Araştırma Makalesi
BibTex RIS Kaynak Göster

Meme kanserinde uygulanabilir hedefler: tümör-spesifik hassasiyetleri ortaya çıkarmak için multi-omik bir yaklaşım

Yıl 2025, Cilt: 15 Sayı: 1, 260 - 273, 15.03.2025

Öz

Meme kanseri, dünya genelinde kanser kaynaklı ölümlerin başlıca nedenlerinden biri olup, önlenimi/tedavisi için yenilikçi terapötik stratejilerine gereksinim duyulmaktadır. Bu çalışma, meme kanserinde tümör-spesifik biyobelirteçleri ve zayıf noktaları sistematik olarak belirlemek için proteomik, transkriptomik ve fonksiyonel bağımlılık verilerini birleştirmektedir. 115 tümör örneği ve 18 eşlenmiş normal dokudan elde edilen kütle spektrometrisine dayalı proteomik veriler analiz edilmiş ve 10,468 adet protein incelenmiştir. Aşırı ekspresyon ve diferansiyel ekspresyon analizlerinin birleştirilmesiyle, ERBB2, EGFR ve CCND1 gibi iyi bilinen hedeflerin yanı sıra TRPS1, UBE2C ve FOXP4 gibi yeni adayların da bulunduğu 172 tümör-spesifik protein tespit edilmiştir. Bu aday hedeflerin fonksiyonel doğrulaması, BEACON yöntemi ve DepMap verileri kullanılarak CRISPR tabanlı ekspresyon odaklı bağımlılık analizi ile gerçekleştirilmiş olup, hem gen hem de protein düzeyinde bağımlılıkları ortaya koyarak proteine özgü yeni kanser hassasiyetlerini belirlemiştir. Özellikle UBE2C ve E2F3 gibi protein-spesifik bağımlılıklar, transkriptomik analizlerde gözden kaçan potansiyel terapötik hedefleri vurgulamaktadır. Özellikle, ekspresyon odaklı bağımlılık gösteren TRPS1 ve UBE2C gibi belirteçler, ilaç geliştirme ve hasta sınıflandırmasını yönlendiren hassas onkoloji yaklaşımları için potansiyel adaylar olarak hizmet edebilir. Bu çalışma, uygulanabilir hedefleri sistematik olarak önceliklendirerek, multi-omik entegrasyonun meme kanserinde hassas onkolojiyi ilerletmedeki kritik rolünü vurgulamaktadır.

Kaynakça

  • Ai, B., Kong, X., Wang, X., Zhang, K., Yang, X., Zhai, J., Gao, R., Qi, Y., Wang, J., Wang, Z., & Fang, Y. (2019). LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1. Cell Death & Disease, 10(7), 502. https://doi.org/10.1038/s41419-019-1741-8
  • Ai, D., Yao, J., Yang, F., Huo, L., Chen, H., Lu, W., Soto, L. M. S., Jiang, M., Raso, M. G., Wang, S., Bell, D., Liu, J., Wang, H., Tan, D., Torres-Cabala, C., Gan, Q., Wu, Y., Albarracin, C., Hung, M.-C., … Ding, Q. (2021). TRPS1: a highly sensitive and specific marker for breast carcinoma, especially for triple-negative breast cancer. Modern Pathology, 34(4), 710–719. https://doi.org/10.1038/s41379-020-00692-8
  • Ali, R., & Wendt, M. K. (2017). The paradoxical functions of EGFR during breast cancer progression. Signal Transduction and Targeted Therapy, 2(1), 16042. https://doi.org/10.1038/sigtrans.2016.42
  • Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V, Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., Jané-Valbuena, J., … Garraway, L. A. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391), 603–607. https://doi.org/10.1038/nature11003
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology, 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Cotto, K. C., Wagner, A. H., Feng, Y.-Y., Kiwala, S., Coffman, A. C., Spies, G., Wollam, A., Spies, N. C., Griffith, O. L., & Griffith, M. (2018). DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Research, 46(D1), D1068–D1073. https://doi.org/10.1093/nar/gkx1143
  • Cusack, J. (2003). Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treatment Reviews, 29, 21–31. https://doi.org/10.1016/S0305-7372(03)00079-3
  • Dempster, J. M., Boyle, I., Vazquez, F., Root, D. E., Boehm, J. S., Hahn, W. C., Tsherniak, A., & McFarland, J. M. (2021). Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biology, 22(1), 343. https://doi.org/10.1186/s13059-021-02540-7
  • Ellis, M. J., Gillette, M., Carr, S. A., Paulovich, A. G., Smith, R. D., Rodland, K. K., Townsend, R. R., Kinsinger, C., Mesri, M., Rodriguez, H., & Liebler, D. C. (2013). Connecting genomic alterations to cancer biology with proteomics: The NCI clinical proteomic tumor analysis consortium. Cancer Discovery, 3(10), 1108–1112. https://doi.org/10.1158/2159-8290.CD-13-0219
  • Elmas, A. (2024). Proteomic landscape of breast cancer tumors identifies novel therapeutic targets. In Altınok Bahar (Ed.), 3. Bilsel International Aspendos Scientific Researches Congress (pp. 82–91). Astana.
  • Elmas, A., & Huang, K. (n.d.). https://github.com/Huang-lab/BEACON.
  • Elmas, A., Layden, H. M., Ellis, J. D., Bartlett, L. N., Zhao, X., Kawabata-Iwakawa, R., Obinata, H., Hiebert, S. W., & Huang, K. (2024). Expression-driven genetic dependency reveals targets for precision medicine. In bioRxiv. https://doi.org/10.1101/2024.10.17.618926
  • Elmas, A., Lujambio, A., & Huang, K.-L. (2022). Proteomic analyses identify therapeutic targets in hepatocellular carcinoma. Frontiers in Oncology, 12, 814120. https://doi.org/10.3389/fonc.2022.814120
  • Elmas, A., Tharakan, S., Jaladanki, S., Galsky, M. D., Liu, T., & Huang, K.-L. (2021). Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets. Communications Biology, 4(1), 1112. https://doi.org/10.1038/s42003-021-02636-7
  • Engel, R. H., & Kaklamani, V. G. (2007). HER2-positive breast cancer: current and future treatment strategies. Drugs, 67(9), 1329–1341. https://doi.org/10.2165/00003495-200767090-00006
  • Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R., Barretina, J., Gelfand, E. T., Bielski, C. M., Li, H., Hu, K., Andreev-Drakhlin, A. Y., Kim, J., Hess, J. M., Haas, B. J., Aguet, F., Weir, B. A., Rothberg, M. V., Paolella, B. R., … Sellers, W. R. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 569(7757), 503–508. https://doi.org/10.1038/s41586-019-1186-3
  • Giaquinto, A. N., Sung, H., Newman, L. A., Freedman, R. A., Smith, R. A., Star, J., Jemal, A., & Siegel, R. L. (2024). Breast cancer statistics 2024. CA: A Cancer Journal for Clinicians. https://doi.org/10.3322/caac.21863
  • Huang, K.-L., Li, S., Mertins, P., Cao, S., Gunawardena, H. P., Ruggles, K. V, Mani, D. R., Clauser, K. R., Tanioka, M., Usary, J., Kavuri, S. M., Xie, L., Yoon, C., Qiao, J. W., Wrobel, J., Wyczalkowski, M. A., Erdmann-Gilmore, P., Snider, J. E., Hoog, J., … Ding, L. (2017). Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 8, 14864. https://doi.org/10.1038/ncomms14864
  • Krug, K., Jaehnig, E. J., Satpathy, S., Blumenberg, L., Karpova, A., Anurag, M., Miles, G., Mertins, P., Geffen, Y., Tang, L. C., Heiman, D. I., Cao, S., Maruvka, Y. E., Lei, J. T., Huang, C., Kothadia, R. B., Colaprico, A., Birger, C., Wang, J., … Clinical Proteomic Tumor Analysis Consortium. (2020). Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell, 183(5), 1436-1456.e31. https://doi.org/10.1016/j.cell.2020.10.036
  • Lang, G.-T., Jiang, Y.-Z., Shi, J.-X., Yang, F., Li, X.-G., Pei, Y.-C., Zhang, C.-H., Ma, D., Xiao, Y., Hu, P.-C., Wang, H., Yang, Y.-S., Guo, L.-W., Lu, X.-X., Xue, M.-Z., Wang, P., Cao, A.-Y., Ling, H., Wang, Z.-H., … Shao, Z.-M. (2020). Characterization of the genomic landscape and actionable mutations in Chinese breast cancers by clinical sequencing. Nature Communications, 11(1), 5679. https://doi.org/10.1038/s41467-020-19342-3
  • Lapek, J. D., Greninger, P., Morris, R., Amzallag, A., Pruteanu-Malinici, I., Benes, C. H., & Haas, W. (2017). Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nature Biotechnology. https://doi.org/10.1038/nbt.3955
  • Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science (New York, N.Y.), 298(5600), 1912–1934. https://doi.org/10.1126/science.1075762
  • Mertins, P., Mani, D. R., Ruggles, K. V, Gillette, M. A., Clauser, K. R., Wang, P., Wang, X., Qiao, J. W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J. T., Gatza, M. L., Wilkerson, M., Perou, C. M., Yellapantula, V., … NCI CPTAC. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534(7605), 55–62. https://doi.org/10.1038/nature18003
  • Meyers, R. M., Bryan, J. G., McFarland, J. M., Weir, B. A., Sizemore, A. E., Xu, H., Dharia, N. V, Montgomery, P. G., Cowley, G. S., Pantel, S., Goodale, A., Lee, Y., Ali, L. D., Jiang, G., Lubonja, R., Harrington, W. F., Strickland, M., Wu, T., Hawes, D. C., … Tsherniak, A. (2017). Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, 49(12), 1779–1784. https://doi.org/10.1038/ng.3984
  • Nusinow, D. P., Szpyt, J., Ghandi, M., Rose, C. M., McDonald, E. R., Kalocsay, M., Jané-Valbuena, J., Gelfand, E., Schweppe, D. K., Jedrychowski, M., Golji, J., Porter, D. A., Rejtar, T., Wang, Y. K., Kryukov, G. V., Stegmeier, F., Erickson, B. K., Garraway, L. A., Sellers, W. R., & Gygi, S. P. (2020). Quantitative proteomics of the Cancer Cell Line Encyclopedia. Cell, 180(2), 387-402.e16. https://doi.org/10.1016/j.cell.2019.12.023
  • Pacini, C., Dempster, J. M., Boyle, I., Gonçalves, E., Najgebauer, H., Karakoc, E., van der Meer, D., Barthorpe, A., Lightfoot, H., Jaaks, P., McFarland, J. M., Garnett, M. J., Tsherniak, A., & Iorio, F. (2021). Integrated cross-study datasets of genetic dependencies in cancer. Nature Communications, 12(1), 1661. https://doi.org/10.1038/s41467-021-21898-7
  • Psyrri, A., Kalogeras, K. T., Kronenwett, R., Wirtz, R. M., Batistatou, A., Bournakis, E., Timotheadou, E., Gogas, H., Aravantinos, G., Christodoulou, C., Makatsoris, T., Linardou, H., Pectasides, D., Pavlidis, N., Economopoulos, T., & Fountzilas, G. (2012). Prognostic significance of UBE2C mRNA expression in high-risk early breast cancer. A hellenic cooperative oncology group (HECOG) study. Annals of Oncology, 23(6), 1422–1427. https://doi.org/10.1093/annonc/mdr527
  • Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., Chakravarty, D., Daian, F., Gao, Q., Bailey, M. H., Liang, W.-W., Foltz, S. M., Shmulevich, I., Ding, L., Heins, Z., … Schultz, N. (2018). Oncogenic signaling pathways in The Cancer Genome Atlas. Cell, 173(2), 321-337.e10. https://doi.org/10.1016/j.cell.2018.03.035
  • Tsherniak, A., Vazquez, F., Montgomery, P. G., Weir, B. A., Kryukov, G., Cowley, G. S., Gill, S., Harrington, W. F., Pantel, S., Krill-Burger, J. M., Meyers, R. M., Ali, L., Goodale, A., Lee, Y., Jiang, G., Hsiao, J., Gerath, W. F. J., Howell, S., Merkel, E., … Hahn, W. C. (2017). Defining a cancer dependency map. Cell, 170(3), 564-576.e16. https://doi.org/10.1016/j.cell.2017.06.010
  • Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227-232. https://doi.org/10.1038/nrg3185
  • Vimala, K., Sundarraj, S., Sujitha, M. V., & Kannan, S. (2012). Curtailing overexpression of E2F3 in breast cancer using siRNA (E2F3)-based gene silencing. Archives of Medical Research, 43(6), 415–422. https://doi.org/10.1016/j.arcmed.2012.08.009
  • Yang, L., Fan, Q., Wang, J., Yang, X., Yuan, J., Li, Y., Sun, X., & Wang, Y. (2023). TRPS1 regulates the opposite effect of progesterone via RANKL in endometrial carcinoma and breast carcinoma. Cell Death Discovery, 9(1), 185. https://doi.org/10.1038/s41420-023-01484-0
  • Yoon, J., & Oh, D.-Y. (2024). HER2-targeted therapies beyond breast cancer — an update. Nature Reviews Clinical Oncology, 21(9), 675–700. https://doi.org/10.1038/s41571-024-00924-9

Actionable targets in breast cancer: a multi-omics approach to uncover tumor-specific vulnerabilities

Yıl 2025, Cilt: 15 Sayı: 1, 260 - 273, 15.03.2025

Öz

Breast cancer remains a leading cause of cancer-related deaths worldwide, necessitating innovative therapeutic strategies. This study integrates proteomic, transcriptomic, and functional dependency data to systematically identify tumor-specific markers and vulnerabilities in breast cancer. We analyzed mass-spectrometry-based proteomic data from 115 tumor samples and 18 matched normal tissues, quantifying 10,468 proteins. By combining overexpression and differential expression analyses, we identified 172 tumor-specific proteins, including well-characterized targets such as ERBB2, EGFR, and CCND1, as well as novel candidates like TRPS1, UBE2C, and FOXP4. Functional validation of these candidate targets was performed through CRISPR-based expression-driven dependency analysis using the BEACON method and DepMap data, which revealed both gene- and protein-level dependencies, uncovering novel protein-unique cancer vulnerabilities. Notably, protein-specific dependencies such as UBE2C and E2F3 highlight potential therapeutic targets overlooked in transcriptomic analyses. In particular, markers such as TRPS1 and UBE2C, which exhibit strong protein expression-driven dependencies, may serve as potential candidates for precision oncology approaches, guiding drug development and patient stratification. This study presents a systematically prioritized set of actionable targets, emphasizing the critical role of multi-omics integration in driving precision oncology advancements for breast cancer.

Kaynakça

  • Ai, B., Kong, X., Wang, X., Zhang, K., Yang, X., Zhai, J., Gao, R., Qi, Y., Wang, J., Wang, Z., & Fang, Y. (2019). LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1. Cell Death & Disease, 10(7), 502. https://doi.org/10.1038/s41419-019-1741-8
  • Ai, D., Yao, J., Yang, F., Huo, L., Chen, H., Lu, W., Soto, L. M. S., Jiang, M., Raso, M. G., Wang, S., Bell, D., Liu, J., Wang, H., Tan, D., Torres-Cabala, C., Gan, Q., Wu, Y., Albarracin, C., Hung, M.-C., … Ding, Q. (2021). TRPS1: a highly sensitive and specific marker for breast carcinoma, especially for triple-negative breast cancer. Modern Pathology, 34(4), 710–719. https://doi.org/10.1038/s41379-020-00692-8
  • Ali, R., & Wendt, M. K. (2017). The paradoxical functions of EGFR during breast cancer progression. Signal Transduction and Targeted Therapy, 2(1), 16042. https://doi.org/10.1038/sigtrans.2016.42
  • Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V, Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., Jané-Valbuena, J., … Garraway, L. A. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391), 603–607. https://doi.org/10.1038/nature11003
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology, 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Cotto, K. C., Wagner, A. H., Feng, Y.-Y., Kiwala, S., Coffman, A. C., Spies, G., Wollam, A., Spies, N. C., Griffith, O. L., & Griffith, M. (2018). DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Research, 46(D1), D1068–D1073. https://doi.org/10.1093/nar/gkx1143
  • Cusack, J. (2003). Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treatment Reviews, 29, 21–31. https://doi.org/10.1016/S0305-7372(03)00079-3
  • Dempster, J. M., Boyle, I., Vazquez, F., Root, D. E., Boehm, J. S., Hahn, W. C., Tsherniak, A., & McFarland, J. M. (2021). Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biology, 22(1), 343. https://doi.org/10.1186/s13059-021-02540-7
  • Ellis, M. J., Gillette, M., Carr, S. A., Paulovich, A. G., Smith, R. D., Rodland, K. K., Townsend, R. R., Kinsinger, C., Mesri, M., Rodriguez, H., & Liebler, D. C. (2013). Connecting genomic alterations to cancer biology with proteomics: The NCI clinical proteomic tumor analysis consortium. Cancer Discovery, 3(10), 1108–1112. https://doi.org/10.1158/2159-8290.CD-13-0219
  • Elmas, A. (2024). Proteomic landscape of breast cancer tumors identifies novel therapeutic targets. In Altınok Bahar (Ed.), 3. Bilsel International Aspendos Scientific Researches Congress (pp. 82–91). Astana.
  • Elmas, A., & Huang, K. (n.d.). https://github.com/Huang-lab/BEACON.
  • Elmas, A., Layden, H. M., Ellis, J. D., Bartlett, L. N., Zhao, X., Kawabata-Iwakawa, R., Obinata, H., Hiebert, S. W., & Huang, K. (2024). Expression-driven genetic dependency reveals targets for precision medicine. In bioRxiv. https://doi.org/10.1101/2024.10.17.618926
  • Elmas, A., Lujambio, A., & Huang, K.-L. (2022). Proteomic analyses identify therapeutic targets in hepatocellular carcinoma. Frontiers in Oncology, 12, 814120. https://doi.org/10.3389/fonc.2022.814120
  • Elmas, A., Tharakan, S., Jaladanki, S., Galsky, M. D., Liu, T., & Huang, K.-L. (2021). Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets. Communications Biology, 4(1), 1112. https://doi.org/10.1038/s42003-021-02636-7
  • Engel, R. H., & Kaklamani, V. G. (2007). HER2-positive breast cancer: current and future treatment strategies. Drugs, 67(9), 1329–1341. https://doi.org/10.2165/00003495-200767090-00006
  • Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R., Barretina, J., Gelfand, E. T., Bielski, C. M., Li, H., Hu, K., Andreev-Drakhlin, A. Y., Kim, J., Hess, J. M., Haas, B. J., Aguet, F., Weir, B. A., Rothberg, M. V., Paolella, B. R., … Sellers, W. R. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 569(7757), 503–508. https://doi.org/10.1038/s41586-019-1186-3
  • Giaquinto, A. N., Sung, H., Newman, L. A., Freedman, R. A., Smith, R. A., Star, J., Jemal, A., & Siegel, R. L. (2024). Breast cancer statistics 2024. CA: A Cancer Journal for Clinicians. https://doi.org/10.3322/caac.21863
  • Huang, K.-L., Li, S., Mertins, P., Cao, S., Gunawardena, H. P., Ruggles, K. V, Mani, D. R., Clauser, K. R., Tanioka, M., Usary, J., Kavuri, S. M., Xie, L., Yoon, C., Qiao, J. W., Wrobel, J., Wyczalkowski, M. A., Erdmann-Gilmore, P., Snider, J. E., Hoog, J., … Ding, L. (2017). Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nature Communications, 8, 14864. https://doi.org/10.1038/ncomms14864
  • Krug, K., Jaehnig, E. J., Satpathy, S., Blumenberg, L., Karpova, A., Anurag, M., Miles, G., Mertins, P., Geffen, Y., Tang, L. C., Heiman, D. I., Cao, S., Maruvka, Y. E., Lei, J. T., Huang, C., Kothadia, R. B., Colaprico, A., Birger, C., Wang, J., … Clinical Proteomic Tumor Analysis Consortium. (2020). Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell, 183(5), 1436-1456.e31. https://doi.org/10.1016/j.cell.2020.10.036
  • Lang, G.-T., Jiang, Y.-Z., Shi, J.-X., Yang, F., Li, X.-G., Pei, Y.-C., Zhang, C.-H., Ma, D., Xiao, Y., Hu, P.-C., Wang, H., Yang, Y.-S., Guo, L.-W., Lu, X.-X., Xue, M.-Z., Wang, P., Cao, A.-Y., Ling, H., Wang, Z.-H., … Shao, Z.-M. (2020). Characterization of the genomic landscape and actionable mutations in Chinese breast cancers by clinical sequencing. Nature Communications, 11(1), 5679. https://doi.org/10.1038/s41467-020-19342-3
  • Lapek, J. D., Greninger, P., Morris, R., Amzallag, A., Pruteanu-Malinici, I., Benes, C. H., & Haas, W. (2017). Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nature Biotechnology. https://doi.org/10.1038/nbt.3955
  • Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science (New York, N.Y.), 298(5600), 1912–1934. https://doi.org/10.1126/science.1075762
  • Mertins, P., Mani, D. R., Ruggles, K. V, Gillette, M. A., Clauser, K. R., Wang, P., Wang, X., Qiao, J. W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J. T., Gatza, M. L., Wilkerson, M., Perou, C. M., Yellapantula, V., … NCI CPTAC. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534(7605), 55–62. https://doi.org/10.1038/nature18003
  • Meyers, R. M., Bryan, J. G., McFarland, J. M., Weir, B. A., Sizemore, A. E., Xu, H., Dharia, N. V, Montgomery, P. G., Cowley, G. S., Pantel, S., Goodale, A., Lee, Y., Ali, L. D., Jiang, G., Lubonja, R., Harrington, W. F., Strickland, M., Wu, T., Hawes, D. C., … Tsherniak, A. (2017). Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, 49(12), 1779–1784. https://doi.org/10.1038/ng.3984
  • Nusinow, D. P., Szpyt, J., Ghandi, M., Rose, C. M., McDonald, E. R., Kalocsay, M., Jané-Valbuena, J., Gelfand, E., Schweppe, D. K., Jedrychowski, M., Golji, J., Porter, D. A., Rejtar, T., Wang, Y. K., Kryukov, G. V., Stegmeier, F., Erickson, B. K., Garraway, L. A., Sellers, W. R., & Gygi, S. P. (2020). Quantitative proteomics of the Cancer Cell Line Encyclopedia. Cell, 180(2), 387-402.e16. https://doi.org/10.1016/j.cell.2019.12.023
  • Pacini, C., Dempster, J. M., Boyle, I., Gonçalves, E., Najgebauer, H., Karakoc, E., van der Meer, D., Barthorpe, A., Lightfoot, H., Jaaks, P., McFarland, J. M., Garnett, M. J., Tsherniak, A., & Iorio, F. (2021). Integrated cross-study datasets of genetic dependencies in cancer. Nature Communications, 12(1), 1661. https://doi.org/10.1038/s41467-021-21898-7
  • Psyrri, A., Kalogeras, K. T., Kronenwett, R., Wirtz, R. M., Batistatou, A., Bournakis, E., Timotheadou, E., Gogas, H., Aravantinos, G., Christodoulou, C., Makatsoris, T., Linardou, H., Pectasides, D., Pavlidis, N., Economopoulos, T., & Fountzilas, G. (2012). Prognostic significance of UBE2C mRNA expression in high-risk early breast cancer. A hellenic cooperative oncology group (HECOG) study. Annals of Oncology, 23(6), 1422–1427. https://doi.org/10.1093/annonc/mdr527
  • Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., Chakravarty, D., Daian, F., Gao, Q., Bailey, M. H., Liang, W.-W., Foltz, S. M., Shmulevich, I., Ding, L., Heins, Z., … Schultz, N. (2018). Oncogenic signaling pathways in The Cancer Genome Atlas. Cell, 173(2), 321-337.e10. https://doi.org/10.1016/j.cell.2018.03.035
  • Tsherniak, A., Vazquez, F., Montgomery, P. G., Weir, B. A., Kryukov, G., Cowley, G. S., Gill, S., Harrington, W. F., Pantel, S., Krill-Burger, J. M., Meyers, R. M., Ali, L., Goodale, A., Lee, Y., Jiang, G., Hsiao, J., Gerath, W. F. J., Howell, S., Merkel, E., … Hahn, W. C. (2017). Defining a cancer dependency map. Cell, 170(3), 564-576.e16. https://doi.org/10.1016/j.cell.2017.06.010
  • Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227-232. https://doi.org/10.1038/nrg3185
  • Vimala, K., Sundarraj, S., Sujitha, M. V., & Kannan, S. (2012). Curtailing overexpression of E2F3 in breast cancer using siRNA (E2F3)-based gene silencing. Archives of Medical Research, 43(6), 415–422. https://doi.org/10.1016/j.arcmed.2012.08.009
  • Yang, L., Fan, Q., Wang, J., Yang, X., Yuan, J., Li, Y., Sun, X., & Wang, Y. (2023). TRPS1 regulates the opposite effect of progesterone via RANKL in endometrial carcinoma and breast carcinoma. Cell Death Discovery, 9(1), 185. https://doi.org/10.1038/s41420-023-01484-0
  • Yoon, J., & Oh, D.-Y. (2024). HER2-targeted therapies beyond breast cancer — an update. Nature Reviews Clinical Oncology, 21(9), 675–700. https://doi.org/10.1038/s41571-024-00924-9
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoenformatik, Biyoinformatik Yöntem Geliştirme, Genomik ve Transkriptomik, Proteomik ve Metabolomik, Translasyonel ve Uygulamalı Biyoinformatik, Biyomedikal Terapi
Bölüm Makaleler
Yazarlar

Abdulkadir Elmas 0000-0002-7999-5770

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 21 Ocak 2025
Kabul Tarihi 6 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Elmas, A. (2025). Actionable targets in breast cancer: a multi-omics approach to uncover tumor-specific vulnerabilities. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(1), 260-273. https://doi.org/10.17714/gumusfenbil.1624557