Araştırma Makalesi
BibTex RIS Kaynak Göster

The influence of peak ground acceleration on equivalent linear and nonlinear site response analyses

Yıl 2025, Cilt: 15 Sayı: 1, 1 - 10, 15.03.2025

Öz

Site response analyses are not only a crucial tool for understanding the effects that a structure will be subjected to but also represent a significant stage in the analysis of soil-structure interaction. On the other hand, the proposed equivalent linear method for representing the nonlinear behavior of soil is frequently utilized in literature. This method offers a practical approach that attempts to represent nonlinear soil behavior through successive linear analyses. In this study, the effectiveness of peak ground acceleration on equivalent linear and nonlinear analyses is investigated through one-dimensional site response analyses. A homogeneous clay layer, 30 meters deep, was subjected to scaled records of varying amplitudes to perform both equivalent linear and nonlinear analyses. In these analyses, the model base was assumed to be rigid. The variation of the soil's shear modulus and damping behavior with shear strain was considered based on widely used experimental studies in the literature. These relationships were calibrated using a curve-fitting tool available in the program. The results of the analyses revealed that equivalent linear analyses could represent nonlinear behavior up to a certain ground acceleration value, with deviations from nonlinear behavior beginning to emerge within the 0.25-0.50g range. Additionally, at higher ground acceleration amplitudes, it was observed that the shear stress values obtained from equivalent linear analyses were greater compared to those from nonlinear analyses.

Kaynakça

  • Astroza, R., Pastén, C., & Ochoa-Cornejo, F. (2017). Site response analysis using one-dimensional equivalent-linear method and Bayesian filtering. Computers and Geotechnics, 89, 43-54. https://doi.org/10.1016/j.compgeo.2017.04.004
  • Bilotta, E., De Sanctis, L., Di Laora, R., D’Onofrio, A., & Silvestri, F. (2015). Importance of seismic site response and soil–structure interaction in dynamic behaviour of a tall building. Geotechnique, 65(5), 391-400. https://doi.org/10.1680/geot.SIP.15.P.016
  • Bolisetti, C., Whittaker, A. S., Mason, H. B., Almufti, I., & Willford, M. (2014). Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nuclear Engineering and Design, 275, 107-121. https://doi.org/10.1016/j.nucengdes.2014.04.033
  • Carlton, B., & Tokimatsu, K. (2016). Comparison of Equivalent Linear and Nonlinear Site Response Analysis Results and Model to Estimate Maximum Shear Strain. Earthquake Spectra, 32(3), 1867-1887. https://doi.org/10.1193/021215EQS029MR1
  • Ci̇velekler, E., Afacan, K. B., Volkan Okur, D., (2021). Eşdeğer doğrusal ve doğrusal olmayan yaklaşımlara göre sismik yük etkisindeki zeminlerde davranış analizi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 29(2), 158-171. https://doi.org/10.31796/OGUMMF.839703
  • Fatahi, B., & Tabatabaiefar, S. H. R. (2014). Fully Nonlinear versus Equivalent Linear Computation Method for Seismic Analysis of Midrise Buildings on Soft Soils. International Journal of Geomechanics, 14(4), 04014016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000354
  • Han, B., Zdravković, L., & Kontoe, S. (2018). Analytical and numerical investigation of site response due to vertical ground motion. Géotechnique, 68(6), 467-480. https://doi.org/10.1680/jgeot.15.P.191
  • Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Philips, C. A., & Park, D. (2017). DEEPSOIL 7.0, User Manual.
  • Idriss, I. M., & Seed, H. B. (1968). Seismic Response of Horizontal Soil Layers. Journal of the Soil Mechanics and Foundations Division, 94(4), 1003-1031. https://doi.org/10.1061/JSFEAQ.0001163
  • Kara, F. İ., & Şahin, B. (2022). Sahaya Özel Zemin Davranış Analizlerinde Profil Derinliği Değişiminin İncelenmesi. Doğal Afetler ve Çevre Dergisi, 8(1), 37-52. https://doi.org/10.21324/DACD.855902
  • Kaklamanos, J., Bradley, B. A., Thompson, E. M., & Baise, L. G. (2013). Critical Parameters Affecting Bias and Variability in Site-Response Analyses Using KiK-net Downhole Array Data. Bulletin of the Seismological Society of America, 103(3), 1733-1749. https://doi.org/10.1785/0120120166
  • Kim, B., & Hashash, Y. M. A. (2013). Site response analysis using downhole array recordings during the March 2011 Tohoku-Oki earthquake and the effect of long-duration ground motions. Earthquake Spectra, 29(SUPPL.1), 37-54. https://doi.org/10.1193/1.4000114
  • Kim, B., Hashash, Y. M. A., Stewart, J. P., Rathje, E. M., Harmon, J. A., Musgrove, M. I., Campbell, K. W., & Silva, W. J. (2016). Relative Differences between Nonlinear and Equivalent-Linear 1-D Site Response Analyses. Earthquake Spectra, 32(3), 1845-1865. https://doi.org/10.1193/051215EQS068M
  • Konder, R. L., & Zelasko, J. S. (1963). A hyperbolic stress-strain formulation of sands. Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, 289-324.
  • Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, Englewood Cliffs, New Jersey.
  • Kramer, S. L., & Paulsen, S. B. (2004). Practical use of geotechnical site response models. Proceedings, Int. Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, PEER Center Headquarters, Richmond, California, 1-10.
  • Masing, G. (1926). Eigenspannungen und verfestigung beim messing. In Proceedings, second international congress of applied mechanics, 332-335.
  • Matasovic, N., & Hashash, Y. M. A. (2012). Practices and Procedures for Site-Specific Evaluations of Earthquake Ground Motions (A Synthesis of Highway Practice). https://doi.org/10.17226/14660
  • Nghiem, H. M., & Chang, N.-Y. (2019). A new viscous damping formulation for 1D linear site response analysis. Soil Dynamics and Earthquake Engineering, 127, 105860. https://doi.org/10.1016/j.soildyn.2019.105860
  • Rathje, E. M., Kottke, A. R., & Trent, W. L. (2010). Influence of Input Motion and Site Property Variabilities on Seismic Site Response Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 136(4), 607-619. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000255
  • Schnabel, P. B., Lysmer, J. L., & Seed, H. B. (1972). SHAKE: A computer program for earthquake response analysis of horizontally layered sites. Report EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley.
  • Stanko, D., Gülerce, Z., Markušić, S., & Šalić, R. (2019). Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches. Soil Dynamics and Earthquake Engineering, 117, 16-29. https://doi.org/10.1016/j.soildyn.2018.11.007
  • Stewart, J. P., Kwok, A. O., Hashash, Y. M. A., Matasovic, N., Pyke, R., Wang, Z., & Yang, Z. (2008). Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures.
  • Sun, R., & Yuan, X. (2021). A holistic equivalent linear method for site response analysis. Soil Dynamics and Earthquake Engineering, 141(October 2020), 106476. https://doi.org/10.1016/j.soildyn.2020.106476
  • Timurağaoğlu, M. Ö., Fahjan, Y., & Dogangun, A. (2021). Bir ve üç boyutlu zemin davranış analizlerinin karşılaştırılması. Pamukkale University Journal of Engineering Sciences, X, 1-6. https://doi.org/10.5505/pajes.2021.40565
  • Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, 117(1), 89-107.
  • Wolf, J. P. (1985). Dynamic soil-structure interaction. Prentice Hall, Englewood Cliffs, New Jersey.
  • Yoshida, N., Kobayashi, S., Suetomi, I., & Miura, K. (2002). Equivalent linear method considering frequency dependent characteristics of stiffness and damping. Soil Dynamics and Earthquake Engineering, 22(3), 205-222. https://doi.org/10.1016/S0267-7261(02)00011-8

Maksimum yer ivmesinin eşdeğer doğrusal ve doğrusal olmayan zemin davranış analizleri üzerindeki etkisi

Yıl 2025, Cilt: 15 Sayı: 1, 1 - 10, 15.03.2025

Öz

Zemin davranış analizleri yapının maruz kalacağı etkileri anlamak için önemli bir araç olmasının yanı sıra yapı-zemin etkileşimi analizlerinin önemli bir aşamasını temsil etmektedir. Öte yandan zeminin doğrusal olmayan davranışını temsil etmek için önerilen eşdeğer doğrusal yöntem literatürde sıklıkla kullanılmaktadır. Bu yöntem doğrusal olmayan zemin davranışını ardışık doğrusal analizler yardımıyla temsil etmeye çalışan pratik bir yaklaşımdır. Bu çalışmada maksimum yer ivmesinin eşdeğer doğrusal ve doğrusal olmayan analiz üzerindeki etkinliği 1-boyutlu zemin davranış analizleri üzerinden araştırılmaktadır. Bu vesileyle oluşturulan 30m derinliğinde homojen killi zemin tabakası farklı genliklere ölçeklenerek elde edilen kayıtlara maruz bırakılarak eşdeğer doğrusal ve doğrusal olmayan analizler gerçekleştirilmiştir. Analizlerde model tabanı rijit kabul edilmiştir. Zeminin kayma modülü ve sönüm davranışının kayma birim şekildeğiştirmeyle değişimi için literatürde yaygın bir şekilde kullanılan deneysel çalışma dikkate alınmıştır. Bu ilişkiler programda mevcut olan bir eğri uydurma aracı sayesinde kalibre edilmiştir. Gerçekleştirilen analizler sonucunda eşdeğer doğrusal analizlerin doğrusal olmayan davranışı belirli yer ivmesi değerine kadar temsil edebildiği, 0.25-0.50g aralığında eşdeğer doğrusal davranışın doğrusal olmayan davranıştan sapmaya başladığı ortaya çıkmıştır. Ayrıca büyük yer ivmesi genliklerinde eşdeğer doğrusal analizlerde elde edilen kayma gerilmesi değerinde doğrusal olmayan analizlere göre daha büyük tepkiler gözlenmiştir.

Etik Beyan

Bu makalenin yazarı, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özel izin gerektirmediğini beyan etmektedir.

Kaynakça

  • Astroza, R., Pastén, C., & Ochoa-Cornejo, F. (2017). Site response analysis using one-dimensional equivalent-linear method and Bayesian filtering. Computers and Geotechnics, 89, 43-54. https://doi.org/10.1016/j.compgeo.2017.04.004
  • Bilotta, E., De Sanctis, L., Di Laora, R., D’Onofrio, A., & Silvestri, F. (2015). Importance of seismic site response and soil–structure interaction in dynamic behaviour of a tall building. Geotechnique, 65(5), 391-400. https://doi.org/10.1680/geot.SIP.15.P.016
  • Bolisetti, C., Whittaker, A. S., Mason, H. B., Almufti, I., & Willford, M. (2014). Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nuclear Engineering and Design, 275, 107-121. https://doi.org/10.1016/j.nucengdes.2014.04.033
  • Carlton, B., & Tokimatsu, K. (2016). Comparison of Equivalent Linear and Nonlinear Site Response Analysis Results and Model to Estimate Maximum Shear Strain. Earthquake Spectra, 32(3), 1867-1887. https://doi.org/10.1193/021215EQS029MR1
  • Ci̇velekler, E., Afacan, K. B., Volkan Okur, D., (2021). Eşdeğer doğrusal ve doğrusal olmayan yaklaşımlara göre sismik yük etkisindeki zeminlerde davranış analizi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 29(2), 158-171. https://doi.org/10.31796/OGUMMF.839703
  • Fatahi, B., & Tabatabaiefar, S. H. R. (2014). Fully Nonlinear versus Equivalent Linear Computation Method for Seismic Analysis of Midrise Buildings on Soft Soils. International Journal of Geomechanics, 14(4), 04014016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000354
  • Han, B., Zdravković, L., & Kontoe, S. (2018). Analytical and numerical investigation of site response due to vertical ground motion. Géotechnique, 68(6), 467-480. https://doi.org/10.1680/jgeot.15.P.191
  • Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Philips, C. A., & Park, D. (2017). DEEPSOIL 7.0, User Manual.
  • Idriss, I. M., & Seed, H. B. (1968). Seismic Response of Horizontal Soil Layers. Journal of the Soil Mechanics and Foundations Division, 94(4), 1003-1031. https://doi.org/10.1061/JSFEAQ.0001163
  • Kara, F. İ., & Şahin, B. (2022). Sahaya Özel Zemin Davranış Analizlerinde Profil Derinliği Değişiminin İncelenmesi. Doğal Afetler ve Çevre Dergisi, 8(1), 37-52. https://doi.org/10.21324/DACD.855902
  • Kaklamanos, J., Bradley, B. A., Thompson, E. M., & Baise, L. G. (2013). Critical Parameters Affecting Bias and Variability in Site-Response Analyses Using KiK-net Downhole Array Data. Bulletin of the Seismological Society of America, 103(3), 1733-1749. https://doi.org/10.1785/0120120166
  • Kim, B., & Hashash, Y. M. A. (2013). Site response analysis using downhole array recordings during the March 2011 Tohoku-Oki earthquake and the effect of long-duration ground motions. Earthquake Spectra, 29(SUPPL.1), 37-54. https://doi.org/10.1193/1.4000114
  • Kim, B., Hashash, Y. M. A., Stewart, J. P., Rathje, E. M., Harmon, J. A., Musgrove, M. I., Campbell, K. W., & Silva, W. J. (2016). Relative Differences between Nonlinear and Equivalent-Linear 1-D Site Response Analyses. Earthquake Spectra, 32(3), 1845-1865. https://doi.org/10.1193/051215EQS068M
  • Konder, R. L., & Zelasko, J. S. (1963). A hyperbolic stress-strain formulation of sands. Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, 289-324.
  • Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, Englewood Cliffs, New Jersey.
  • Kramer, S. L., & Paulsen, S. B. (2004). Practical use of geotechnical site response models. Proceedings, Int. Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, PEER Center Headquarters, Richmond, California, 1-10.
  • Masing, G. (1926). Eigenspannungen und verfestigung beim messing. In Proceedings, second international congress of applied mechanics, 332-335.
  • Matasovic, N., & Hashash, Y. M. A. (2012). Practices and Procedures for Site-Specific Evaluations of Earthquake Ground Motions (A Synthesis of Highway Practice). https://doi.org/10.17226/14660
  • Nghiem, H. M., & Chang, N.-Y. (2019). A new viscous damping formulation for 1D linear site response analysis. Soil Dynamics and Earthquake Engineering, 127, 105860. https://doi.org/10.1016/j.soildyn.2019.105860
  • Rathje, E. M., Kottke, A. R., & Trent, W. L. (2010). Influence of Input Motion and Site Property Variabilities on Seismic Site Response Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 136(4), 607-619. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000255
  • Schnabel, P. B., Lysmer, J. L., & Seed, H. B. (1972). SHAKE: A computer program for earthquake response analysis of horizontally layered sites. Report EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley.
  • Stanko, D., Gülerce, Z., Markušić, S., & Šalić, R. (2019). Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches. Soil Dynamics and Earthquake Engineering, 117, 16-29. https://doi.org/10.1016/j.soildyn.2018.11.007
  • Stewart, J. P., Kwok, A. O., Hashash, Y. M. A., Matasovic, N., Pyke, R., Wang, Z., & Yang, Z. (2008). Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures.
  • Sun, R., & Yuan, X. (2021). A holistic equivalent linear method for site response analysis. Soil Dynamics and Earthquake Engineering, 141(October 2020), 106476. https://doi.org/10.1016/j.soildyn.2020.106476
  • Timurağaoğlu, M. Ö., Fahjan, Y., & Dogangun, A. (2021). Bir ve üç boyutlu zemin davranış analizlerinin karşılaştırılması. Pamukkale University Journal of Engineering Sciences, X, 1-6. https://doi.org/10.5505/pajes.2021.40565
  • Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, 117(1), 89-107.
  • Wolf, J. P. (1985). Dynamic soil-structure interaction. Prentice Hall, Englewood Cliffs, New Jersey.
  • Yoshida, N., Kobayashi, S., Suetomi, I., & Miura, K. (2002). Equivalent linear method considering frequency dependent characteristics of stiffness and damping. Soil Dynamics and Earthquake Engineering, 22(3), 205-222. https://doi.org/10.1016/S0267-7261(02)00011-8
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Deprem Mühendisliği, İnşaat Geoteknik Mühendisliği
Bölüm Makaleler
Yazarlar

Mehmet Ömer Timurağaoğlu 0000-0002-6329-905X

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 2 Eylül 2024
Kabul Tarihi 17 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Timurağaoğlu, M. Ö. (2025). Maksimum yer ivmesinin eşdeğer doğrusal ve doğrusal olmayan zemin davranış analizleri üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(1), 1-10. https://doi.org/10.17714/gumusfenbil.1542060