Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the effect of wave amplitude and circular obstacles on flow and heat transfer in a sinusoidal wave channel

Yıl 2025, Cilt: 15 Sayı: 1, 36 - 50, 15.03.2025

Öz

This study numerically investigates the flow and heat transfer of the wave amplitude and the circular obstacles added into the channel in a sinusoidal wave channel. The solutions are analyzed with ANSYS Fluent solver. In the study, the effects of the wave amplitude (s) of the channel, the diameter of the circular obstacles (d) and the inlet velocity of the channel are investigated. The analyses are first carried out for three different wave amplitudes (s: 20 mm, 30 mm and 40 mm) of the channel without circular obstacles (d=0), then the wave amplitude is kept constant (s=40 mm) and the four circular obstacles placed at the center of the channel with different diameters (d: 4 mm, 6 mm, 8 mm) are investigated. The surfaces of the wavy channel are maintained at the temperature Ts=350 K. The solutions are applied for Reynolds numbers in the range of 3000≤Re≤8000. As a result of the study, Nusselt number (Nu), heat transfer improvement rate (ER), pressure drop (𝛥P), friction factor (f) and performance factor (PF) were calculated. As a result, heat transfer improved with the increase in Reynolds number in all channels. Increasing the wave amplitude of the channel increased the Nu. In the channel without circular obstacles (d=0), heat transfer at s=40mm wave amplitude was improved by 1.47 times compared to the straight channel. In the channel with obstacles at a constant wave amplitude (s=40mm), Nusselt number increased with the increase in the diameters of the circular obstacles. It was determined that heat transfer at the highest obstacle diameter (d=8mm) improved by 1.82 times compared to the straight channel. In channels without obstacles (d=0), the highest PF was obtained as PF=1.10 at s=40mm and Re=4000. In the presence of circular obstacles, the highest PF was found to be PF=1.08 in the case of Re=8000 and d=4mm. In this study, the flow and heat transfer behavior was investigated by using two different passive methods together and the results were aimed to be a guide for channel designers.

Kaynakça

  • Abed, A. M., Alghoul, M. A., Sopian, K., Mohammed, H. A., & Al-Shamani, A. N. (2015). Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem. Eng. Process. Process Intensif., 87, 88–103. https://doi.org/10.1016/j.cep.2014.11.005
  • Ahmed, M., Yusoff, M., Ng, K., & Shuaib, N. (2014). Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid. Case Studies in Thermal Engineering, 4, 65-75. https://doi.org/10.1016/j.csite.2014.07.001
  • Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., & Urchueguia, J. F. (2022). A review of recent passive heat transfer enhancement methods. Energies, 15(3), 986. https://doi.org/10.3390/en15030986
  • Ajeel, R. K., Saiful-Islam, W., & Hasnan, K. B. (2018). Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped. Case Studies in Thermal Engineering, 12, 620-635. https://doi.org/10.1016/j.csite.2018.08.002
  • Ajeel, R. K., Salim, W. I., & Hasnan, K. (2019). Design characteristics of symmetrical semicircle- corrugated channel on heat transfer enhancement with nanofluid. Int. J. Mech. Sci., 151, 236–250. https://doi.org/10.1016/j.ijmecsci.2018.11.022
  • Ajeel, R. K., Sopian, K., & Zulkifli, R. (2021). A novel curved-corrugated channel model: thermal-hydraulic performance and design parameters with nanofluid. Int. Comm. Heat Mass Transf., 120, 105037. https://doi.org/10.1016/j.icheatmasstransfer.2020.105037
  • Akcay, S. (2023a). Numerical study of turbulent heat transfer process in different wavy channels with solid and perforated baffles. Heat Transfer Research, 54(18), 53-82. DOI: 10.1615/HeatTransRes.2023046621
  • Akcay, S. (2023b). Heat transfer analysis of pulsating nanofluid flow in a semicircular wavy channel with baffles. Sādhanā, 48, 57. https://doi.org/10.1007/s12046-023-02119-x
  • Alfellag, M. A., Ahmed, H. E., Jehad, M. G., & Farhan, A. A. (2022). The hydrothermal performance enhancement techniques of corrugated channels: A review. Journal of Thermal Analysis and Calorimetry, 147, 10177-10206. https://doi.org/10.1007/s10973-022-11247-1
  • Choudhary, T., Sahu, M. K., Shende, V., & Kumar, A. (2022). Computational analysis of a heat transfer characteristic of a wavy and corrugated channel. Material Today: Proceedings, 56, 263-273. https://doi.org/10.1016/j.matpr.2022.01.121
  • Feng, C-N., Liang, C-H., & Li, Z-X. (2022). Friction factor and heat transfer evaluation of cross-corrugated triangular flow channels with trapezoidal baffles. Energy & Buildings, 257, 111816. https://doi.org/10.1016/j.enbuild.2021.111816
  • Kanchan, B. K., Chandan, G. K., & Kumar, J. (2024). Effect of obstacle configuration in sinusoidal bfsc on hydrothermal performance and irreversibility characteristics: A numerical study. Iran J Sci Technol Trans Mech Eng., 48, 145–162. https://doi.org/10.1007/s40997-023-00649-7
  • Khan, M., Alsaduni, I. N., Alluhaidan, M., Xia, W-F., & Ibrahim, M. (2021). Evaluating the energy efficiency of a parabolic trough solar collector filled with a hybrid nanofluid by utilizing double fluid system and a novel corrugated absorber tube. Journal of the Taiwan Institute of Chemical Engineers, 124, 150-161. https://doi.org/10.1016/j.jtice.2021.04.045
  • Khoshvaght-Aliabadi, M. (2014). Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Convers. Manag., 88, 96–105. https://doi.org/10.1016/j.enconman.2014.08.042
  • Krishnan, E. N., Ramin, H., Guruabalan, A., & Simonson, C. J. (2021). Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages. International Communications in Heat and Mass Transfer, 122, 105160. https://doi.org/10.1016/j.icheatmasstransfer.2021.105160
  • Kurtulmus, N., & Sahin, B. (2019). A review of hydrodynamics and heat transfer through corrugated channels. Int. Commun.Heat Mass Transf., 108, 104307. https://doi.org/10.1016/j.icheatmasstransfer.2019.104307
  • Li, Z-X., Sung, S-Q., Wang, C., Liang, C-H., Zeng, S., Zhong, T., Hud, W-P., & Feng, C-N. (2022). The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct. Case Studies in Thermal Engineering, 33, 101903. https://doi.org/10.1016/j.csite.2022.101903
  • Naderifar, A., Nikian, M, Javaherdeh, K., & Borji, M. (2022). Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-newtonian nanofluid flow through a corrugated channel. Journal of Thermal Analysis and Calorimetry, 147, 9779-9791. https://doi.org/10.1007/s10973-022-11222-w
  • Nakhchi, M. E. (2019). Experimental optimization of geometrical parameters on heat transfer and pressure drop inside sinusoidal wavy channels. Ther. Sci. Eng. Prog., 9, 121–131. https://doi.org/10.1016/j.tsep.2018.11.006
  • Nitturi, L. K., Kapu, V. K. S., Gugulothu, R., Kaleru, A., Vuyyuri, V., & Farid, A. (2023). Augmentation of heat transfer through passive techniques. Heat Transfer, 52(6), 4422-4449, https://doi.org/10.1002/htj.22877
  • Raza, A., Hasnain, J., Shah, S. S., Haq, R. U., & Alhushaybari, A. (2024). Influence of solid cylinders on fluid flow and thermal analysis in a curved channel with constant magnetic field. International Communications in Heat and Mass Transfer, 158, 107887. https://doi.org/10.1016/j.icheatmasstransfer.2024.107887
  • Salami, M., Khoshvaght-Aliabadi, M., & Feizabadi, A. (2019). Investigation of corrugated channel performance with different wave shapes. J. Therm. Anal. Calorim, 138(5), 3159–3174. https://doi.org/10.1007/s10973-019-08361-y
  • Shahsavar, A., Alimohammadi, S. S., Askari, I. B. & Ali, H. M. (2021). Numerical investigation of the effect of corrugation profile on the hydrothermal characteristics and entropy generation behavior of laminar forced convection of non-Newtonian water/CMC-CuO nanofluid flow inside a wavy channel. Int. Commun. Heat and Mass Transfer, 121, 105117. https://doi.org/10.1016/j.icheatmasstransfer.2021.105117
  • Uysal, D., & Akçay, S. (2024). Numerical study of thermal and hydrodynamic characteristics of turbulent flow in hybrid corrugated channels with different wave profiles. Journal of Mechanical Engineering and Sciences, 18(2), 10026–10045. https://doi.org/10.15282/jmes.18.2.2024.5.0792
  • Zhang, J., Zhu, X., Mondejar, M. E., & Haglind, F. (2019). A review of heat transfer enhancement techniques in plate heat exchangers. Renew. Sustain. Energy Reviews, 101, 305-328. https://doi.org/10.1016/j.rser.2018.11.017
  • Zhang, L., & Che, D. (2011). Influence of corrugation profile on the thermalhydraulic performance of cross-corrugated plates. Numeric. Heat Transfer, Part A: Appl., 59 (4) 267–296. https://doi.org/10.1080/10407782.2011.540963
  • Zheng, Y., Yang, H., Mazaheri, H., Aghaei, A., Mokhtari, N., & Afrand, M. (2021). An investigation on the influence of the shape of the vortex generator on fluid flow and turbulent heat transfer of hybrid nanofluid in a channel. Journal of Thermal Analysis and Calorimetry, 143,1425–1438. https://doi.org/10.1007/s10973-020-09415-2
  • Zontul, H., Hamzah, H., Kurtulmuş, N., & Şahin, B. (2021). Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels. Int. Commun. Heat and Mass Transfer, 126, 105366. https://doi.org/10.1016/j.icheatmasstransfer.2021.105366

Sinüzoidal dalgalı bir kanalda akış ve ısı transferi üzerinde dalga genliğinin ve dairesel engellerin etkisinin incelenmesi

Yıl 2025, Cilt: 15 Sayı: 1, 36 - 50, 15.03.2025

Öz

Bu çalışma, sinüzoidal dalgalı bir kanalda dalga genliğinin ve kanal içerisine eklenen dairesel engellerin akış ve ısı transferini sayısal olarak incelemektedir. Çözümler, ANSYS Fluent çözücü ile analiz edilmiştir. Çalışmada, kanalın dalga genliğinin (s), dairesel engellerin çapının (d) ve kanalın giriş hızının etkileri araştırılmıştır. Analizler, ilk önce dairesel engellerin olmadığı (d=0) kanalın üç farklı dalga genliği için (s: 20mm, 30mm ve 40mm) gerçekleştirilmiş, daha sonra dalga genliği sabit tutularak (s=40mm) kanal merkezine yerleştirilen dört adet dairesel engellerin farklı çapları (d: 4mm, 6mm, 8mm) için incelenmiştir. Dalgalı kanalın yüzeyleri, Ts=350 K sıcaklığında korunmaktadır. Çözümler, 3000≤Re≤8000 aralığındaki Reynolds sayıları için uygulanmıştır. Çalışma sonucunda, Nusselt sayısı (Nu), ısı transferi iyileşme oranı (ER), basınç düşüşü (𝛥P), sürtünme faktörü (f) ve performans faktörü (PF) hesaplanmıştır. Sonuç olarak tüm kanallarda Reynolds sayısının artması ile ısı transferi iyileşmiştir. Kanalın dalga genliğinin artması ile Nu artmıştır. İçerisinde dairesel engellerin olmadığı (d=0) kanalda, s=40mm dalga genliğinde ısı transferi, düz kanal göre 1.47 kat iyileşmiştir. Sabit bir dalga genliğinde (s=40mm) içerisinde engellerin olduğu kanalda, dairesel engellerin çaplarının artması ile Nusselt sayısı artmıştır. En yüksek engel çapında (d=8mm) ısı transferinin düz kanala göre 1.82 kat iyileştiği tespit edilmiştir. İçerisinde engellerin olmadığı (d=0) kanallarda, en yüksek PF, s=40mm ve Re=4000’de PF=1.10 olarak elde edilmiştir. Dairesel engellerin varlığında, en yüksek PF, Re=8000 ve d=4mm durumunda PF=1.08 olarak bulunmuştur. Bu çalışmada, iki farklı pasif yöntemin birlikte kullanılması ile akış ve ısı transferi davranışı incelenmiş ve sonuçların kanal tasarımcılarına bir kılavuz olması amaçlanmıştır.

Etik Beyan

Etik beyan gerekmemektedir.

Kaynakça

  • Abed, A. M., Alghoul, M. A., Sopian, K., Mohammed, H. A., & Al-Shamani, A. N. (2015). Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem. Eng. Process. Process Intensif., 87, 88–103. https://doi.org/10.1016/j.cep.2014.11.005
  • Ahmed, M., Yusoff, M., Ng, K., & Shuaib, N. (2014). Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid. Case Studies in Thermal Engineering, 4, 65-75. https://doi.org/10.1016/j.csite.2014.07.001
  • Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., & Urchueguia, J. F. (2022). A review of recent passive heat transfer enhancement methods. Energies, 15(3), 986. https://doi.org/10.3390/en15030986
  • Ajeel, R. K., Saiful-Islam, W., & Hasnan, K. B. (2018). Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped. Case Studies in Thermal Engineering, 12, 620-635. https://doi.org/10.1016/j.csite.2018.08.002
  • Ajeel, R. K., Salim, W. I., & Hasnan, K. (2019). Design characteristics of symmetrical semicircle- corrugated channel on heat transfer enhancement with nanofluid. Int. J. Mech. Sci., 151, 236–250. https://doi.org/10.1016/j.ijmecsci.2018.11.022
  • Ajeel, R. K., Sopian, K., & Zulkifli, R. (2021). A novel curved-corrugated channel model: thermal-hydraulic performance and design parameters with nanofluid. Int. Comm. Heat Mass Transf., 120, 105037. https://doi.org/10.1016/j.icheatmasstransfer.2020.105037
  • Akcay, S. (2023a). Numerical study of turbulent heat transfer process in different wavy channels with solid and perforated baffles. Heat Transfer Research, 54(18), 53-82. DOI: 10.1615/HeatTransRes.2023046621
  • Akcay, S. (2023b). Heat transfer analysis of pulsating nanofluid flow in a semicircular wavy channel with baffles. Sādhanā, 48, 57. https://doi.org/10.1007/s12046-023-02119-x
  • Alfellag, M. A., Ahmed, H. E., Jehad, M. G., & Farhan, A. A. (2022). The hydrothermal performance enhancement techniques of corrugated channels: A review. Journal of Thermal Analysis and Calorimetry, 147, 10177-10206. https://doi.org/10.1007/s10973-022-11247-1
  • Choudhary, T., Sahu, M. K., Shende, V., & Kumar, A. (2022). Computational analysis of a heat transfer characteristic of a wavy and corrugated channel. Material Today: Proceedings, 56, 263-273. https://doi.org/10.1016/j.matpr.2022.01.121
  • Feng, C-N., Liang, C-H., & Li, Z-X. (2022). Friction factor and heat transfer evaluation of cross-corrugated triangular flow channels with trapezoidal baffles. Energy & Buildings, 257, 111816. https://doi.org/10.1016/j.enbuild.2021.111816
  • Kanchan, B. K., Chandan, G. K., & Kumar, J. (2024). Effect of obstacle configuration in sinusoidal bfsc on hydrothermal performance and irreversibility characteristics: A numerical study. Iran J Sci Technol Trans Mech Eng., 48, 145–162. https://doi.org/10.1007/s40997-023-00649-7
  • Khan, M., Alsaduni, I. N., Alluhaidan, M., Xia, W-F., & Ibrahim, M. (2021). Evaluating the energy efficiency of a parabolic trough solar collector filled with a hybrid nanofluid by utilizing double fluid system and a novel corrugated absorber tube. Journal of the Taiwan Institute of Chemical Engineers, 124, 150-161. https://doi.org/10.1016/j.jtice.2021.04.045
  • Khoshvaght-Aliabadi, M. (2014). Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Convers. Manag., 88, 96–105. https://doi.org/10.1016/j.enconman.2014.08.042
  • Krishnan, E. N., Ramin, H., Guruabalan, A., & Simonson, C. J. (2021). Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages. International Communications in Heat and Mass Transfer, 122, 105160. https://doi.org/10.1016/j.icheatmasstransfer.2021.105160
  • Kurtulmus, N., & Sahin, B. (2019). A review of hydrodynamics and heat transfer through corrugated channels. Int. Commun.Heat Mass Transf., 108, 104307. https://doi.org/10.1016/j.icheatmasstransfer.2019.104307
  • Li, Z-X., Sung, S-Q., Wang, C., Liang, C-H., Zeng, S., Zhong, T., Hud, W-P., & Feng, C-N. (2022). The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct. Case Studies in Thermal Engineering, 33, 101903. https://doi.org/10.1016/j.csite.2022.101903
  • Naderifar, A., Nikian, M, Javaherdeh, K., & Borji, M. (2022). Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-newtonian nanofluid flow through a corrugated channel. Journal of Thermal Analysis and Calorimetry, 147, 9779-9791. https://doi.org/10.1007/s10973-022-11222-w
  • Nakhchi, M. E. (2019). Experimental optimization of geometrical parameters on heat transfer and pressure drop inside sinusoidal wavy channels. Ther. Sci. Eng. Prog., 9, 121–131. https://doi.org/10.1016/j.tsep.2018.11.006
  • Nitturi, L. K., Kapu, V. K. S., Gugulothu, R., Kaleru, A., Vuyyuri, V., & Farid, A. (2023). Augmentation of heat transfer through passive techniques. Heat Transfer, 52(6), 4422-4449, https://doi.org/10.1002/htj.22877
  • Raza, A., Hasnain, J., Shah, S. S., Haq, R. U., & Alhushaybari, A. (2024). Influence of solid cylinders on fluid flow and thermal analysis in a curved channel with constant magnetic field. International Communications in Heat and Mass Transfer, 158, 107887. https://doi.org/10.1016/j.icheatmasstransfer.2024.107887
  • Salami, M., Khoshvaght-Aliabadi, M., & Feizabadi, A. (2019). Investigation of corrugated channel performance with different wave shapes. J. Therm. Anal. Calorim, 138(5), 3159–3174. https://doi.org/10.1007/s10973-019-08361-y
  • Shahsavar, A., Alimohammadi, S. S., Askari, I. B. & Ali, H. M. (2021). Numerical investigation of the effect of corrugation profile on the hydrothermal characteristics and entropy generation behavior of laminar forced convection of non-Newtonian water/CMC-CuO nanofluid flow inside a wavy channel. Int. Commun. Heat and Mass Transfer, 121, 105117. https://doi.org/10.1016/j.icheatmasstransfer.2021.105117
  • Uysal, D., & Akçay, S. (2024). Numerical study of thermal and hydrodynamic characteristics of turbulent flow in hybrid corrugated channels with different wave profiles. Journal of Mechanical Engineering and Sciences, 18(2), 10026–10045. https://doi.org/10.15282/jmes.18.2.2024.5.0792
  • Zhang, J., Zhu, X., Mondejar, M. E., & Haglind, F. (2019). A review of heat transfer enhancement techniques in plate heat exchangers. Renew. Sustain. Energy Reviews, 101, 305-328. https://doi.org/10.1016/j.rser.2018.11.017
  • Zhang, L., & Che, D. (2011). Influence of corrugation profile on the thermalhydraulic performance of cross-corrugated plates. Numeric. Heat Transfer, Part A: Appl., 59 (4) 267–296. https://doi.org/10.1080/10407782.2011.540963
  • Zheng, Y., Yang, H., Mazaheri, H., Aghaei, A., Mokhtari, N., & Afrand, M. (2021). An investigation on the influence of the shape of the vortex generator on fluid flow and turbulent heat transfer of hybrid nanofluid in a channel. Journal of Thermal Analysis and Calorimetry, 143,1425–1438. https://doi.org/10.1007/s10973-020-09415-2
  • Zontul, H., Hamzah, H., Kurtulmuş, N., & Şahin, B. (2021). Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels. Int. Commun. Heat and Mass Transfer, 126, 105366. https://doi.org/10.1016/j.icheatmasstransfer.2021.105366
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil)
Bölüm Makaleler
Yazarlar

Elif Çelik 0009-0009-5642-5933

Selma Akcay 0000-0003-2654-0702

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 8 Ekim 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Çelik, E., & Akcay, S. (2025). Sinüzoidal dalgalı bir kanalda akış ve ısı transferi üzerinde dalga genliğinin ve dairesel engellerin etkisinin incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(1), 36-50. https://doi.org/10.17714/gumusfenbil.1563367