Araştırma Makalesi
BibTex RIS Kaynak Göster

Petrography, mineral chemistry and whole-rock geochemical properties of orthopyroxenites in the mantle section of the Kırdağ ophiolite (Erzurum, NE Turkey)

Yıl 2025, Cilt: 15 Sayı: 1, 140 - 160, 15.03.2025

Öz

In this study, the formation conditions and petrogenetic characteristics of orthopyroxenites in the mantle section of the Kırdağ ophiolite (Erzurum, NE Turkey), which outcrops within the Erzurum-Kars Ophiolite Zone in the Eastern Pontides, have been evaluated for the first time using mineral chemistry and whole-rock geochemical data. The main mineralogical composition of the samples taken from the orthopyroxenites consists predominantly of orthopyroxenes, with lesser amounts of clinopyroxenes and subhedral to euhedral chromian spinels. The mineral compositions, characterized by partially high Cr# and low TiO2 contents in chromian spinels, and high Mg# and low Al2O3 contents in pyroxenes, indicate that the formation conditions involve the re-melting of a depleted mantle source. Additionally, high whole-rock Mg# values, concave-shaped rare earth element (REE) patterns, and enrichment in large-ion lithophile elements (LILE) explain metasomatic events during melt-peridotite interaction processes in the subduction zone. As a result, it is understood that the petrographic and petrological characteristics of the studied orthopyroxenites indicate that they formed through the transformation of olivines into orthopyroxenes via the reaction of the parent peridotite with high-silica melts in a subduction zone.

Proje Numarası

FBA-2018-6828

Kaynakça

  • Arai, S., Shimizu, Y., Ismail, S.A. & Ahmed, A.H. (2006). Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq. Mineralogical Magazine, 70, 499–508.
  • Aydınçakır, E. (2016). Subduction-related Late Cretaceous high K volcanism in the Central Pontides orogenic belt: Constraints on geodynamic implications. Geodinamica Acta, 28 (4), 379–411.
  • Aydınçakır, E., Yücel, C., Kaygusuz, A., Bilici, Ö. & Yılmazer, S. (2024). Eocene magmatism related to postcollisional extension in the Eastern Pontides (NE Türkiye): 40Ar-39Ar geochronology, geochemistry, and whole-rock Sr-Nd-Pb-Hf isotopes. Turkish Journal of Earth Sciences, 33, 530-556. doi:10.55730/1300-0985.1928
  • Ayers, J. C., Dittmer, S. K. & Layne, G. D. (1997). Partitioning of elements between peridotite and H2O at 2.0–3.0 GPa and 900–1100 °C, and application to models of subduction zone processes. Earth and Planetary Science Letters, 150, 381–398.
  • Barnes, S.J. & Roeder, P.L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42 (12), 2279–2302.
  • Basch, V., Rampone, E., Crispini, L., Ferrando, C., Ildefonse, B. & Godard, M. (2019) Multi-stage reactive formation of troctolites in slowspreading oceanic lithosphere (Erro-Tobbio, Italy): a combined field and petrochemical study. Journal of Petrology, 60 (5), 873-906. https ://doi.org/10.1093/petrology/egz019
  • Belousov, I., Batanova, V., Sobolev, A., Savelieva, G., Danyushevsky, L. & Draayers, E. (2021) Pyroxenites from mantle section of Voykar Ophiolite–Melt/peridotite reaction and crystallization in SSZ mantle. Lithos, 388:106063
  • Berly, T.J., Hermann, J., Arculus, R.J. & Lapierre, H. (2006). Supra-subduction zone pyroxenites from San Jorge and Santa Isabel (Solomon Islands). Journal of Petrology, 47(8), 1531–1555.
  • Bilici, Ö. (2022). Reactive harzburgite and ultimate dunite formation as a result of boninite-like melt interaction: Petrological evidence from the Kırdağ ophiolite (Erzurum, NE Turkey). Journal of African Earth Science, 193, 104601. https://doi.org/10.1016/j.jafrearsci.2022.104601
  • Bilici, Ö., & Kolayli, H. (2018). Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting. Turkish Journal of Earth Science, 27(5), 384-404. doi:10.3906/yer-1802-13
  • Bodinier, J.L., Garrido, C.J., Chanefo, I., Bruguier, O. & Gervilla, F. (2008). Origin of pyroxenite-peridotite veined mantle by refertilization reactions: Evidence from the Ronda peridotite (Southern Spain). Journal of Petrology, 49(5), 999–1025. doi: 10.1093/petrology/egn014.
  • Bouilhol, P., Burg, J.P., Bodinier, J.L., Schmidt, M.W., Dawood, H. & Hussain, S. (2009). Magma and fluid percolation in arc to forearc mantle: evidence from Sapat (Kohistan, Northern Pakistan). Lithos, 107 (1–2), 17–37.
  • Borghini, G., Fumagalli, P. & Rampone, E. (2017). Partial melting of secondary pyroxenite at 1 and 1.5 GPa and its role in upwelling heterogeneous mantle. Contributions to Mineralogy and Petrology, 172, 70–93.
  • Borghini, G., Rampone, E., Zanetti, A., Class, C., Cipriani, A., Hofmann, A.W. & Goldstein, S.L. (2013). Meter-scale Nd isotopic heterogeneity in pyroxenite-bearing Ligurian peridotites encompasses global-scale upper mantle variability. Geology, 41(10), 1055–1058. doi: 10.1130/G34438.1.
  • Bodinier, J.L., Garrido, C.J., Chanefo, I., Bruguier, O. & Gervilla, F. (2008) Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). Journal of Petrology, 49,999–1025.
  • Brenan, J.M., Shaw, H.F., Ryerson, F.J. & Phinney, D.L. (1995). Mineral–aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59, 3331–3350.
  • Buket, E. & Ataman, G. (1982). Erzincan – Refahiye ultramafik ve mafik kayaçlarının petrografik ve petrolojik özellikleri. Yerbilimleri, 91, 5-17.
  • Chen, L.H. & Zhou, X.H. (2005) Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dünite orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton. Geochemistry, Geophysics, Geosystems, 6, Q06008. https:// doi. org/ 10. 1029/ 2005GC000938
  • Çelik, O.F., Chiaradia, M., Marzoli, A., Billor, Z. & Marschik, R. (2013). The Eldivan ophiolite and volcanic rocks in the Izmir-Ankara-Erzincan suture zone, northern Turkey: geochemistry, whole-rock geochemical and Nd-Sr-Pb isotopic characteristics. Lithos 172–173, 31–46.
  • Dantas, C., Ceuleneer, G., Gregoire, M., Python, M., Freydier, R., Warren, J. & Dick, H.J.B. (2007) Pyroxenites from the Southwest Indian Ridge, 9°–16°E: cumulates from incremental melt fraction produced at the top of a cold melting regime. Journal of Petrology, 48:647–660.
  • Dantas, C., Gregoire, M., Koester, E., Conceicao, R.D. & Rieck, N. (2009) The lherzolite–websterite xenolith suite from Northern Patagonia (Argentina): evidence of mantle–melt reaction processes. Lithos, 107:107–120.
  • Dewey, J.F., Pitman, W.C., Ryan, W.B.F. & Bonnin, J. (1973). Plate tectonics and evolution of the Alpine system. Geological Society of American Bulletin, 84, 3137–3180.
  • Dilek Y, Imamverdiyev N & Altunkaynak Ş (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: Collisioninduced mantle dynamics and its magmatic fingerprint. International Geology Review, 52 (4-6), 536-578. https://doi.org/10.1080/00206810903360422
  • Downes, H. (2007). Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos, 99(1−2), 1–24. doi: 10.1016/j.lithos.2007.05.006.
  • Frets, E., Tommasi, A., Garrido, C.J., Padron-Navarta, J.A., Amri, I. & Targuisti, K. (2012). Deformation processes and rheology of pyroxenites under lithospheric mantle conditions. Journal of Structural Geology, 39, 138-157. https://doi.org/10.1016/j.jsg.2012.02.019
  • Garrido, C.J. & Bodinier, J.L. (1999). Diversity of mafic rocks in the Ronda peridotite: Evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology, 40(5), 729–754.
  • Green, D.H., Hibberson, W.O., Rosenthal, A., Kovacs, I., Yaxley, G.M., Falloon, T.J. & Brink, F. (2014). Experimental study of the influence of water on melting and phase assemblages in the upper mantle. Journal of Petrology, 55 (10), 2067–2096.
  • Ishii, T., Robinson, P.T., Maekawa, H. & Fiske, R. (1992). Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawra–Mariana forearc, Leg 125. In: Proceeding of the Ocean Drilling Program, Scientific Results. Vol. 125 of Izu- Bonin–Mariana Region (ss. 445-485). Texas A & M University, Ocean Drilling Program, College Station, TX.
  • Kaczmarek, M.A., Jonda, L. & Davies, H.L. (2015) Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex, Papua New Guinea). Contribution to Mineralogy and Petrology, 170(2), 19. https:// doi. org/ 10.1007/ s00410- 015-1174-z
  • Karimov, A.A., Gornova, M.A., Belyaev, V.A., Medvedev, A.Y. & Bryanskiy, N.V. (2020). Genesis of pyroxenite veins in supra-subduction zone peridotites: Evidence from petrography and mineral composition of Egiingol massif (Northern Mongolia). China Geology, 3(2), 299-313.
  • Kaygusuz A, Yücel C, Aydınçakır E, Gücer MA & Ruffet G (2022). 40Ar-39Ar dating, whole-rock and Sr-Nd isotope geochemistry of the Middle Eocene calc-alkaline volcanic rocks in the Bayburt area Eastern Pontides (NE Turkey): implications for magma evolution in extension-related setting. Mineralogy and Petrology, 116, 379-399. https://doi.org/10.1007/s00710-022-00788-w
  • Kelemen, P.B., Dick, H.J.B. & Quick, J.E. (1992). Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358, 635–641.
  • Kerr, A.C., Saunders, A.D., Tarney, A.D., Berry, N.H. & Hards, V.L. (1995). Depleted mantle-plume geochemical signatures: no paradox for plume theories. Geology, 23, 843–846.
  • Konak, N. & Hakyemez, H.Y. (2008). 1/100.000 Scale Turkish Geology Map Series, Tortum- H47 Sheet, vol. 95. General Directorate of Mineral Research and Exploration, Geology Department, Ankara, p. 46.
  • Konak, N., Hakyemez, H.Y., Bilgic, T., Bilgin, R., Hepşen, N. & Ercan, T. (2001). Geology of Northeast Pontides (Oltu-Olur-Şenkaya-Narman-Uzundere-Yusufeli). General Directorate of Mineral Research and Exploration (MTA), Ankara. Report 10489.
  • Konak, N. & Sumengen, M. (2009). 1/100.000 Scale Turkish Geology Map Series, Kars-H48 Sheet, vol. 106. General Directorate of Mineral Research and Exploration, Geology Department, Ankara, p. 23.
  • Lambart S, Laporte D, Provost A, Schiano P (2012) Fate of pyroxenite-derived melts in the peridotitic mantle. Thermodynamic and experimental constraints. Journal of Petrology, 53, 451–476.
  • Lambart, S., Baker,M.B., Stolper, E.M., 2016. The role of pyroxenite in basalt genesis:Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5GPa. Journal of Geophysical Research: Solid Earth, 121 (8), 5708–5735. https://doi.org/10.1002/2015JB012762
  • Laukert, G., Von der Handt, A., Hellebrand, E., Snow, J., Hoppe, P. & Klugel, A. (2014) High-pressure reactive melt stagnation recorded in abyssal pyroxenites from the ultraslow-spreading Lena Trough, Arctic Ocean. Journal of Petrology, 55, 427–458. https://doi.org/10. 1093/petrology/egt073
  • Le Roux, V. & Liang, Y. (2019). Ophiolitic pyroxenites record boninite percolation in subduction zone mantle. Minerals, 9 (9), 22.
  • Morishita, T., Arai, S. & Green, D.H. (2003). Evolution of low-Al orthopyroxene in the Horoman Peridotite, Japan: an unusual indicator of metasomatizing fluids. Journal of Petrology, 44, 1237–1246.
  • Okay, A. & Sahintürk, Ö. (1997). Geology of the eastern Pontides. In: Robinson, A.G. (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region, vol. 68. AAPG Memoir, pp. 291–311.
  • Okay, I.A. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Journal of Geological Society, 156, 475–515. London Special Publication.
  • Page, P., Bedard, J.H., Schroetter, J.M. & Tremblay, A. (2008). Mantle petrology and mineralogy of the Thetford Mines ophiolite complex. Lithos, 100, 255–292.
  • Parkinson, I.J. & Pearce, J.A. (1998). Peridotites from the Izu – Bonin – Mariana forearc (ODP Leg 125): evidence for mantle melting and melt- mantle interaction in a suprasubduction zone setting. Journal of Petrology, 39, 1577–1618.
  • Parlak, O., Çolakoğlu, A., Dönmez, C., Sayak, H., Yıldırım, N., Türkel, A. & Odabaşı, I. (2013). Geochemistry and tectonic setting of ophiolites along the Izmir–Ankara–Erzincan suture zone in northeastern Anatolia. Geological Society, 372, 75–106. Special Publications.
  • Pearson, D.G., Davies, G.R. & Nixon, P.H. (1993). Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif. Journal of Petrology, 34, 125–172.
  • Python, M. & Ceuleneer, G. (2003). Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 4 (7), 8612.
  • Robertson, A., Parlak, O., Ustaomer, T., Taslı, K., Inan, N., Dumitrica, P. & Karaoglan, F. (2013). Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: new evidence from the Eastern Pontides, Turkey. Geodinamica Acta, 26, 230–293.
  • Robertson, A.H.F. & Dixon, J.E. (1984). Introduction: Aspects of the geological evolution of the eastern Mediterranean. Geological Society, London, 17, 1–74. Special Publications.
  • Rogkala, A., Petrounias, P., Tsikouras, B. & Hatzipanagiotou, K. (2017). New occurrence of pyroxenites in the Veria-Naousa Ophiolite (North Greece): Implications on their origin and petrogenetic evolution. Geosciences, 7(4), 92. doi: 10.3390/geosciences7040092.
  • Santos, J.F., Scharer, U., Ibarguchi, J.I.G. & Girardeau, J. (2002). Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb–Sr–Nd isotope data. Journal of Petrology, 43, 17–43.
  • Sarifakioğlu, E., Özen, H. & Winchester, J.A. (2009). Petrogenesis of Refahiye ophiolite and its tectonic significance for Neotethyan ophiolites along the Izmir–Ankara–Erzincan suture zone. Turkish Journal of Earth Science, 18, 187–207.
  • Sun, S.S. & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society, London, 42, 313–345. Special Publications.
  • Şengör, A. M. C. (1980). Türkiye’nin Neotektoniğinin Esasları [Fundamentals of the neotectonics of Turkey]. Publication of Geological Society of Turkey, 1-40.
  • Şengör, A.M.C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 81–241.
  • Şengör, A.M.C., Özeren, S., Genç, T. & Zor, E. (2003). Anatolian high plateau as a mantle supported, north-south shortened domal structure. Geophysical Research Letter, 30, 8045.
  • Tamura, A. & Arai, S. (2006). Harzburgite–dunite–orthopyroxenite suite as a record of supra- subduction zone setting for the Oman ophiolite mantle. Lithos, 90, 43–56.
  • Tribuzio, R., Tiepolo, M. & Fiameni, S. (2008). A maficultramafic cumulate sequence derived from boninite-type melts (Niagara Icefalls, northern Victoria Land, Antarctica). Contributions to Mineralogy and Petrology, 155(5): 619–633.
  • Ustaömer, T. & Robertson, H.F.A. (2010). Late Paleozoic–early Cenozoic development of the eastern Pontides (Artvin area), Turkey: stages of closure of Tethys along the southern margin of Eurasia. Geological Society, London 340, 281–327. Special Publications.
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Kapsiotis, A. & Sarıfakıoğlu, E. (2016). Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos, 246–247, 228–245.
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Escayola, M., Sarıfakıoğlu, E., Saka, S. & Hirata, T. (2015). Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia, Turkey. Gondwana Research, 27, 594–611.
  • Uysal, I., Dokuz A., Kapsiotis, A., Saka, S., Karslı, O., Kaliwoda, M. & Müller, D. (2017). Petrogenesis of ultramafic rocks from the eastern Orhaneli ophiolite, NW Turkey: Hints on the initiation and evolution of melt-peridotite interaction processes within a heterogeneously depleted mantle section. Journal of Asian Earth Sciences, 148, 51–64.
  • Varfalvy, V. (1997). Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas. The Canadian Mineralogist, 35(2), 543–570.
  • Wang, J.G., Hu, X.M., Garzanti, E. & Wu, F.Y. (2013). Upper Oligocene–Lower Miocene gangrinboche conglomerate in the Xigaze area, Southern Tibet: Implications for Himalayan uplift and paleo-Yarlung–Zangbo Initiation. The Journal of Geology, 121, 425–444.
  • Wang, C., Liang, Y., Dygert, N. & Xu, W. (2016). Formation of orthopyroxenite by reaction between peridotite and hydrous basaltic melt: an experimental study. Contribution to Mineralogy and Petrology, 171(8), 77. https://doi.org/10.1007 s004100161287z
  • Xiong, Q., Zheng, J.P., Griffin, W.L., O’Reilly, S.Y. & Pearson, N.J. (2014). Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 55(12), 2347–2376.
  • Xu, X.Z., Xiong, F.H., Zoheir, B., Yan, J.Y., Zhang, B.Y., Gao, J. & Yang, J.S. (2023). Genesis of pyroxenite veins in the Zedang ophiolite, southern Tibetan Plateau. Acta Geologica Sinica, 97(3), 707–726. https://doi.org/10.1111/1755-6724.14989
  • Yılmaz, Y., Tüysüz, O., Yiğitbaş¸, E., Genç, S.C. & Şengör, A.M.C. (1997). Geology and tectonic evolution of the Pontides. In: Robinson, A.G. (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Regions, (68, 183-226). American Association of Petroleum Geologists, Tulsa, OK, Memoirs.
  • Zhang, Z.Y., Liu, C.Z., Liang, Y., Liu, T., Zhang, C., Liu, B.D., Lin, Y.Z., Zhang, W.Q. & Ji, W.B. (2023). Pyroxenite–harzburgite sequences in the Dazhuqu ophiolite (Southern Tibet) formed through hydrous melt infiltration and melt–peridotite reaction. Contribution to Mineralogy and Petrology, 178, 92.

Kırdağ ofiyoliti (Erzurum, KD Türkiye) manto bölümü içerisindeki ortopiroksenitlerin petrografisi, mineral kimyası ve tüm kaya jeokimyasal özellikleri

Yıl 2025, Cilt: 15 Sayı: 1, 140 - 160, 15.03.2025

Öz

Bu çalışmada, Doğu Pontidlerin doğusunda, Erzurum-Kars Ofiyolit Zonu içerisinde yüzeyleyen Kırdağ ofiyolitinin (Erzurum, KD Türkiye) manto bölümündeki ortopiroksenitlerin oluşum koşulları ve petrojenetik özellikleri, mineral kimyası ve tüm kaya jeokimyasal verileri kullanılarak ilk kez değerlendirilmiştir. Ortopiroksenitlerden alınan örneklerde ana mineralojik bileşimi çoğunlukla ortopiroksenler, daha az oranda klinopiroksenlerle öz ve yarı özşekilli krom spineller oluşturmaktadır. Mineral bileşimlerinde krom spinellerin kısmen yüksek Cr#, düşük TiO2 içerikleri ve piroksenlerin yüksek Mg# ve düşük Al2O3 içerikleri oluşum koşullarının tüketilmiş manto kaynağının yeniden ergimesini işaret etmektedir. Ayrıca, yüksek tüm kaya Mg# değerleri ile konkav şekilli nadir toprak element (NTE) desenleri ve büyük iyon yarıçaplı litofil elementler (BİLE) bakımından zenginleşmiş özellikleri, yitim zonundaki ergiyik-peridotit etkileşim süreçlerindeki metasomatik olayları açıklamaktadır. Sonuç itibariyle, incelenen ortopiroksenitlerin petrografik ve petrolojik özellikleri bir yitim ortamında ana peridotitin yüksek silisli ergiyiklerle reaksiyonu sonucu olivinlerin ortopiroksenlere dönüşümü yoluyla oluştuğu anlaşılmaktadır.

Destekleyen Kurum

Atatürk Üniversitesi

Proje Numarası

FBA-2018-6828

Kaynakça

  • Arai, S., Shimizu, Y., Ismail, S.A. & Ahmed, A.H. (2006). Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq. Mineralogical Magazine, 70, 499–508.
  • Aydınçakır, E. (2016). Subduction-related Late Cretaceous high K volcanism in the Central Pontides orogenic belt: Constraints on geodynamic implications. Geodinamica Acta, 28 (4), 379–411.
  • Aydınçakır, E., Yücel, C., Kaygusuz, A., Bilici, Ö. & Yılmazer, S. (2024). Eocene magmatism related to postcollisional extension in the Eastern Pontides (NE Türkiye): 40Ar-39Ar geochronology, geochemistry, and whole-rock Sr-Nd-Pb-Hf isotopes. Turkish Journal of Earth Sciences, 33, 530-556. doi:10.55730/1300-0985.1928
  • Ayers, J. C., Dittmer, S. K. & Layne, G. D. (1997). Partitioning of elements between peridotite and H2O at 2.0–3.0 GPa and 900–1100 °C, and application to models of subduction zone processes. Earth and Planetary Science Letters, 150, 381–398.
  • Barnes, S.J. & Roeder, P.L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42 (12), 2279–2302.
  • Basch, V., Rampone, E., Crispini, L., Ferrando, C., Ildefonse, B. & Godard, M. (2019) Multi-stage reactive formation of troctolites in slowspreading oceanic lithosphere (Erro-Tobbio, Italy): a combined field and petrochemical study. Journal of Petrology, 60 (5), 873-906. https ://doi.org/10.1093/petrology/egz019
  • Belousov, I., Batanova, V., Sobolev, A., Savelieva, G., Danyushevsky, L. & Draayers, E. (2021) Pyroxenites from mantle section of Voykar Ophiolite–Melt/peridotite reaction and crystallization in SSZ mantle. Lithos, 388:106063
  • Berly, T.J., Hermann, J., Arculus, R.J. & Lapierre, H. (2006). Supra-subduction zone pyroxenites from San Jorge and Santa Isabel (Solomon Islands). Journal of Petrology, 47(8), 1531–1555.
  • Bilici, Ö. (2022). Reactive harzburgite and ultimate dunite formation as a result of boninite-like melt interaction: Petrological evidence from the Kırdağ ophiolite (Erzurum, NE Turkey). Journal of African Earth Science, 193, 104601. https://doi.org/10.1016/j.jafrearsci.2022.104601
  • Bilici, Ö., & Kolayli, H. (2018). Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting. Turkish Journal of Earth Science, 27(5), 384-404. doi:10.3906/yer-1802-13
  • Bodinier, J.L., Garrido, C.J., Chanefo, I., Bruguier, O. & Gervilla, F. (2008). Origin of pyroxenite-peridotite veined mantle by refertilization reactions: Evidence from the Ronda peridotite (Southern Spain). Journal of Petrology, 49(5), 999–1025. doi: 10.1093/petrology/egn014.
  • Bouilhol, P., Burg, J.P., Bodinier, J.L., Schmidt, M.W., Dawood, H. & Hussain, S. (2009). Magma and fluid percolation in arc to forearc mantle: evidence from Sapat (Kohistan, Northern Pakistan). Lithos, 107 (1–2), 17–37.
  • Borghini, G., Fumagalli, P. & Rampone, E. (2017). Partial melting of secondary pyroxenite at 1 and 1.5 GPa and its role in upwelling heterogeneous mantle. Contributions to Mineralogy and Petrology, 172, 70–93.
  • Borghini, G., Rampone, E., Zanetti, A., Class, C., Cipriani, A., Hofmann, A.W. & Goldstein, S.L. (2013). Meter-scale Nd isotopic heterogeneity in pyroxenite-bearing Ligurian peridotites encompasses global-scale upper mantle variability. Geology, 41(10), 1055–1058. doi: 10.1130/G34438.1.
  • Bodinier, J.L., Garrido, C.J., Chanefo, I., Bruguier, O. & Gervilla, F. (2008) Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). Journal of Petrology, 49,999–1025.
  • Brenan, J.M., Shaw, H.F., Ryerson, F.J. & Phinney, D.L. (1995). Mineral–aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59, 3331–3350.
  • Buket, E. & Ataman, G. (1982). Erzincan – Refahiye ultramafik ve mafik kayaçlarının petrografik ve petrolojik özellikleri. Yerbilimleri, 91, 5-17.
  • Chen, L.H. & Zhou, X.H. (2005) Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dünite orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton. Geochemistry, Geophysics, Geosystems, 6, Q06008. https:// doi. org/ 10. 1029/ 2005GC000938
  • Çelik, O.F., Chiaradia, M., Marzoli, A., Billor, Z. & Marschik, R. (2013). The Eldivan ophiolite and volcanic rocks in the Izmir-Ankara-Erzincan suture zone, northern Turkey: geochemistry, whole-rock geochemical and Nd-Sr-Pb isotopic characteristics. Lithos 172–173, 31–46.
  • Dantas, C., Ceuleneer, G., Gregoire, M., Python, M., Freydier, R., Warren, J. & Dick, H.J.B. (2007) Pyroxenites from the Southwest Indian Ridge, 9°–16°E: cumulates from incremental melt fraction produced at the top of a cold melting regime. Journal of Petrology, 48:647–660.
  • Dantas, C., Gregoire, M., Koester, E., Conceicao, R.D. & Rieck, N. (2009) The lherzolite–websterite xenolith suite from Northern Patagonia (Argentina): evidence of mantle–melt reaction processes. Lithos, 107:107–120.
  • Dewey, J.F., Pitman, W.C., Ryan, W.B.F. & Bonnin, J. (1973). Plate tectonics and evolution of the Alpine system. Geological Society of American Bulletin, 84, 3137–3180.
  • Dilek Y, Imamverdiyev N & Altunkaynak Ş (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: Collisioninduced mantle dynamics and its magmatic fingerprint. International Geology Review, 52 (4-6), 536-578. https://doi.org/10.1080/00206810903360422
  • Downes, H. (2007). Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos, 99(1−2), 1–24. doi: 10.1016/j.lithos.2007.05.006.
  • Frets, E., Tommasi, A., Garrido, C.J., Padron-Navarta, J.A., Amri, I. & Targuisti, K. (2012). Deformation processes and rheology of pyroxenites under lithospheric mantle conditions. Journal of Structural Geology, 39, 138-157. https://doi.org/10.1016/j.jsg.2012.02.019
  • Garrido, C.J. & Bodinier, J.L. (1999). Diversity of mafic rocks in the Ronda peridotite: Evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology, 40(5), 729–754.
  • Green, D.H., Hibberson, W.O., Rosenthal, A., Kovacs, I., Yaxley, G.M., Falloon, T.J. & Brink, F. (2014). Experimental study of the influence of water on melting and phase assemblages in the upper mantle. Journal of Petrology, 55 (10), 2067–2096.
  • Ishii, T., Robinson, P.T., Maekawa, H. & Fiske, R. (1992). Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawra–Mariana forearc, Leg 125. In: Proceeding of the Ocean Drilling Program, Scientific Results. Vol. 125 of Izu- Bonin–Mariana Region (ss. 445-485). Texas A & M University, Ocean Drilling Program, College Station, TX.
  • Kaczmarek, M.A., Jonda, L. & Davies, H.L. (2015) Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex, Papua New Guinea). Contribution to Mineralogy and Petrology, 170(2), 19. https:// doi. org/ 10.1007/ s00410- 015-1174-z
  • Karimov, A.A., Gornova, M.A., Belyaev, V.A., Medvedev, A.Y. & Bryanskiy, N.V. (2020). Genesis of pyroxenite veins in supra-subduction zone peridotites: Evidence from petrography and mineral composition of Egiingol massif (Northern Mongolia). China Geology, 3(2), 299-313.
  • Kaygusuz A, Yücel C, Aydınçakır E, Gücer MA & Ruffet G (2022). 40Ar-39Ar dating, whole-rock and Sr-Nd isotope geochemistry of the Middle Eocene calc-alkaline volcanic rocks in the Bayburt area Eastern Pontides (NE Turkey): implications for magma evolution in extension-related setting. Mineralogy and Petrology, 116, 379-399. https://doi.org/10.1007/s00710-022-00788-w
  • Kelemen, P.B., Dick, H.J.B. & Quick, J.E. (1992). Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358, 635–641.
  • Kerr, A.C., Saunders, A.D., Tarney, A.D., Berry, N.H. & Hards, V.L. (1995). Depleted mantle-plume geochemical signatures: no paradox for plume theories. Geology, 23, 843–846.
  • Konak, N. & Hakyemez, H.Y. (2008). 1/100.000 Scale Turkish Geology Map Series, Tortum- H47 Sheet, vol. 95. General Directorate of Mineral Research and Exploration, Geology Department, Ankara, p. 46.
  • Konak, N., Hakyemez, H.Y., Bilgic, T., Bilgin, R., Hepşen, N. & Ercan, T. (2001). Geology of Northeast Pontides (Oltu-Olur-Şenkaya-Narman-Uzundere-Yusufeli). General Directorate of Mineral Research and Exploration (MTA), Ankara. Report 10489.
  • Konak, N. & Sumengen, M. (2009). 1/100.000 Scale Turkish Geology Map Series, Kars-H48 Sheet, vol. 106. General Directorate of Mineral Research and Exploration, Geology Department, Ankara, p. 23.
  • Lambart S, Laporte D, Provost A, Schiano P (2012) Fate of pyroxenite-derived melts in the peridotitic mantle. Thermodynamic and experimental constraints. Journal of Petrology, 53, 451–476.
  • Lambart, S., Baker,M.B., Stolper, E.M., 2016. The role of pyroxenite in basalt genesis:Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5GPa. Journal of Geophysical Research: Solid Earth, 121 (8), 5708–5735. https://doi.org/10.1002/2015JB012762
  • Laukert, G., Von der Handt, A., Hellebrand, E., Snow, J., Hoppe, P. & Klugel, A. (2014) High-pressure reactive melt stagnation recorded in abyssal pyroxenites from the ultraslow-spreading Lena Trough, Arctic Ocean. Journal of Petrology, 55, 427–458. https://doi.org/10. 1093/petrology/egt073
  • Le Roux, V. & Liang, Y. (2019). Ophiolitic pyroxenites record boninite percolation in subduction zone mantle. Minerals, 9 (9), 22.
  • Morishita, T., Arai, S. & Green, D.H. (2003). Evolution of low-Al orthopyroxene in the Horoman Peridotite, Japan: an unusual indicator of metasomatizing fluids. Journal of Petrology, 44, 1237–1246.
  • Okay, A. & Sahintürk, Ö. (1997). Geology of the eastern Pontides. In: Robinson, A.G. (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region, vol. 68. AAPG Memoir, pp. 291–311.
  • Okay, I.A. & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Journal of Geological Society, 156, 475–515. London Special Publication.
  • Page, P., Bedard, J.H., Schroetter, J.M. & Tremblay, A. (2008). Mantle petrology and mineralogy of the Thetford Mines ophiolite complex. Lithos, 100, 255–292.
  • Parkinson, I.J. & Pearce, J.A. (1998). Peridotites from the Izu – Bonin – Mariana forearc (ODP Leg 125): evidence for mantle melting and melt- mantle interaction in a suprasubduction zone setting. Journal of Petrology, 39, 1577–1618.
  • Parlak, O., Çolakoğlu, A., Dönmez, C., Sayak, H., Yıldırım, N., Türkel, A. & Odabaşı, I. (2013). Geochemistry and tectonic setting of ophiolites along the Izmir–Ankara–Erzincan suture zone in northeastern Anatolia. Geological Society, 372, 75–106. Special Publications.
  • Pearson, D.G., Davies, G.R. & Nixon, P.H. (1993). Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif. Journal of Petrology, 34, 125–172.
  • Python, M. & Ceuleneer, G. (2003). Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 4 (7), 8612.
  • Robertson, A., Parlak, O., Ustaomer, T., Taslı, K., Inan, N., Dumitrica, P. & Karaoglan, F. (2013). Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: new evidence from the Eastern Pontides, Turkey. Geodinamica Acta, 26, 230–293.
  • Robertson, A.H.F. & Dixon, J.E. (1984). Introduction: Aspects of the geological evolution of the eastern Mediterranean. Geological Society, London, 17, 1–74. Special Publications.
  • Rogkala, A., Petrounias, P., Tsikouras, B. & Hatzipanagiotou, K. (2017). New occurrence of pyroxenites in the Veria-Naousa Ophiolite (North Greece): Implications on their origin and petrogenetic evolution. Geosciences, 7(4), 92. doi: 10.3390/geosciences7040092.
  • Santos, J.F., Scharer, U., Ibarguchi, J.I.G. & Girardeau, J. (2002). Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb–Sr–Nd isotope data. Journal of Petrology, 43, 17–43.
  • Sarifakioğlu, E., Özen, H. & Winchester, J.A. (2009). Petrogenesis of Refahiye ophiolite and its tectonic significance for Neotethyan ophiolites along the Izmir–Ankara–Erzincan suture zone. Turkish Journal of Earth Science, 18, 187–207.
  • Sun, S.S. & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society, London, 42, 313–345. Special Publications.
  • Şengör, A. M. C. (1980). Türkiye’nin Neotektoniğinin Esasları [Fundamentals of the neotectonics of Turkey]. Publication of Geological Society of Turkey, 1-40.
  • Şengör, A.M.C. & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 81–241.
  • Şengör, A.M.C., Özeren, S., Genç, T. & Zor, E. (2003). Anatolian high plateau as a mantle supported, north-south shortened domal structure. Geophysical Research Letter, 30, 8045.
  • Tamura, A. & Arai, S. (2006). Harzburgite–dunite–orthopyroxenite suite as a record of supra- subduction zone setting for the Oman ophiolite mantle. Lithos, 90, 43–56.
  • Tribuzio, R., Tiepolo, M. & Fiameni, S. (2008). A maficultramafic cumulate sequence derived from boninite-type melts (Niagara Icefalls, northern Victoria Land, Antarctica). Contributions to Mineralogy and Petrology, 155(5): 619–633.
  • Ustaömer, T. & Robertson, H.F.A. (2010). Late Paleozoic–early Cenozoic development of the eastern Pontides (Artvin area), Turkey: stages of closure of Tethys along the southern margin of Eurasia. Geological Society, London 340, 281–327. Special Publications.
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Kapsiotis, A. & Sarıfakıoğlu, E. (2016). Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos, 246–247, 228–245.
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Escayola, M., Sarıfakıoğlu, E., Saka, S. & Hirata, T. (2015). Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia, Turkey. Gondwana Research, 27, 594–611.
  • Uysal, I., Dokuz A., Kapsiotis, A., Saka, S., Karslı, O., Kaliwoda, M. & Müller, D. (2017). Petrogenesis of ultramafic rocks from the eastern Orhaneli ophiolite, NW Turkey: Hints on the initiation and evolution of melt-peridotite interaction processes within a heterogeneously depleted mantle section. Journal of Asian Earth Sciences, 148, 51–64.
  • Varfalvy, V. (1997). Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas. The Canadian Mineralogist, 35(2), 543–570.
  • Wang, J.G., Hu, X.M., Garzanti, E. & Wu, F.Y. (2013). Upper Oligocene–Lower Miocene gangrinboche conglomerate in the Xigaze area, Southern Tibet: Implications for Himalayan uplift and paleo-Yarlung–Zangbo Initiation. The Journal of Geology, 121, 425–444.
  • Wang, C., Liang, Y., Dygert, N. & Xu, W. (2016). Formation of orthopyroxenite by reaction between peridotite and hydrous basaltic melt: an experimental study. Contribution to Mineralogy and Petrology, 171(8), 77. https://doi.org/10.1007 s004100161287z
  • Xiong, Q., Zheng, J.P., Griffin, W.L., O’Reilly, S.Y. & Pearson, N.J. (2014). Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 55(12), 2347–2376.
  • Xu, X.Z., Xiong, F.H., Zoheir, B., Yan, J.Y., Zhang, B.Y., Gao, J. & Yang, J.S. (2023). Genesis of pyroxenite veins in the Zedang ophiolite, southern Tibetan Plateau. Acta Geologica Sinica, 97(3), 707–726. https://doi.org/10.1111/1755-6724.14989
  • Yılmaz, Y., Tüysüz, O., Yiğitbaş¸, E., Genç, S.C. & Şengör, A.M.C. (1997). Geology and tectonic evolution of the Pontides. In: Robinson, A.G. (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Regions, (68, 183-226). American Association of Petroleum Geologists, Tulsa, OK, Memoirs.
  • Zhang, Z.Y., Liu, C.Z., Liang, Y., Liu, T., Zhang, C., Liu, B.D., Lin, Y.Z., Zhang, W.Q. & Ji, W.B. (2023). Pyroxenite–harzburgite sequences in the Dazhuqu ophiolite (Southern Tibet) formed through hydrous melt infiltration and melt–peridotite reaction. Contribution to Mineralogy and Petrology, 178, 92.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mineraloji-Petrografi
Bölüm Makaleler
Yazarlar

Özgür Bilici 0000-0002-8810-9662

Proje Numarası FBA-2018-6828
Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 16 Ekim 2024
Kabul Tarihi 17 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Bilici, Ö. (2025). Kırdağ ofiyoliti (Erzurum, KD Türkiye) manto bölümü içerisindeki ortopiroksenitlerin petrografisi, mineral kimyası ve tüm kaya jeokimyasal özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(1), 140-160. https://doi.org/10.17714/gumusfenbil.1568372