Derleme
BibTex RIS Kaynak Göster

Hayvan yemlerine yeşil sentez metalik nanopartikül ilavelerinin etkileri

Yıl 2025, Cilt: 15 Sayı: 1, 298 - 320, 15.03.2025

Öz

Hayvancılık işletmelerinde “mümkün olan en yüksek kalitede, en fazla ürünü, en kısa zamanda ve en ucuza üretme” amacına ulaşabilmeleri için yemde uygun mineral dengesini sağlayabilmek önemlidir. Mineraller, tüm çiftlik hayvanlarının optimum bir düzeyde büyüme ve gelişmeleri, hastalıklardan korunmaları, üremeleri ve üretmeyi sürdürebilmeleri için temel besinsel elemanlardır. Geçtiğimiz yıllarda fiziksel ve kimyasal yöntemlerle sentezlenen nano minerallerin çiftlik hayvanları üzerine etkilerini inceleyen çok sayıda çalışma yapılmıştır. Ancak bu yöntemlere alternatif olan “yeşil sentez” veya “biyosentez” adı verilen yöntemle üretilen nano minerallerin yem katkı maddesi olarak kullanımına yönelik çalışmalar da son zamanlarda dikkat çekmektedir. Yeşil sentez teknolojisi temiz, ucuz, tek adımlı ve basit, hızlı ve güvenilir olmasının yanısıra sağlık ve çevre dostu bir yöntemdir. Yeşil sentez yöntemi, bitki, bakteri, mantar, alg ve maya gibi biyolojik ajanlarda bulunan proteinler, enzimler, vitaminler, fenolik maddeler, organik asitler vb. metabolitlerin indirgeme fonksiyonu ile metal tuzları nanopartikül (NP) seviyesine dönüştürebilmesidir. En az bir boyutu 100 nm’den daha küçük olan parçacıklar NP’ler olarak adlandırılmaktadır. Nano mineraller/metal nanopartikül (MNP)’ler çok küçük boyut ve yüksek yüzey/hacim oranlarına sahip olmaları nedeniyle üstün mekanik, termal, optik ve manyetik özellikler kazanmış ve tarım, eczacılık, tıp, biyomedikal, biyoteknoloji, optik, enerji gibi farklı uygulama alanlarında yenilik için önemli bir araç haline gelmişlerdir. Bu derleme, gelişen küresel problemlere çözüm olarak, sürdürülebilir ve sıfır atık ilkelerini temel almış yeşil sentez metoduyla üretilen metal nanopartiküllerin hayvan yemlerinde kullanılma potansiyellerine ilişkin literatür verilerini özetlemektedir.

Kaynakça

  • Abdelaziz, M. H., El‐Dakdoky, M. H., Ahmed, T. A., & Mohamed, A. S. (2023). Biological impacts of the green synthesized silver nanoparticles on the pregnant albino rats and their fetuses. Birth Defects Research, 115(4), 441-457. https://doi.org/10.1002/bdr2.2131
  • Abdel-Moneim, A. M. E., Shehata, A. M., Selim, D. A., El-Saadony, M. T., Mesalam, N. M., & Saleh, A. A. (2022). Spirulina platensis and biosynthesized selenium nanoparticles improve performance, antioxidant status, humoral immunity and dietary and ileal microbial populations of heat-stressed broilers. Journal of Thermal Biology, 104, 103195. https://doi.org/10.1016/j.jtherbio.2022.103195
  • Abo-El-Yazid, Z. H., Ahmed, O. K., El-Tholoth, M., & Ali, M. A. S. (2022). Green synthesized silver nanoparticles using Cyperus rotundus L. extract as a potential antiviral agent against infectious laryngotracheitis and infectious bronchitis viruses in chickens. Chemical and Biological Technologies in Agriculture, 9(1), 1-11. https://doi.org/10.1186/s40538-022-00325-z
  • Adegbeye, M. J., Elghandour, M. M., Barbabosa-Pliego, A., Monroy, J. C., Mellado, M., Reddy, P. R. K., & Salem, A. Z. (2019). Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science, 78(7), 29-37. https://doi.org/10.1016/j.jevs.2019.04.001
  • Akbar, S., Tauseef, I., Subhan, F., Sultana, N., Khan, I., Ahmed, U., & Haleem, K. S. (2020). An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorganic and Nano-Metal Chemistry, 50(4), 257-271. https://doi.org/10.1080/24701556.2019.1711121
  • Akhtar, K., Chand, N., Khan, S., Dai, S., & Khan, R. U. (2020). Supplementation of organic minerals and its effect on production performance and egg quality of laying hens. Journal of Animal Physiology and Nutrition Science, 1(1), 12-16. https://doi.org/10.46417/JAPN/2020.003
  • Aksoy, A., Macit, M., & Karaoğlu, M. (2011). Hayvan Besleme, Atatürk Üniversitesi Ziraat Fakültesi, Ofset Tesisi, Ders yayınları, No:220, s:166., Erzurum.
  • Ali, A. A., Soliman, E. S., Hamad, R. T., El-Borad, O. M., Hassan, R. A., & Helal, M. S. (2020). Preventive, behavioral, productive, and tissue modification using green synthesized selenium nanoparticles in the drinking water of two broiler breeds under microbial stress. Brazilian Journal of Poultry Science, 22(01). https://doi.org/10.1590/1806-9061-2019-1129
  • Ali, F., Saeed, K., & Fatemeh, H. (2022). Nano-Bio selenium synthesized by bacillus subtilis modulates broiler performance, intestinal morphology and microbiota, and expression of tight junction’s proteins. Biological Trace Element Research, 200(4), 1811-1825. https://doi.org/10.1007/s12011-021-02767-2
  • Allur Subramaniyan, S., Kang, D. R., Belal, S. A., Choe, H. S., & Shim, K. S. (2018). A comparative study of biologically and chemically fabricated synthesized AgNPs’ supplementation with respect to heat-shock proteins, survival, and hatching rates of chicken embryos: an in ovo study. Journal of Cluster Science, 29, 129-139. https://doi.org/10.007/s10876-017-1319-5
  • Asaikkutti, A., Bhavan, P. S., Vimala, K., Karthik, M., & Cheruparambath, P. (2016). Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. Journal of Trace Elements in Medicine and Biology, 35, 7-17. https://doi.org/10.1016/j.jtemb.2016.01.005
  • Bami, M. K., Afsharmanesh, M., Espahbodi, M., & Angkanaporn, K. (2021). Dietary supplementation with biosynthesised nano-selenium affects growth, carcass characteristics, meat quality and blood parameters of broiler chickens. Animal Production Science, 62(3), 254-262. https://doi.org/10.1071/AN21192
  • Bami, M. K., Afsharmanesh, M., Espahbodi, M., & Esmaeilzadeh, E. (2022). Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. Journal of Trace Elements in Medicine and Biology, 69, 126897. https://doi.org/10.1016/j.jtemb.2021.126897 Bharadwaj, K. K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B. K., Barman, A., Bhattacharjya, D., Srivastava, A., Baishya, D., Edinur, H. A., Kari, Z. A., & Mohd Noor, N. H. (2021). Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 26(21), 6389. https://doi.org/10.3390/molecules26216389
  • Bidian, C., Filip, G. A., David, L., Florea, A., Moldovan, B., Robu, D. P., Olteanu, D., Radu, T., Clichici, S., Mitrea, D. R., & Baldea, I. (2021). The impact of silver nanoparticles phytosynthesized with Viburnum opulus L. extract on the ultrastrastructure and cell death in the testis of offspring rats. Food and Chemical Toxicology, 150, 112053. https://doi.org/10.1016/j.fct.2021.112053
  • Bidian, C., Filip, G. A., David, L., Moldovan, B., Baldea, I., Olteanu, D., Filip, M., Bolfa, P., Potara, M., Toader, A. M., & Clichici, S. (2022). Viburnum opulus fruit extract-capped gold nanoparticles attenuated oxidative stress and acute inflammation in carrageenan-induced paw edema model. Green Chemistry Letters and Reviews, 15(2), 320-336. https://doi.org/10.1080/17518253.2022.2061872
  • Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of the Air & Waste Management Association, 55(6), 708-746. https://doi.org/10.1080/10473289.2005.10464656
  • Cengiz, M., Baytar, O., Şahin, Ö., Kutlu, H. M., Ayhanci, A., Vejselova Sezer, C., & Gür, B. (2023). Biogenic Synthesized Bare and Boron-Doped Copper Oxide Nanoparticles from Thymbra spicat ssp. spicata: In Silico and In Vitro Studies. Journal of Cluster Science, 1-20. https://doi.org/10.1007/s10876-023-02481-0
  • Dhir, S., Dutt, R., Singh, R. P., Chauhan, M., Virmani, T., Kumar, G., Alhalmi, A., Aleissa, M. S., Rudayni, H. S., & Al-Zahrani, M. (2023). Amomum subulatum Fruit Extract Mediated Green Synthesis of Silver and Copper Oxide Nanoparticles: Synthesis, Characterization, Antibacterial and Anticancer Activities. Processes, 11(9), 2698. https://doi.org/10.3390/pr11092698
  • Diab, A. M., Shokr, B. T., Shukry, M., Farrag, F. A., & Mohamed, R. A. (2022). Effects of dietary supplementation with green-synthesized zinc oxide nanoparticles for candidiasis control in Oreochromis niloticus. Biological Trace Element Research, 200(9), 4126-4141. https://doi.org/10.007/s12011-021-02985-8
  • Dosoky, W. M., Fouda, M. M., Alwan, A. B., Abdelsalam, N. R., Taha, A. E., Ghareeb, R. Y., El-Aassar, M. R., & Khafaga, A. F., (2021). Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Scientific Reports, 11(1), 4166. https://doi.org/10.1038/s41598-021-83753-5
  • Dukare, S., Mir, N. A., Mandal, A. B., Dev, K., Begum, J., Tyagi, P. K., Rokade, J. J., Biswas, A., Tyagi, P. K., & Bhanja, S. K. (2020). Comparative study on the responses of broiler chicken to hot and humid environment supplemented with different dietary levels and sources of selenium. Journal of Thermal Biology, 88, 102515. https://doi.org/10.1016/j.jtherbio.2020.102515
  • Ealia, S. A. M., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: materials science and engineering (Vol. 263, No. 3, 2017, November, pp. 032019). IOP Publishing.
  • El Bialy, B. E., Hamouda, R. A., Abd Eldaim, M. A., El Ballal, S. S., Heikal, H. S., Khalifa, H. K., & Hozzein, W. N. (2020). Comparative toxicological effects of biologically and chemically synthesized copper oxide nanoparticles on mice. International Journal of Nanomedicine, 15: 3827-3842. https://doi.org/10.2147/IJN.S241922
  • El-Abd, N. M., Hamouda, R. A., Al-Shaikh, T. M., & Abdel-Hamid, M. S. (2022). Influence of biosynthesized silver nanoparticles using red alga Corallina elongata on broiler chicks’ performance. Green Processing and Synthesis, 11(1), 238-253. https://doi.org/10.1515/gps-2022-0025
  • El-Gogary, M. R., El-Khateeb, A. Y., & Megahed, A. M. (2019). Effect of physiological and chemical nano garlic supplementation on broiler chickens. Plant Archives, 19(1), 695-705.
  • El-Maaty, H. A. A., El-Khateeb, A. Y., Al-Khalaifah, H., Hamed, E. S. A. E., Hamed, S., El-Said, E. A., Mahrose, K. M., Metwally K., & Mansour, A. M. (2021). Effects of ecofriendly synthesized calcium nanoparticles with biocompatible Sargassum latifolium algae extract supplementation on egg quality and scanning electron microscopy images of the eggshell of aged laying hens. Poultry Science, 100(2), 675-684. https://doi.org/10.1016/j.psj.2020.10.043
  • Eltaweil, A. S., Fawzy, M., Hosny, M., Abd El-Monaem, E. M., Tamer, T. M., & Omer, A. M. (2022). Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arabian Journal of Chemistry, 15(1), 103517. https://doi.org/10.1016/j.arabjc.2021.103517
  • Essghaier, B., Hannachi, H., Nouir, R., Mottola, F., & Rocco, L. (2023). Green Synthesis and Characterization of Novel Silver Nanoparticles Using Achillea maritima subsp. maritima Aqueous Extract: Antioxidant and Antidiabetic Potential and Effect on Virulence Mechanisms of Bacterial and Fungal Pathogens. Nanomaterials, 13(13), 1964. https://doi.org/10.3390/nano13131964
  • Ezealisiji, K. M., Siwe-Noundou, X., Maduelosi, B., Nwachukwu, N., & Krause, R. W. M. (2019). Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. International Nano Letters, 9, 99-107. https://doi.org/10.1007/s40089-018-0263-1
  • Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., Akhtar, N., Khattak, A., & Syed, S. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega, 6(14), 9709-9722. https://doi.org/10.1021/acsomega.1c00310
  • Fatholahi, A., Khalaji, S., Hosseini, F., & Abbasi, M. (2021). Nano-Bio zinc synthesized by Bacillus subtilis modulates broiler performance, intestinal morphology and expression of tight junction's proteins. Livestock Science, 251, 104660. https://doi.org/10.1016/j.livsci.2021.104660 Fouda, A., Eid, A. M., Guibal, E., Hamza, M. F., Hassan, S. E. D., Alkhalifah, D. H. M., & El-Hossary, D. (2022). Green Synthesis of Gold Nanoparticles by Aqueous Extract of Zingiber officinale: Characterization and Insight into Antimicrobial, Antioxidant, and In Vitro Cytotoxic Activities. Applied Sciences, 12(24), 12879. https://doi.org/10.3390/app122412879
  • Fouda, M. M., Dosoky, W. M., Radwan, N. S., Abdelsalam, N. R., Taha, A. E., & Khafaga, A. F. (2021). Oral administration of silver nanoparticles–adorned starch as a growth promotor in poultry: Immunological and histopathological study. International Journal of Biological Macromolecules, 187, 830-839. https://doi.org/10.1016/j.ijbiomac.2021.07.157
  • Freeland-Graves, J. H., Sanjeevi, N., & Lee, J. J. (2015). Global perspectives on trace element requirements. Journal of Trace Elements in Medicine and Biology, 31, 135-141. https://doi.org/10.1016/j.jtemb.2014.04.006
  • Gallocchio, F., Biancotto, G., Cibin, V., Losasso, C., Belluco, S., Peters, R., Bemmel, G., Cascio, C., Weigel, S., Tromp, P., Gobbo, F., Catania, S., & Ricci, A. (2017). Transfer study of silver nanoparticles in poultry production. Journal of Agricultural and Food Chemistry, 65(18), 3767-3774. https://doi.org/10.1021/acs.jafc.7b00670
  • Gedikli, H. (2022). Türk siyah ve yeşil çayı ekstraklarının ve bu ekstraklardan yeşil sentez yoluyla üretilen demir nano parçacıklarının bazı gıdalarda aflatoksinlerin azaltılması üzerine bir araştırma. [Yüksek Lisans Tezi. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü].
  • Guleria, A., Sachdeva, H., Saini, K., Gupta, K., & Mathur, J. (2022). Recent trends and advancements in synthesis and applications of plant‐based green metal nanoparticles: a critical review. Applied Organometallic Chemistry, 36(9), e6778. https://doi.org/10.1002/aoc.6778
  • Güven, G., & Sızmaz, Ö. (2020). Çevre için yeşil sentez, yeşil sentez için broyler beslemede kullanılan alg. Türkiye Klinikleri Veteriner Bilimleri Dergisi, 11(1), 30-37. https://doi.org/10.5336/vetsci.2019-71493
  • Hamed, H. S., & Abdel-Tawwab, M. (2021). Dietary pomegranate (Punica granatum) peel mitigated the adverse effects of silver nanoparticles on the performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia fingerlings. Aquaculture, 540, 736742. https://doi.org/10.1016/j.aquaculture.2021.736742
  • Hassan, E. A., Ramadan, H. K., Ismael, A. A., Mohamed, K. F., El-Attar, M. M., & Alhelali, I. (2017). Noninvasive biomarkers as surrogate predictors of clinical and endoscopic remission after infliximab induction in patients with refractory ulcerative colitis. Saudi journal of gastroenterology: official journal of the Saudi Gastroenterology Association, 23(4), 238. https://doi.org/10.4103/sjg.SJG_599_16
  • Hassan, S. A., Mujahid, H., Ali, M. M., Irshad, S., Naseer, R., Saeed, S., Firyal, S., & Arooj, F. (2021). Synthesis, characterization and protective effect of green tea-mediated zinc oxide nanoparticles against ochratoxin A induced hepatotoxicity and nephrotoxicity in albino rats. Applied Nanoscience, 11(8), 2281-2289. https://doi.org/10.1007/s13204-021-02006-z
  • Hassan, S., Sharif, M., Mirza, M. A., & Rehman, M. S. U. (2023). Effect of Dietary Supplementation of Zinc Nanoparticles Prepared by Different Green Methods on Egg Production, Egg Quality, Bone Mineralization, and Antioxidant Capacity in Caged Layers. Biological Trace Element Research, 1-11. https://doi.org/10.1007/s12011-023-03640-0
  • Hatab, M. H., Rashad, E., Saleh, H. M., El-Sayed, E. S. R., & Taleb, A. A. (2022). Effects of dietary supplementation of myco-fabricated zinc oxide nanoparticles on performance, histological changes, and tissues Zn concentration in broiler chicks. Scientific Reports, 12(1), 18791. https://doi.org/10.1038/s41598-022-22836-3
  • Hidayat, C., Sumiati, S., Jayanegara, A., & Wina, E. (2021b). Supplementation of dietary nano Zn-phytogenic on performance, antioxidant activity, and population of intestinal pathogenic bacteria in broiler chickens. Tropical Animal Science Journal, 44(1), 90-99. https://doi.org/10.5398/tasj.2021.44.1.90
  • Hidayat, C., Wina, E., & Jayanegara, A. (2021a). Characteristics of Nano Zn-Fitogenik (NZF) made by green synthesis process using guava leaves (Psidium guajava) for feed additives. In IOP Conference Series: Earth and Environmental Science (2021, November) (Vol. 888, No. 1, p. 012056). IOP Publishing.
  • Ibrahim, A. T. A. (2020). Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response. Journal of Trace Elements in Medicine and Biology, 61, 126507. https://doi.org/10.1016/j.jtemb.2020.126507
  • Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. H., & Kim, J. H. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9(12), 1719. https://doi.org/10.3390/NANO912171
  • Kanchana, P., Hemapriya, V., Arunadevi, N., Sundari, S. S., Chung, I. M., & Prabakaran, M. (2022). Phytofabrication of silver nanoparticles from Limonia acidissima leaf extract and their antimicrobial, antioxidant and its anticancer prophecy. Journal of the Indian Chemical Society, 99(10), 100679. https://doi.org/10.1016/j.jics.2022.100679
  • Kaya, H. A., & Macit, M., (2018). The effects of boron (orthoboric acid) supplementation into diets of laying hens on egg shell quality and tibia biomechanic parameters and serum, shell and tibia mineral concentrations during late laying period. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 13(1), 42-53. https://doi.org/10.17094/ataunivbd.315617
  • Khan, A., Afzal, M., Rasool, K., Ameen, M., & Qureshi, N. A. (2023). In-vivo anticoccidial efficacy of green synthesized iron-oxide nanoparticles using Ficus racemosa Linn leaf extract.(Moraceae) against Emeria tenella infection in broiler chicks. Veterinary Parasitology, 321, 110003. https://doi.org/10.1016/j.vetpar.2023.110003
  • Khan, S. A. (2020). Metal nanoparticles toxicity: role of physicochemical aspects. In Metal nanoparticles for drug delivery and diagnostic applications (pp. 1-11). Elsevier. https://doi.org/10.1016/B978-0-12-816960-5.00001-X
  • Khodeer, D. M., Nasr, A. M., Swidan, S. A., Shabayek, S., Khinkar, R. M., Aldurdunji, M. M., Ramadan, M. A., & Badr, J. M. (2023). Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica AG Mill and JA Nyberg extract. Frontiers in Microbiology, 13, 1078061. https://doi.org/10.3389/fmicb.2022.1078061
  • Kocabas, B. B., Attar, A., Yuka, S. A., & Yapaoz, M. A. (2023). Biogenic synthesis, molecular docking, biomedical and environmental applications of multifunctional CuO nanoparticles mediated Phragmites australis. Bioorganic Chemistry, 133, 106414. https://doi.org/10.1016/j.bioorg.2023.106414
  • Koçer, A. T. (2023). Alglerden yeşil sentez ile metalik nanopartiküllerin üretim optimizasyonu ve bu nanopartiküllerin antibakteriyal etkinliklerinin incelenmesi. [Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Kurian, A., & Elumalai, P. (2021). Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). Environmental Science and Pollution Research, 28, 20344-20361. https://doi.org/10.1007/s11356-020-11992-6
  • Lail, N. U., Sattar, A., Omer, M. O., Hafeez, M. A., Khalid, A. R., Mahmood, S., Shabbir, M. A., Ahmed, W., Aleem, M. T., Alouffi, A., & Almutairi, M. M. (2023). Biosynthesis and characterization of zinc oxide nanoparticles using Nigella sativa against coccidiosis in commercial poultry. Scientific Reports, 13(1), 6568. https://doi.org/10.1038/s41598-023-33416-4 Lee, K. D., Kuppusamy, P., Kim, D. H., Govindan, N., Maniam, G. P., & Choi, K. C. (2018). Forage crop Lolium multiflorum assisted synthesis of AgNPs and their bioactivities against poultry pathogenic bacteria in in vitro. Indian Journal of Microbiology, 58, 507-514. https://doi.org/10.1007/s12088-018-0755-8
  • Linima, V. K., Ragunathan, R., & Johney, J. (2023). Biogenic synthesis of RICINUS COMMUNIS mediated iron and silver nanoparticles and its antibacterial and antifungal activity. Heliyon, 9(2023), e15743. https://doi.org/10.1016/j.heliyon.2023.e15743
  • Mahmoud H, E. D., Ijiri, D., Ebeid, T. A., & Ohtsuka, A. (2016). Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. The Journal of Poultry Science, 53(4), 274-283. https://doi.org/10.2141/jpsa.0150133
  • Manivannan, R., Kumar, G. S., Kamalakannan, D., Deventhiran, V. H., Rajsekar, P. R., Senthilkumar, V., & Shivaganesh, M. (2023). Green synthesis of Tecoma stans leaves-mediated copper oxide nanoparticles: Preparation, antioxidant, antimicrobial activities and in vitro MTT assay against MG-63 cell line. Journal of Pharmacognosy and Phytochemistry, 12(3), 195-201.
  • Mansour, W. A., Abdelsalam, N. R., Tanekhy, M., Khaled, A. A., & Mansour, A. T. (2021). Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on Nile tilapia (Oreochromis niloticus) fingerlings. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109068. https://doi.org/10.1016/j.cbpc.2021.109068
  • Marappan, G., Beulah, P., Kumar, R. D., Muthuvel, S., & Govindasamy, P. (2017). Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. https://doi.org/10.3923/ijp.2017.724.731
  • Martínez-Cabanas, M., López-García, M., Barriada, J. L., Herrero, R., & de Vicente, M. E. S. (2016). Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chemical Engineering Journal, 301, 83-91. https://doi.org/10.1016/j.cej.2016.04.149
  • MuthuKathija, M., Badhusha, M. S. M., & Rama, V. (2023). Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Applied Surface Science Advances, 15, 100400. https://doi.org/10.1016/j.apsadv.2023.100400
  • Nagajyothi, P. C., Prabhakar Vattikuti, S. V., Devarayapalli, K. C., Yoo, K., Shim, J., & Sreekanth, T. V. M. (2020). Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Critical Reviews in Environmental Science and Technology, 50(24), 2617-2723. https://doi.org/10.1080/10643389.2019.1705103
  • Naz, S., Nasir, B., Ali, H., & Zia, M. (2021). Comparative toxicity of green and chemically synthesized CuO NPs during pregnancy and lactation in rats and offspring: Part I-hepatotoxicity. Chemosphere, 266, 128945. https://doi.org/10.1016/j.chemosphere.2020.128945
  • Nguyen, T. T. T., Nguyen, Y. N. N., Tran, X. T., Nguyen, T. T. T., & Van Tran, T. (2023). Green synthesis of CuO, ZnO and CuO/ZnO nanoparticles using Annona glabra leaf extract for antioxidant, antibacterial and photocatalytic activities. Journal of Environmental Chemical Engineering, 111003. https://doi.org/10.1016/j.jece.2023.111003
  • Qiao, L., Dou, X., Song, X., & Xu, C. (2022). Green synthesis of nanoparticles by probiotics and their application. Advances in Applied Microbiology, 119, 83-128. https://doi.org/10.1016/bs.aambs.2022.05.003
  • Rajan, M. R., Mangalaraj, M. D., & Dhandapani, S. (2021). Impact of different quantity of green synthesized iron oxide nanoparticles on growth, enzymatic, biochemical changes and hematology of zebrafish Danio rerio. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 14(5), 5603-5611. https://doi.org/10.37285/ijpsn.2021.14.5.4
  • Raje, K., Garg, A. K., Jadhav, S. E., Dutta, N., Ojha, B. K., & Mishra, A. (2018b). Effect of Different Levels and Sources of Supplemental Nano Zinc on Blood-Biochemical Profile and Serum Mineral Status in Wistar Rats (Rattus norvegicus). Journal of Animal Research, 8(4), 643-649. https://doi.org/10.30954/2277-940X.08.2018.15
  • Raje, K., Ojha, S., Mishra, A., Munde, V. K., Rawat, C., & Chaudhary, S. K. (2018a). Impact of supplementation of mineral nano particles on growth performance and health status of animals: a review. Journal of Entomology and zoology studies, 6(3), 1690-1694.
  • Ravichandran, R. (2010). Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P72-P96. https://doi.org/10.1080/19430871003684440
  • Reda, F. M., El-Saadony, M. T., El-Rayes, T. K., Attia, A. I., El-Sayed, S. A., Ahmed, S. Y., Madkour, M., & Alagawany, M., 2021. Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. Italian Journal of Animal Science, 20(1), 324-335. https://doi.org/10.1080/1828051X.2021.1886001
  • Roy, A., Singh, V., Sharma, S., Ali, D., Azad, A. K., Kumar, G., & Emran, T. B. (2022). Antibacterial and dye degradation activity of green synthesized iron nanoparticles. Journal of Nanomaterials, 1-6. https://doi.org/10.1155/2022/3636481
  • Salem, N. M., & Awwad, A. M. (2022). Green synthesis and characterization of ZnO nanoparticles using Solanum rantonnetii leaves aqueous extract and antifungal activity evaluation. Chemistry International, 8(1), 12-17.
  • Salmani, M. H., Abedi, M., Mozaffari, S. A., Mahvi, A. H., Sheibani, A., & Jalili, M. (2021). Simultaneous reduction and adsorption of arsenite anions by green synthesis of iron nanoparticles using pomegranate peel extract. Journal of Environmental Health Science and Engineering, 19(1), 603–612. https://doi.org/10.1007/S40201-021-00631-Y
  • Satgurunathan, T., Bhavan, P. S., & Joy, R. D. S. (2019). Green synthesis of chromium nanoparticles and their effects on the growth of the prawn Macrobrachium rosenbergii post-larvae. Biological Trace Element Research, 187, 543-552. https://doi.org/10.1007/s12011-018-1407-x
  • Satgurunathan, T., Bhavan, P. S., Kalpana, R., Jayakumar, T., Sheu, J. R., & Manjunath, M. (2023). Influence of garlic (Allium sativum) clove-based selenium nanoparticles on status of nutritional, biochemical, enzymological, and gene expressions in the freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Biological Trace Element Research, 201(4), 2036-2057. https://doi.org/10.1007/s12011-022-03300-9
  • Sazak, C. (2023). Yeşil sentez ile bakır oksit nanopartiküllerinin sentezi. [Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Sehgal, N., Naresh, G., & Kumari, A. (2023). Latest developments and applications of nanotechnology in agriculture sector: A review. Agricultural Reviews. 44(3): 275- 288. https://doi.org/10.18805/ag.R-2175
  • Sheiha, A. M., Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Metwally, K. A., Ajarem, J. S., Maodaa, S. N., Allam, A. A., & El-Saadony, M. T., (2020). Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals, 10(3), 430. https://doi.org/10.3390/ani10030430
  • Shobana, C., Rangasamy, B., Poopal, R. K., Renuka, S., & Ramesh, M. (2018). Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. Environmental Science and Pollution Research, 25, 11812-11832. https://doi.org/10.1007/s11356-018-1454-z
  • Şahin, A. (2023). Kiraz sapı ekstresi ile yeşil sentez yöntemi kullanılarak demiroksit nanopartiküllerin eldesi. [Yüksek Lisans Tezi, İstanbul Yeni Yüzyıl Üniversitesi, Fen Bilimleri Enstitüsü].
  • Tahir, K., Nazir, S., Ahmad, A., Li, B., Khan, A. U., Khan, Z. U. H., Khan, F. U., Khan, Q. U., Khan, A., & Rahman, A. U., 2017. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. Journal of Photochemistry and Photobiology B: Biology, 166(1), 246-251. https://doi.org/10.1016/j.jphotobiol.2016.12.016
  • Thangapandiyan, S., & Monika, S. (2020). Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biological Trace Element Research, 195, 636-647. https://doi.org/10.1007/s12011-019-01873-6
  • Wang, G., Liu, L., Wang, Z., Pei, X., Tao, W., Xiao, Z., Liu, B., Wang, M., Lin, G., & Ao, T. (2019). Comparison of inorganic and organically bound trace minerals on tissue mineral deposition and fecal excretion in broiler breeders. Biological Trace Element Research, 189, 224-232. https://doi.org/10.1007/s12011-018-1460-5
  • Yazdani, Z., Mehrgan, M. S., Khayatzadeh, J., Shekarabi, S. P. H., & Tabrizi, M. H. (2023). Dietary green-synthesized curcumin-mediated zinc oxide nanoparticles promote growth performance, haemato-biochemical profile, antioxidant status, immunity, and carcass quality in Nile tilapia (Oreochromis niloticus). Aquaculture Reports, 32, 101717. https://doi.org/10.1016/j.aqrep.2023.101717
  • Yusof, H. M., Abdul Rahman, N. A., Mohamad, R., Zaidan, U. H., & Samsudin, A. A. (2023). Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals, 13(115), 2-18. https://doi.org/10.3390/ani13010115

Effects of green synthesized metallic nanoparticle additions to animal feeds

Yıl 2025, Cilt: 15 Sayı: 1, 298 - 320, 15.03.2025

Öz

It is important to ensure the appropriate mineral balance in feed for livestock enterprises to achieve their goal of "producing the highest possible quality, the most products in the shortest time and cheapest possible". Minerals are the basic nutritional elements for all farm animals to grow and develop at an optimum level, to be protected from diseases, to reproduce and to continue producing. In recent years, many studies have been conducted examining the effects of nano minerals synthesized by physical and chemical methods on farm animals. However, studies on the use of nano minerals produced by the method called "green synthesis" or "biosynthesis" as feed additives, which are alternatives to these methods, have also attracted attention recently. Green synthesis technology is clean, cheap, one-step and simple, fast and reliable, as well as a health and eco friendly method. The green synthesis method is the ability to convert metal salts to nanoparticle (NP) level with the reduction function of proteins, enzymes, vitamins, phenolic substances, organic acids, etc. metabolites found in biological agents such as plants, bacteria, fungi, algae and yeast. Particles with at least one dimension smaller than 100 nm are referred to as nanoparticles. Nano minerals/metal nanoparticles (MNPs) have gained superior mechanical, thermal, optical and magnetic properties due to their very small size and high surface/volume ratios, and they have become an important tool for innovation in different application fields such as agriculture, pharmacy, medicine, biomedicine, biotechnology, optics and energy. This review summarizes the literature data on the potential of using metal nanoparticles produced by the green synthesis method based on sustainable and zero waste principles in animal feed as a solution to developing global problems.

Kaynakça

  • Abdelaziz, M. H., El‐Dakdoky, M. H., Ahmed, T. A., & Mohamed, A. S. (2023). Biological impacts of the green synthesized silver nanoparticles on the pregnant albino rats and their fetuses. Birth Defects Research, 115(4), 441-457. https://doi.org/10.1002/bdr2.2131
  • Abdel-Moneim, A. M. E., Shehata, A. M., Selim, D. A., El-Saadony, M. T., Mesalam, N. M., & Saleh, A. A. (2022). Spirulina platensis and biosynthesized selenium nanoparticles improve performance, antioxidant status, humoral immunity and dietary and ileal microbial populations of heat-stressed broilers. Journal of Thermal Biology, 104, 103195. https://doi.org/10.1016/j.jtherbio.2022.103195
  • Abo-El-Yazid, Z. H., Ahmed, O. K., El-Tholoth, M., & Ali, M. A. S. (2022). Green synthesized silver nanoparticles using Cyperus rotundus L. extract as a potential antiviral agent against infectious laryngotracheitis and infectious bronchitis viruses in chickens. Chemical and Biological Technologies in Agriculture, 9(1), 1-11. https://doi.org/10.1186/s40538-022-00325-z
  • Adegbeye, M. J., Elghandour, M. M., Barbabosa-Pliego, A., Monroy, J. C., Mellado, M., Reddy, P. R. K., & Salem, A. Z. (2019). Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science, 78(7), 29-37. https://doi.org/10.1016/j.jevs.2019.04.001
  • Akbar, S., Tauseef, I., Subhan, F., Sultana, N., Khan, I., Ahmed, U., & Haleem, K. S. (2020). An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorganic and Nano-Metal Chemistry, 50(4), 257-271. https://doi.org/10.1080/24701556.2019.1711121
  • Akhtar, K., Chand, N., Khan, S., Dai, S., & Khan, R. U. (2020). Supplementation of organic minerals and its effect on production performance and egg quality of laying hens. Journal of Animal Physiology and Nutrition Science, 1(1), 12-16. https://doi.org/10.46417/JAPN/2020.003
  • Aksoy, A., Macit, M., & Karaoğlu, M. (2011). Hayvan Besleme, Atatürk Üniversitesi Ziraat Fakültesi, Ofset Tesisi, Ders yayınları, No:220, s:166., Erzurum.
  • Ali, A. A., Soliman, E. S., Hamad, R. T., El-Borad, O. M., Hassan, R. A., & Helal, M. S. (2020). Preventive, behavioral, productive, and tissue modification using green synthesized selenium nanoparticles in the drinking water of two broiler breeds under microbial stress. Brazilian Journal of Poultry Science, 22(01). https://doi.org/10.1590/1806-9061-2019-1129
  • Ali, F., Saeed, K., & Fatemeh, H. (2022). Nano-Bio selenium synthesized by bacillus subtilis modulates broiler performance, intestinal morphology and microbiota, and expression of tight junction’s proteins. Biological Trace Element Research, 200(4), 1811-1825. https://doi.org/10.1007/s12011-021-02767-2
  • Allur Subramaniyan, S., Kang, D. R., Belal, S. A., Choe, H. S., & Shim, K. S. (2018). A comparative study of biologically and chemically fabricated synthesized AgNPs’ supplementation with respect to heat-shock proteins, survival, and hatching rates of chicken embryos: an in ovo study. Journal of Cluster Science, 29, 129-139. https://doi.org/10.007/s10876-017-1319-5
  • Asaikkutti, A., Bhavan, P. S., Vimala, K., Karthik, M., & Cheruparambath, P. (2016). Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. Journal of Trace Elements in Medicine and Biology, 35, 7-17. https://doi.org/10.1016/j.jtemb.2016.01.005
  • Bami, M. K., Afsharmanesh, M., Espahbodi, M., & Angkanaporn, K. (2021). Dietary supplementation with biosynthesised nano-selenium affects growth, carcass characteristics, meat quality and blood parameters of broiler chickens. Animal Production Science, 62(3), 254-262. https://doi.org/10.1071/AN21192
  • Bami, M. K., Afsharmanesh, M., Espahbodi, M., & Esmaeilzadeh, E. (2022). Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. Journal of Trace Elements in Medicine and Biology, 69, 126897. https://doi.org/10.1016/j.jtemb.2021.126897 Bharadwaj, K. K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B. K., Barman, A., Bhattacharjya, D., Srivastava, A., Baishya, D., Edinur, H. A., Kari, Z. A., & Mohd Noor, N. H. (2021). Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 26(21), 6389. https://doi.org/10.3390/molecules26216389
  • Bidian, C., Filip, G. A., David, L., Florea, A., Moldovan, B., Robu, D. P., Olteanu, D., Radu, T., Clichici, S., Mitrea, D. R., & Baldea, I. (2021). The impact of silver nanoparticles phytosynthesized with Viburnum opulus L. extract on the ultrastrastructure and cell death in the testis of offspring rats. Food and Chemical Toxicology, 150, 112053. https://doi.org/10.1016/j.fct.2021.112053
  • Bidian, C., Filip, G. A., David, L., Moldovan, B., Baldea, I., Olteanu, D., Filip, M., Bolfa, P., Potara, M., Toader, A. M., & Clichici, S. (2022). Viburnum opulus fruit extract-capped gold nanoparticles attenuated oxidative stress and acute inflammation in carrageenan-induced paw edema model. Green Chemistry Letters and Reviews, 15(2), 320-336. https://doi.org/10.1080/17518253.2022.2061872
  • Biswas, P., & Wu, C. Y. (2005). Nanoparticles and the environment. Journal of the Air & Waste Management Association, 55(6), 708-746. https://doi.org/10.1080/10473289.2005.10464656
  • Cengiz, M., Baytar, O., Şahin, Ö., Kutlu, H. M., Ayhanci, A., Vejselova Sezer, C., & Gür, B. (2023). Biogenic Synthesized Bare and Boron-Doped Copper Oxide Nanoparticles from Thymbra spicat ssp. spicata: In Silico and In Vitro Studies. Journal of Cluster Science, 1-20. https://doi.org/10.1007/s10876-023-02481-0
  • Dhir, S., Dutt, R., Singh, R. P., Chauhan, M., Virmani, T., Kumar, G., Alhalmi, A., Aleissa, M. S., Rudayni, H. S., & Al-Zahrani, M. (2023). Amomum subulatum Fruit Extract Mediated Green Synthesis of Silver and Copper Oxide Nanoparticles: Synthesis, Characterization, Antibacterial and Anticancer Activities. Processes, 11(9), 2698. https://doi.org/10.3390/pr11092698
  • Diab, A. M., Shokr, B. T., Shukry, M., Farrag, F. A., & Mohamed, R. A. (2022). Effects of dietary supplementation with green-synthesized zinc oxide nanoparticles for candidiasis control in Oreochromis niloticus. Biological Trace Element Research, 200(9), 4126-4141. https://doi.org/10.007/s12011-021-02985-8
  • Dosoky, W. M., Fouda, M. M., Alwan, A. B., Abdelsalam, N. R., Taha, A. E., Ghareeb, R. Y., El-Aassar, M. R., & Khafaga, A. F., (2021). Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Scientific Reports, 11(1), 4166. https://doi.org/10.1038/s41598-021-83753-5
  • Dukare, S., Mir, N. A., Mandal, A. B., Dev, K., Begum, J., Tyagi, P. K., Rokade, J. J., Biswas, A., Tyagi, P. K., & Bhanja, S. K. (2020). Comparative study on the responses of broiler chicken to hot and humid environment supplemented with different dietary levels and sources of selenium. Journal of Thermal Biology, 88, 102515. https://doi.org/10.1016/j.jtherbio.2020.102515
  • Ealia, S. A. M., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: materials science and engineering (Vol. 263, No. 3, 2017, November, pp. 032019). IOP Publishing.
  • El Bialy, B. E., Hamouda, R. A., Abd Eldaim, M. A., El Ballal, S. S., Heikal, H. S., Khalifa, H. K., & Hozzein, W. N. (2020). Comparative toxicological effects of biologically and chemically synthesized copper oxide nanoparticles on mice. International Journal of Nanomedicine, 15: 3827-3842. https://doi.org/10.2147/IJN.S241922
  • El-Abd, N. M., Hamouda, R. A., Al-Shaikh, T. M., & Abdel-Hamid, M. S. (2022). Influence of biosynthesized silver nanoparticles using red alga Corallina elongata on broiler chicks’ performance. Green Processing and Synthesis, 11(1), 238-253. https://doi.org/10.1515/gps-2022-0025
  • El-Gogary, M. R., El-Khateeb, A. Y., & Megahed, A. M. (2019). Effect of physiological and chemical nano garlic supplementation on broiler chickens. Plant Archives, 19(1), 695-705.
  • El-Maaty, H. A. A., El-Khateeb, A. Y., Al-Khalaifah, H., Hamed, E. S. A. E., Hamed, S., El-Said, E. A., Mahrose, K. M., Metwally K., & Mansour, A. M. (2021). Effects of ecofriendly synthesized calcium nanoparticles with biocompatible Sargassum latifolium algae extract supplementation on egg quality and scanning electron microscopy images of the eggshell of aged laying hens. Poultry Science, 100(2), 675-684. https://doi.org/10.1016/j.psj.2020.10.043
  • Eltaweil, A. S., Fawzy, M., Hosny, M., Abd El-Monaem, E. M., Tamer, T. M., & Omer, A. M. (2022). Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arabian Journal of Chemistry, 15(1), 103517. https://doi.org/10.1016/j.arabjc.2021.103517
  • Essghaier, B., Hannachi, H., Nouir, R., Mottola, F., & Rocco, L. (2023). Green Synthesis and Characterization of Novel Silver Nanoparticles Using Achillea maritima subsp. maritima Aqueous Extract: Antioxidant and Antidiabetic Potential and Effect on Virulence Mechanisms of Bacterial and Fungal Pathogens. Nanomaterials, 13(13), 1964. https://doi.org/10.3390/nano13131964
  • Ezealisiji, K. M., Siwe-Noundou, X., Maduelosi, B., Nwachukwu, N., & Krause, R. W. M. (2019). Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. International Nano Letters, 9, 99-107. https://doi.org/10.1007/s40089-018-0263-1
  • Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., Akhtar, N., Khattak, A., & Syed, S. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega, 6(14), 9709-9722. https://doi.org/10.1021/acsomega.1c00310
  • Fatholahi, A., Khalaji, S., Hosseini, F., & Abbasi, M. (2021). Nano-Bio zinc synthesized by Bacillus subtilis modulates broiler performance, intestinal morphology and expression of tight junction's proteins. Livestock Science, 251, 104660. https://doi.org/10.1016/j.livsci.2021.104660 Fouda, A., Eid, A. M., Guibal, E., Hamza, M. F., Hassan, S. E. D., Alkhalifah, D. H. M., & El-Hossary, D. (2022). Green Synthesis of Gold Nanoparticles by Aqueous Extract of Zingiber officinale: Characterization and Insight into Antimicrobial, Antioxidant, and In Vitro Cytotoxic Activities. Applied Sciences, 12(24), 12879. https://doi.org/10.3390/app122412879
  • Fouda, M. M., Dosoky, W. M., Radwan, N. S., Abdelsalam, N. R., Taha, A. E., & Khafaga, A. F. (2021). Oral administration of silver nanoparticles–adorned starch as a growth promotor in poultry: Immunological and histopathological study. International Journal of Biological Macromolecules, 187, 830-839. https://doi.org/10.1016/j.ijbiomac.2021.07.157
  • Freeland-Graves, J. H., Sanjeevi, N., & Lee, J. J. (2015). Global perspectives on trace element requirements. Journal of Trace Elements in Medicine and Biology, 31, 135-141. https://doi.org/10.1016/j.jtemb.2014.04.006
  • Gallocchio, F., Biancotto, G., Cibin, V., Losasso, C., Belluco, S., Peters, R., Bemmel, G., Cascio, C., Weigel, S., Tromp, P., Gobbo, F., Catania, S., & Ricci, A. (2017). Transfer study of silver nanoparticles in poultry production. Journal of Agricultural and Food Chemistry, 65(18), 3767-3774. https://doi.org/10.1021/acs.jafc.7b00670
  • Gedikli, H. (2022). Türk siyah ve yeşil çayı ekstraklarının ve bu ekstraklardan yeşil sentez yoluyla üretilen demir nano parçacıklarının bazı gıdalarda aflatoksinlerin azaltılması üzerine bir araştırma. [Yüksek Lisans Tezi. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü].
  • Guleria, A., Sachdeva, H., Saini, K., Gupta, K., & Mathur, J. (2022). Recent trends and advancements in synthesis and applications of plant‐based green metal nanoparticles: a critical review. Applied Organometallic Chemistry, 36(9), e6778. https://doi.org/10.1002/aoc.6778
  • Güven, G., & Sızmaz, Ö. (2020). Çevre için yeşil sentez, yeşil sentez için broyler beslemede kullanılan alg. Türkiye Klinikleri Veteriner Bilimleri Dergisi, 11(1), 30-37. https://doi.org/10.5336/vetsci.2019-71493
  • Hamed, H. S., & Abdel-Tawwab, M. (2021). Dietary pomegranate (Punica granatum) peel mitigated the adverse effects of silver nanoparticles on the performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia fingerlings. Aquaculture, 540, 736742. https://doi.org/10.1016/j.aquaculture.2021.736742
  • Hassan, E. A., Ramadan, H. K., Ismael, A. A., Mohamed, K. F., El-Attar, M. M., & Alhelali, I. (2017). Noninvasive biomarkers as surrogate predictors of clinical and endoscopic remission after infliximab induction in patients with refractory ulcerative colitis. Saudi journal of gastroenterology: official journal of the Saudi Gastroenterology Association, 23(4), 238. https://doi.org/10.4103/sjg.SJG_599_16
  • Hassan, S. A., Mujahid, H., Ali, M. M., Irshad, S., Naseer, R., Saeed, S., Firyal, S., & Arooj, F. (2021). Synthesis, characterization and protective effect of green tea-mediated zinc oxide nanoparticles against ochratoxin A induced hepatotoxicity and nephrotoxicity in albino rats. Applied Nanoscience, 11(8), 2281-2289. https://doi.org/10.1007/s13204-021-02006-z
  • Hassan, S., Sharif, M., Mirza, M. A., & Rehman, M. S. U. (2023). Effect of Dietary Supplementation of Zinc Nanoparticles Prepared by Different Green Methods on Egg Production, Egg Quality, Bone Mineralization, and Antioxidant Capacity in Caged Layers. Biological Trace Element Research, 1-11. https://doi.org/10.1007/s12011-023-03640-0
  • Hatab, M. H., Rashad, E., Saleh, H. M., El-Sayed, E. S. R., & Taleb, A. A. (2022). Effects of dietary supplementation of myco-fabricated zinc oxide nanoparticles on performance, histological changes, and tissues Zn concentration in broiler chicks. Scientific Reports, 12(1), 18791. https://doi.org/10.1038/s41598-022-22836-3
  • Hidayat, C., Sumiati, S., Jayanegara, A., & Wina, E. (2021b). Supplementation of dietary nano Zn-phytogenic on performance, antioxidant activity, and population of intestinal pathogenic bacteria in broiler chickens. Tropical Animal Science Journal, 44(1), 90-99. https://doi.org/10.5398/tasj.2021.44.1.90
  • Hidayat, C., Wina, E., & Jayanegara, A. (2021a). Characteristics of Nano Zn-Fitogenik (NZF) made by green synthesis process using guava leaves (Psidium guajava) for feed additives. In IOP Conference Series: Earth and Environmental Science (2021, November) (Vol. 888, No. 1, p. 012056). IOP Publishing.
  • Ibrahim, A. T. A. (2020). Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response. Journal of Trace Elements in Medicine and Biology, 61, 126507. https://doi.org/10.1016/j.jtemb.2020.126507
  • Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. H., & Kim, J. H. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9(12), 1719. https://doi.org/10.3390/NANO912171
  • Kanchana, P., Hemapriya, V., Arunadevi, N., Sundari, S. S., Chung, I. M., & Prabakaran, M. (2022). Phytofabrication of silver nanoparticles from Limonia acidissima leaf extract and their antimicrobial, antioxidant and its anticancer prophecy. Journal of the Indian Chemical Society, 99(10), 100679. https://doi.org/10.1016/j.jics.2022.100679
  • Kaya, H. A., & Macit, M., (2018). The effects of boron (orthoboric acid) supplementation into diets of laying hens on egg shell quality and tibia biomechanic parameters and serum, shell and tibia mineral concentrations during late laying period. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 13(1), 42-53. https://doi.org/10.17094/ataunivbd.315617
  • Khan, A., Afzal, M., Rasool, K., Ameen, M., & Qureshi, N. A. (2023). In-vivo anticoccidial efficacy of green synthesized iron-oxide nanoparticles using Ficus racemosa Linn leaf extract.(Moraceae) against Emeria tenella infection in broiler chicks. Veterinary Parasitology, 321, 110003. https://doi.org/10.1016/j.vetpar.2023.110003
  • Khan, S. A. (2020). Metal nanoparticles toxicity: role of physicochemical aspects. In Metal nanoparticles for drug delivery and diagnostic applications (pp. 1-11). Elsevier. https://doi.org/10.1016/B978-0-12-816960-5.00001-X
  • Khodeer, D. M., Nasr, A. M., Swidan, S. A., Shabayek, S., Khinkar, R. M., Aldurdunji, M. M., Ramadan, M. A., & Badr, J. M. (2023). Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica AG Mill and JA Nyberg extract. Frontiers in Microbiology, 13, 1078061. https://doi.org/10.3389/fmicb.2022.1078061
  • Kocabas, B. B., Attar, A., Yuka, S. A., & Yapaoz, M. A. (2023). Biogenic synthesis, molecular docking, biomedical and environmental applications of multifunctional CuO nanoparticles mediated Phragmites australis. Bioorganic Chemistry, 133, 106414. https://doi.org/10.1016/j.bioorg.2023.106414
  • Koçer, A. T. (2023). Alglerden yeşil sentez ile metalik nanopartiküllerin üretim optimizasyonu ve bu nanopartiküllerin antibakteriyal etkinliklerinin incelenmesi. [Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Kurian, A., & Elumalai, P. (2021). Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). Environmental Science and Pollution Research, 28, 20344-20361. https://doi.org/10.1007/s11356-020-11992-6
  • Lail, N. U., Sattar, A., Omer, M. O., Hafeez, M. A., Khalid, A. R., Mahmood, S., Shabbir, M. A., Ahmed, W., Aleem, M. T., Alouffi, A., & Almutairi, M. M. (2023). Biosynthesis and characterization of zinc oxide nanoparticles using Nigella sativa against coccidiosis in commercial poultry. Scientific Reports, 13(1), 6568. https://doi.org/10.1038/s41598-023-33416-4 Lee, K. D., Kuppusamy, P., Kim, D. H., Govindan, N., Maniam, G. P., & Choi, K. C. (2018). Forage crop Lolium multiflorum assisted synthesis of AgNPs and their bioactivities against poultry pathogenic bacteria in in vitro. Indian Journal of Microbiology, 58, 507-514. https://doi.org/10.1007/s12088-018-0755-8
  • Linima, V. K., Ragunathan, R., & Johney, J. (2023). Biogenic synthesis of RICINUS COMMUNIS mediated iron and silver nanoparticles and its antibacterial and antifungal activity. Heliyon, 9(2023), e15743. https://doi.org/10.1016/j.heliyon.2023.e15743
  • Mahmoud H, E. D., Ijiri, D., Ebeid, T. A., & Ohtsuka, A. (2016). Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. The Journal of Poultry Science, 53(4), 274-283. https://doi.org/10.2141/jpsa.0150133
  • Manivannan, R., Kumar, G. S., Kamalakannan, D., Deventhiran, V. H., Rajsekar, P. R., Senthilkumar, V., & Shivaganesh, M. (2023). Green synthesis of Tecoma stans leaves-mediated copper oxide nanoparticles: Preparation, antioxidant, antimicrobial activities and in vitro MTT assay against MG-63 cell line. Journal of Pharmacognosy and Phytochemistry, 12(3), 195-201.
  • Mansour, W. A., Abdelsalam, N. R., Tanekhy, M., Khaled, A. A., & Mansour, A. T. (2021). Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on Nile tilapia (Oreochromis niloticus) fingerlings. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109068. https://doi.org/10.1016/j.cbpc.2021.109068
  • Marappan, G., Beulah, P., Kumar, R. D., Muthuvel, S., & Govindasamy, P. (2017). Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. https://doi.org/10.3923/ijp.2017.724.731
  • Martínez-Cabanas, M., López-García, M., Barriada, J. L., Herrero, R., & de Vicente, M. E. S. (2016). Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chemical Engineering Journal, 301, 83-91. https://doi.org/10.1016/j.cej.2016.04.149
  • MuthuKathija, M., Badhusha, M. S. M., & Rama, V. (2023). Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Applied Surface Science Advances, 15, 100400. https://doi.org/10.1016/j.apsadv.2023.100400
  • Nagajyothi, P. C., Prabhakar Vattikuti, S. V., Devarayapalli, K. C., Yoo, K., Shim, J., & Sreekanth, T. V. M. (2020). Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Critical Reviews in Environmental Science and Technology, 50(24), 2617-2723. https://doi.org/10.1080/10643389.2019.1705103
  • Naz, S., Nasir, B., Ali, H., & Zia, M. (2021). Comparative toxicity of green and chemically synthesized CuO NPs during pregnancy and lactation in rats and offspring: Part I-hepatotoxicity. Chemosphere, 266, 128945. https://doi.org/10.1016/j.chemosphere.2020.128945
  • Nguyen, T. T. T., Nguyen, Y. N. N., Tran, X. T., Nguyen, T. T. T., & Van Tran, T. (2023). Green synthesis of CuO, ZnO and CuO/ZnO nanoparticles using Annona glabra leaf extract for antioxidant, antibacterial and photocatalytic activities. Journal of Environmental Chemical Engineering, 111003. https://doi.org/10.1016/j.jece.2023.111003
  • Qiao, L., Dou, X., Song, X., & Xu, C. (2022). Green synthesis of nanoparticles by probiotics and their application. Advances in Applied Microbiology, 119, 83-128. https://doi.org/10.1016/bs.aambs.2022.05.003
  • Rajan, M. R., Mangalaraj, M. D., & Dhandapani, S. (2021). Impact of different quantity of green synthesized iron oxide nanoparticles on growth, enzymatic, biochemical changes and hematology of zebrafish Danio rerio. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 14(5), 5603-5611. https://doi.org/10.37285/ijpsn.2021.14.5.4
  • Raje, K., Garg, A. K., Jadhav, S. E., Dutta, N., Ojha, B. K., & Mishra, A. (2018b). Effect of Different Levels and Sources of Supplemental Nano Zinc on Blood-Biochemical Profile and Serum Mineral Status in Wistar Rats (Rattus norvegicus). Journal of Animal Research, 8(4), 643-649. https://doi.org/10.30954/2277-940X.08.2018.15
  • Raje, K., Ojha, S., Mishra, A., Munde, V. K., Rawat, C., & Chaudhary, S. K. (2018a). Impact of supplementation of mineral nano particles on growth performance and health status of animals: a review. Journal of Entomology and zoology studies, 6(3), 1690-1694.
  • Ravichandran, R. (2010). Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P72-P96. https://doi.org/10.1080/19430871003684440
  • Reda, F. M., El-Saadony, M. T., El-Rayes, T. K., Attia, A. I., El-Sayed, S. A., Ahmed, S. Y., Madkour, M., & Alagawany, M., 2021. Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. Italian Journal of Animal Science, 20(1), 324-335. https://doi.org/10.1080/1828051X.2021.1886001
  • Roy, A., Singh, V., Sharma, S., Ali, D., Azad, A. K., Kumar, G., & Emran, T. B. (2022). Antibacterial and dye degradation activity of green synthesized iron nanoparticles. Journal of Nanomaterials, 1-6. https://doi.org/10.1155/2022/3636481
  • Salem, N. M., & Awwad, A. M. (2022). Green synthesis and characterization of ZnO nanoparticles using Solanum rantonnetii leaves aqueous extract and antifungal activity evaluation. Chemistry International, 8(1), 12-17.
  • Salmani, M. H., Abedi, M., Mozaffari, S. A., Mahvi, A. H., Sheibani, A., & Jalili, M. (2021). Simultaneous reduction and adsorption of arsenite anions by green synthesis of iron nanoparticles using pomegranate peel extract. Journal of Environmental Health Science and Engineering, 19(1), 603–612. https://doi.org/10.1007/S40201-021-00631-Y
  • Satgurunathan, T., Bhavan, P. S., & Joy, R. D. S. (2019). Green synthesis of chromium nanoparticles and their effects on the growth of the prawn Macrobrachium rosenbergii post-larvae. Biological Trace Element Research, 187, 543-552. https://doi.org/10.1007/s12011-018-1407-x
  • Satgurunathan, T., Bhavan, P. S., Kalpana, R., Jayakumar, T., Sheu, J. R., & Manjunath, M. (2023). Influence of garlic (Allium sativum) clove-based selenium nanoparticles on status of nutritional, biochemical, enzymological, and gene expressions in the freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Biological Trace Element Research, 201(4), 2036-2057. https://doi.org/10.1007/s12011-022-03300-9
  • Sazak, C. (2023). Yeşil sentez ile bakır oksit nanopartiküllerinin sentezi. [Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü].
  • Sehgal, N., Naresh, G., & Kumari, A. (2023). Latest developments and applications of nanotechnology in agriculture sector: A review. Agricultural Reviews. 44(3): 275- 288. https://doi.org/10.18805/ag.R-2175
  • Sheiha, A. M., Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Metwally, K. A., Ajarem, J. S., Maodaa, S. N., Allam, A. A., & El-Saadony, M. T., (2020). Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals, 10(3), 430. https://doi.org/10.3390/ani10030430
  • Shobana, C., Rangasamy, B., Poopal, R. K., Renuka, S., & Ramesh, M. (2018). Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. Environmental Science and Pollution Research, 25, 11812-11832. https://doi.org/10.1007/s11356-018-1454-z
  • Şahin, A. (2023). Kiraz sapı ekstresi ile yeşil sentez yöntemi kullanılarak demiroksit nanopartiküllerin eldesi. [Yüksek Lisans Tezi, İstanbul Yeni Yüzyıl Üniversitesi, Fen Bilimleri Enstitüsü].
  • Tahir, K., Nazir, S., Ahmad, A., Li, B., Khan, A. U., Khan, Z. U. H., Khan, F. U., Khan, Q. U., Khan, A., & Rahman, A. U., 2017. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. Journal of Photochemistry and Photobiology B: Biology, 166(1), 246-251. https://doi.org/10.1016/j.jphotobiol.2016.12.016
  • Thangapandiyan, S., & Monika, S. (2020). Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biological Trace Element Research, 195, 636-647. https://doi.org/10.1007/s12011-019-01873-6
  • Wang, G., Liu, L., Wang, Z., Pei, X., Tao, W., Xiao, Z., Liu, B., Wang, M., Lin, G., & Ao, T. (2019). Comparison of inorganic and organically bound trace minerals on tissue mineral deposition and fecal excretion in broiler breeders. Biological Trace Element Research, 189, 224-232. https://doi.org/10.1007/s12011-018-1460-5
  • Yazdani, Z., Mehrgan, M. S., Khayatzadeh, J., Shekarabi, S. P. H., & Tabrizi, M. H. (2023). Dietary green-synthesized curcumin-mediated zinc oxide nanoparticles promote growth performance, haemato-biochemical profile, antioxidant status, immunity, and carcass quality in Nile tilapia (Oreochromis niloticus). Aquaculture Reports, 32, 101717. https://doi.org/10.1016/j.aqrep.2023.101717
  • Yusof, H. M., Abdul Rahman, N. A., Mohamad, R., Zaidan, U. H., & Samsudin, A. A. (2023). Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals, 13(115), 2-18. https://doi.org/10.3390/ani13010115
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvan Besleme ve Beslenme Hastalıkları
Bölüm Derlemeler
Yazarlar

Hacer Kaya 0000-0001-9024-8525

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 17 Temmuz 2024
Kabul Tarihi 17 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Kaya, H. (2025). Hayvan yemlerine yeşil sentez metalik nanopartikül ilavelerinin etkileri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(1), 298-320. https://doi.org/10.17714/gumusfenbil.1517633