Araştırma Makalesi
BibTex RIS Kaynak Göster

Petrographic and geochemical characteristics of magmatic rocks of the I-type Çaltı Pluton (Kemaliye, Erzincan)

Yıl 2025, Cilt: 15 Sayı: 2, 380 - 396, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1592459

Öz

This research aims to reveal the geochemical characteristics and magma origin of the Çaltı Pluton located in the eastern part of the Tauride-Anatolide platform For this purpose, new interpretations were made regarding the magma source and origin, using whole-rock major oxide and trace element data of rocks representing the pluton. Stratigraphically, there are low-grade metamorphic rocks of Paleozoic-Lower Mesozoic, Upper Triassic-Upper Cretaceous allochthonous Munzur Limestones, Cretaceous ophiolitic units, Eocene Çaltı Pluton, Oligocene-Middle Miocene sedimentary rocks and Upper Miocene-Pliocene volcanic rocks. The studied Çaltı Pluton host rocks are granodiorite and granodiorite porphyry, and mafic microgranular enclaves (MMe) are monzodiorite in composition. Granodiorites and MMEs exhibit holocrystalline, and granodiorite porphyries exhibit microgranular porphyritic texture. In addition to dissolution melting textures, poikilitic textures are commonly seen in these rocks. The rocks forming the Çaltı Pluton have I type, calc-alkaline to high-K calc-alkaline properties and generally have a metaluminous character. On the primitive mantle-normalised trace element patterns, a positive correlation is observed for large ion lithophile elements (LILE) such as Rb, Ba, K and Sr and a negative correlation is observed for high field strength elements (HFSE) such as Nb, Ti, Ta, P. When the all data were evaluated, it was determined that the parent magma of the granodiorite and granodiorite porphyries of the Çaltı Pluton was formed by partial melting in the range of 1% to 3% starting from a source with phlogopite spinel-lherzolite composition representing shallow depths and that both fractional crystallization and crustal contamination played an active role in the formation of the studied rocks.

Kaynakça

  • Abdelfadil, K. M., Gharib, M. E., Uher, P., & Putiš, M. (2022). Petrogenesis of post-orogenic Pan-African rare-element granitic pegmatites in the western Arabian-Nubian Shield, Aswan area, southern Egypt. Journal of Asian Earth Sciences, 224, 105003. https://doi.org/10.1016/j.jseaes.2021.105003
  • Aghazadeh, M., Castro, A., Badrzadeh, Z., & Vogt, K. (2011). Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148(5–6), 980–1008. https://doi.org/10.1017/S0016756811000380
  • Aldanmaz, E., Pearce, J., Thirlwall, M., & Mitchell, J. (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2), 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7
  • Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1
  • Bilgiç, T. 2002. Geological Map of Turkey (1: 500.000 Scale Sivas sheet). General Directorate of Mineral Research and Exploration (MTA), Ankara.
  • Boztuğ, D., Debon, F., İnan, S, Tutkun, S.Z., Avcı, N., Kesgin, Ö. (1997). Comparative geochemistry of four plutons from the Cretaceous-Palaeogene Central Eastern Anatolian alkaline province, (Divriği region, Sivas, Turkey). Turkish Journal of Earth Sciences, 6, 95–115.
  • Brown, M. (2013). Granite: From genesis to emplacement. Geological Society of America Bulletin, 125(7–8), 1079–1113. https://doi.org/10.1130/B30877.1
  • Chappell, B.W., & White, A.J.R. (1974). Two contrasting granite types. Pac. Geol. 8, 173–174.
  • Chen, B., Jahn, B., & Wei, C. (2002). Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd–Sr isotope evidence. Lithos, 60(1-2), 67–88. https://doi.org/10.1016/S0024-4937(01)00077-9
  • Douce, A.E.P. & Beard, J.S. (1995). Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3), 707–738. https://doi.org/10.1093/petrology/36.3.707
  • Ersoy, E.Y. (2013). PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turkish Journal of Earth Science, 22, 115-125. https://doi.org/10.3906/yer-1104-6
  • Green, T.H. (1995). Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3–4), 347–359. https://doi.org/10.1016/0009-2541(94)00145-X
  • Hofmann, A.W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3), 297–314. https://doi.org/10.1016/0012-821X(88)90132-X
  • Ionov, D.A. (2002). Mechanisms and Sources of Mantle Metasomatism: Major and Trace Element Compositions of Peridotite Xenoliths from Spitsbergen in the Context of Numerical Modelling. Journal of Petrology, 43(12), 2219–2259. https://doi.org/10.1093/petrology/43.12.2219
  • Ionov, D. A., Bodinier, J.-L., Mukasa, S. B. & Zanetti, A. (2002). Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology 43, 2219–2259.
  • Jahn, B., & Zhang, Z. (1984). Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85(3), 224–243. https://doi.org/10.1007/BF00378102
  • Ketin, İ. (1966). Anadolu’nun Tektonik Birlikleri. Bulletin of the Mineral Research and Exploration, 66(66), 20-37.
  • Le Maitre, R.W. (Ed) (1989) A Classification of Igneous Rocks and Glossary of Terms. Blackwall, Oxford.
  • Le Roex, A.P. (1987). Source regions of mid-ocean ridge basalts; evidence for enrichment processes. In A.M. Menzies, & C.J. Hawkesworth, (Eds.), Mantle Metasomatism(pp.389- 422). Academic Press.
  • Loiselle, M.C., & Wones, D.R. (1979). Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abstracts with Programs. 11, 468.
  • Maniar, P.D., & Picolli, P.M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  • McCulloch, M.T., & Gamble, J.A. (1991). Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3–4), 358–374. https://doi.org/10.1016/0012-821X(91)90029-H
  • Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475–515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Önal, A., Boztuǧ, D., Kürüm, S., Harlavan, Y., Arehart, G. B., & Arslan, M. (2005). K-Ar age determination, whole-rock and oxygen isotope geochemistry of the post-collisional Bizmişen and Çalti plutons, SW Erzincan, eastern Central Anatolia, Turkey. Geological Journal, 40(4), 457–476. https://doi.org/10.1002/gj.1023
  • Özgül, N., & Turşucu, A. (1984). Stratigraphy of the Mesozoic carbonate sequence of the Munzur Mountain. In O. Tekeli & M.C. Göncüoğlu (Eds.), Geology of the Taurus Belt. International Symposıum Proceedings, 173-180, MTA, Ankara. Palme, H. and O'Neill, H. St. C. (2004). Cosmochemical estimates of Mantle Composition. In: Treatise on Geochemistry. Holland, H.D. and Turrekian, K.K. (Editors), Elsevier, Amsterdam, The Netherlands. 2: 1-38.
  • Pearce, J.A., (1983). Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In C.J. Hawkesworth, & M.J. Norry, (Eds.), Continental Basalts and Mantle Xenoliths (pp. 230-249). Shiva Cheshire.
  • Pearce, J.A., & Peate, D.W. (1995). Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1), 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
  • Peccerillo, A., & Taylor, S.R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/BF00384745
  • Plank, T. (2005). Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5), 921–944. https://doi.org/10.1093/petrology/egi005
  • Rudnick, R.L., & Gao, S. (2003). Composition of the continental crust. In H.D., Holland, & K.K., Turekian, (Eds), Treatise on Geochemistry(pp 203). Elsevier.
  • Schmidberger, S.S., & Hegner, E. (1999). Geochemistry and isotope systematics of calc-alkaline volcanic rocks from the Saar-Nahe basin (SW Germany) – implications for Late-Variscan orogenic development. Contributions to Mineralogy and Petrology, 135(4), 373–385. https://doi.org/10.1007/s004100050518
  • Smith, E. I., Sánchez, A., Walker, J. D., & Wang, K. (1999). Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small‐ and Large‐Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4), 433–448. https://doi.org/10.1086/314355
  • Streckeisen, A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33. https://doi.org/10.1016/0012-8252(76)90052-0
  • Sun, C.G., Zhao, Z.D., Mo, X.X., Zhu, D.C., Dong, G.C., Zhou, S., Chen, H.H., Xie, L.W., Yang, Y.H., Sun, J.F., & Yu, F. (2008). Enriched mantle source and petrogenesis of Sailipu ultrapotassic rocks in southwestern Tibet Plateau: constraints from zircon U–Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 24, 249- 264.
  • Sun, S.-s., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  • Taylor, S.R., & McLennan, S.M. (Ed) (1985). The Continental Crust, Its Composition and Evolution. Blackwell, Oxford, pp. 312.
  • Temizel, İ., Arslan, M., Abdioğlu Yazar, E., Aslan, Z., Kaygusuz, A., & Baki Eraydın, T. (2022). Zircon U Pb geochronology and petrology of the tholeiitic gabbro from the Kovanlık (Giresun) area: Constraints for the Late Cretaceous bimodal arc magmatism in the Eastern Pontides Orogenic Belt, NE Turkey. Lithos, 428–429, 106840. https://doi.org/10.1016/j.lithos.2022.106840
  • Thirlwall, M. F., Upton, B. G. J. & Jenkins, C. (1994). Interaction between continental lithosphere and the Iceland plume–Sr–Nd–Pb isotope geochemistry of Tertiary basalts, NE Greenland. Journal of Petrology 35, 839–879.
  • Weaver, B. L., & Tarney, J. (1984). Empirical approach to estimating the composition of the continental crust. Nature, 310(5978), 575–577. https://doi.org/10.1038/310575a0
  • Whalen, J.B., Currie, K.L., & Chappell, B.W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4), 407–419. https://doi.org/10.1007/BF00402202
  • White, A.J.R. (1979). Sources of granitic magma. Geol. Soc. Am. Abstracts with Programs. 11, 539.
  • Yang, W., Niu, H., Shan, Q., Luo, Y., Sun, W., Li, C., Li, N., & Yu, X. (2012). Late Paleozoic calc-alkaline to shoshonitic magmatism and its geodynamic implications, Yuximolegai area, western Tianshan, Xinjiang. Gondwana Research, 22(1), 325–340. https://doi.org/10.1016/j.gr.2011.10.008

I-tipi Çaltı Plütonu'na (Kemaliye, Erzincan) ait magmatik kayaçların petrografik ve jeokimyasal özellikleri

Yıl 2025, Cilt: 15 Sayı: 2, 380 - 396, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1592459

Öz

Bu araştırma, Torid-Anatolid platformunun doğu kısmında yer alan Çaltı Plütonu’nun jeokimyasal karakteristiğini ve magma kökenini ortaya çıkartmayı amaçlamaktadır. Bu amaçla plütonu temsil eden kayaçların tüm kayaç ana oksit ve iz element verileri kullanılarak magmanın kaynağı ve kökeni konusunda yeni yorumlar yapılmıştır. Stratigrafik olarak Paleozoyik-Alt Mezozoyik yaşlı düşük dereceli metamorfik kayaçlar, Üst Triyas-Üst Kretase yaşlı allokton Munzur Kireçtaşları, Kretase yaşlı ofiyolitik birimler, Eosen yaşlı Çaltı Plütonu, Oligosen-Orta Miyosen yaşlı sedimanter kayaçlar ve Üst Miyosen-Pliyosen yaşlı volkanik kayaçlar bulunmaktadır. İncelenen Çaltı Plütonu ana kayaçları granodiyorit ve granodiyorit porfir, mafik mikrogranüler anklavları (MMA) monzodiyorit bileşimindedir. Granodiyorit ve MMA'lar holokristalen, granodiyorit porfirler ise mikrogranüler porfirik doku sergilemektedir. Erime ve çözünme dokuları yanı sıra poikilitik dokular bu kayaçlarda yaygın olarak görülmektedir. Çaltı Plütonu’nu oluşturan kayaçlar I tipi, kalkalkalenden yüksek-K kalkalkalene değişen özelliklerde olup genellikle metalüminalı bir karakter sergiler. İncelenen kayaçların ilksel mantoya normalize edilmiş iz element dağılımları incelendiğinde Rb, Ba, K, Sr gibi büyük iyon yarıçaplı elementlerde (BİYE) pozitif bir ilişki; Nb, Ti, Ta, P gibi yüksek çekim alanlı element (YÇAE) açısından ise negatif bir ilişki görülmektedir. Tüm veriler değerlendirildiğinde, Çaltı Plütonu’na ait granodiyorit ve granodiyorit porfirlerin ana magmasının, sığ derinlikleri temsil eden flogopit spinel-lerzolit bileşimli bir kaynaktan itibaren %1 ilâ %3 aralığında kısmi ergime ile oluştuğu ve incelenen kayaçların oluşumunda hem fraksiyonel kristalleşme hem de kabuksal kirlenmenin etkin rol oynadığı belirlenmiştir.

Kaynakça

  • Abdelfadil, K. M., Gharib, M. E., Uher, P., & Putiš, M. (2022). Petrogenesis of post-orogenic Pan-African rare-element granitic pegmatites in the western Arabian-Nubian Shield, Aswan area, southern Egypt. Journal of Asian Earth Sciences, 224, 105003. https://doi.org/10.1016/j.jseaes.2021.105003
  • Aghazadeh, M., Castro, A., Badrzadeh, Z., & Vogt, K. (2011). Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148(5–6), 980–1008. https://doi.org/10.1017/S0016756811000380
  • Aldanmaz, E., Pearce, J., Thirlwall, M., & Mitchell, J. (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2), 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7
  • Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1
  • Bilgiç, T. 2002. Geological Map of Turkey (1: 500.000 Scale Sivas sheet). General Directorate of Mineral Research and Exploration (MTA), Ankara.
  • Boztuğ, D., Debon, F., İnan, S, Tutkun, S.Z., Avcı, N., Kesgin, Ö. (1997). Comparative geochemistry of four plutons from the Cretaceous-Palaeogene Central Eastern Anatolian alkaline province, (Divriği region, Sivas, Turkey). Turkish Journal of Earth Sciences, 6, 95–115.
  • Brown, M. (2013). Granite: From genesis to emplacement. Geological Society of America Bulletin, 125(7–8), 1079–1113. https://doi.org/10.1130/B30877.1
  • Chappell, B.W., & White, A.J.R. (1974). Two contrasting granite types. Pac. Geol. 8, 173–174.
  • Chen, B., Jahn, B., & Wei, C. (2002). Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd–Sr isotope evidence. Lithos, 60(1-2), 67–88. https://doi.org/10.1016/S0024-4937(01)00077-9
  • Douce, A.E.P. & Beard, J.S. (1995). Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3), 707–738. https://doi.org/10.1093/petrology/36.3.707
  • Ersoy, E.Y. (2013). PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turkish Journal of Earth Science, 22, 115-125. https://doi.org/10.3906/yer-1104-6
  • Green, T.H. (1995). Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3–4), 347–359. https://doi.org/10.1016/0009-2541(94)00145-X
  • Hofmann, A.W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3), 297–314. https://doi.org/10.1016/0012-821X(88)90132-X
  • Ionov, D.A. (2002). Mechanisms and Sources of Mantle Metasomatism: Major and Trace Element Compositions of Peridotite Xenoliths from Spitsbergen in the Context of Numerical Modelling. Journal of Petrology, 43(12), 2219–2259. https://doi.org/10.1093/petrology/43.12.2219
  • Ionov, D. A., Bodinier, J.-L., Mukasa, S. B. & Zanetti, A. (2002). Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology 43, 2219–2259.
  • Jahn, B., & Zhang, Z. (1984). Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85(3), 224–243. https://doi.org/10.1007/BF00378102
  • Ketin, İ. (1966). Anadolu’nun Tektonik Birlikleri. Bulletin of the Mineral Research and Exploration, 66(66), 20-37.
  • Le Maitre, R.W. (Ed) (1989) A Classification of Igneous Rocks and Glossary of Terms. Blackwall, Oxford.
  • Le Roex, A.P. (1987). Source regions of mid-ocean ridge basalts; evidence for enrichment processes. In A.M. Menzies, & C.J. Hawkesworth, (Eds.), Mantle Metasomatism(pp.389- 422). Academic Press.
  • Loiselle, M.C., & Wones, D.R. (1979). Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abstracts with Programs. 11, 468.
  • Maniar, P.D., & Picolli, P.M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  • McCulloch, M.T., & Gamble, J.A. (1991). Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3–4), 358–374. https://doi.org/10.1016/0012-821X(91)90029-H
  • Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475–515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Önal, A., Boztuǧ, D., Kürüm, S., Harlavan, Y., Arehart, G. B., & Arslan, M. (2005). K-Ar age determination, whole-rock and oxygen isotope geochemistry of the post-collisional Bizmişen and Çalti plutons, SW Erzincan, eastern Central Anatolia, Turkey. Geological Journal, 40(4), 457–476. https://doi.org/10.1002/gj.1023
  • Özgül, N., & Turşucu, A. (1984). Stratigraphy of the Mesozoic carbonate sequence of the Munzur Mountain. In O. Tekeli & M.C. Göncüoğlu (Eds.), Geology of the Taurus Belt. International Symposıum Proceedings, 173-180, MTA, Ankara. Palme, H. and O'Neill, H. St. C. (2004). Cosmochemical estimates of Mantle Composition. In: Treatise on Geochemistry. Holland, H.D. and Turrekian, K.K. (Editors), Elsevier, Amsterdam, The Netherlands. 2: 1-38.
  • Pearce, J.A., (1983). Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In C.J. Hawkesworth, & M.J. Norry, (Eds.), Continental Basalts and Mantle Xenoliths (pp. 230-249). Shiva Cheshire.
  • Pearce, J.A., & Peate, D.W. (1995). Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1), 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
  • Peccerillo, A., & Taylor, S.R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/BF00384745
  • Plank, T. (2005). Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5), 921–944. https://doi.org/10.1093/petrology/egi005
  • Rudnick, R.L., & Gao, S. (2003). Composition of the continental crust. In H.D., Holland, & K.K., Turekian, (Eds), Treatise on Geochemistry(pp 203). Elsevier.
  • Schmidberger, S.S., & Hegner, E. (1999). Geochemistry and isotope systematics of calc-alkaline volcanic rocks from the Saar-Nahe basin (SW Germany) – implications for Late-Variscan orogenic development. Contributions to Mineralogy and Petrology, 135(4), 373–385. https://doi.org/10.1007/s004100050518
  • Smith, E. I., Sánchez, A., Walker, J. D., & Wang, K. (1999). Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small‐ and Large‐Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4), 433–448. https://doi.org/10.1086/314355
  • Streckeisen, A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33. https://doi.org/10.1016/0012-8252(76)90052-0
  • Sun, C.G., Zhao, Z.D., Mo, X.X., Zhu, D.C., Dong, G.C., Zhou, S., Chen, H.H., Xie, L.W., Yang, Y.H., Sun, J.F., & Yu, F. (2008). Enriched mantle source and petrogenesis of Sailipu ultrapotassic rocks in southwestern Tibet Plateau: constraints from zircon U–Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 24, 249- 264.
  • Sun, S.-s., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  • Taylor, S.R., & McLennan, S.M. (Ed) (1985). The Continental Crust, Its Composition and Evolution. Blackwell, Oxford, pp. 312.
  • Temizel, İ., Arslan, M., Abdioğlu Yazar, E., Aslan, Z., Kaygusuz, A., & Baki Eraydın, T. (2022). Zircon U Pb geochronology and petrology of the tholeiitic gabbro from the Kovanlık (Giresun) area: Constraints for the Late Cretaceous bimodal arc magmatism in the Eastern Pontides Orogenic Belt, NE Turkey. Lithos, 428–429, 106840. https://doi.org/10.1016/j.lithos.2022.106840
  • Thirlwall, M. F., Upton, B. G. J. & Jenkins, C. (1994). Interaction between continental lithosphere and the Iceland plume–Sr–Nd–Pb isotope geochemistry of Tertiary basalts, NE Greenland. Journal of Petrology 35, 839–879.
  • Weaver, B. L., & Tarney, J. (1984). Empirical approach to estimating the composition of the continental crust. Nature, 310(5978), 575–577. https://doi.org/10.1038/310575a0
  • Whalen, J.B., Currie, K.L., & Chappell, B.W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4), 407–419. https://doi.org/10.1007/BF00402202
  • White, A.J.R. (1979). Sources of granitic magma. Geol. Soc. Am. Abstracts with Programs. 11, 539.
  • Yang, W., Niu, H., Shan, Q., Luo, Y., Sun, W., Li, C., Li, N., & Yu, X. (2012). Late Paleozoic calc-alkaline to shoshonitic magmatism and its geodynamic implications, Yuximolegai area, western Tianshan, Xinjiang. Gondwana Research, 22(1), 325–340. https://doi.org/10.1016/j.gr.2011.10.008
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mineraloji-Petrografi
Bölüm Makaleler
Yazarlar

Mustafa Eren Rizeli 0000-0003-3725-3063

Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 27 Kasım 2024
Kabul Tarihi 18 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Rizeli, M. E. (2025). I-tipi Çaltı Plütonu’na (Kemaliye, Erzincan) ait magmatik kayaçların petrografik ve jeokimyasal özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(2), 380-396. https://doi.org/10.17714/gumusfenbil.1592459