. Béguet, C. Kuszala, G. Soulas, V. Gianinazzi-Pearson, F. & Martin Laurent, F. (2017). Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Science of the Total Environment, 577, 84-93. https://doi.org/10.1016/j.scitotenv.2016.10.098.
- Roshdy, K.A. 2014. Effect of spraying silicon and seaweed extract on growth and fruiting of grandnaine banana. The Egyptian Journal of Agricultural Research, 92, 979-991. https://doi.org/10.21608/ejar.2014.156427.
- Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., De Pascale, S. (2017). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 29, 459-470. https://doi.org/10.3390/agronomy13112745.
- Rouphael, Y., & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655.
- Shuab, R., Lone, R., & Koul, K.K. (2017). Influence of arbuscular mycorrhizal fungi on storage metabolites, mineral nutrition, and nitrogen-assimilating enzymes in potato (Solanum tuberosum L.) plant. Journal of Plant Nutrition, 40, 1386-1396. https://doi.org/10.1080/01904167.2016.1263317.
- Subhashini, D.V. (2016). Effect of NPK fertilizers and co-inoculation with phosphate-solubilizing arbuscular mycorrhizal fungus and potassium-mobilizing bacteria on growth, yield, nutrient acquisition, and quality of tobacco (Nicotiana tabacum L.). Communications in Soil Science and Plant Analysis, 47, 328-337. https://doi.org/10.1080/00103624.2015.1123724.
- Shukla, P.S., Mantin, E.G., Adil, M., Bajpai, S., Critchley, A.T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 655. https://doi.org/10.3389/fpls.2019.00655.
- Sumbul, A., Mahmood, I., Rizvi, R., & Ansari, R.A. (2017). Mycorrhiza: an alliance for the nutrient management in plants. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics in Agroecosystem, (ss. 1-537). Springer, https://link.springer.com/chapter/10.1007/978-981-10-4059-7_19.
- Sukumar, P., Legue, V., Vayssieres, A., Martin, F., Tuskan, G.A., & Kalluri, U.C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environment, 36, 909–919. https://doi.org/10.1111/pce.12036.
- Van Der Heijden, M.G.A., Martin, F.M., Selosse, M.A., & Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423. https://doi.org/10.1111/nph.13288.
- Wicaksono, W.A., Sansom, C.E., Jones, E., Perry, N.B., Monk, J., Ridgway, H.J. (2018). Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): effects on plant growth and essential oil content. Symbiosis, 75, 39-50. https://doi.org/10.1007/s13199-017-0506-3.
- Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., & Brown, P.H. (2017). Biostimulants in plant science: a global perspective Frontiers Plant Science, 7, 1-32. https://doi.org/10.3389/fpls.2016.02049.
- Zhao, Y. (2018). Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. The Annual Review of Plant Biology, 69, 417-435. https://doi.org/10.1146/annurev-arplant-042817-040226.