Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı bitki türlerinin ağır metal içerikleri üzerine taş ocaklarının etkisinin değerlendirilmesi

Yıl 2025, Cilt: 15 Sayı: 2, 432 - 450, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1607018

Öz

Çevre kirliliği insanlığın karşı karşıya olduğu en büyük tehdittir; hastalık ve ölümlerin en önde gelen nedeni olarak kabul edilmektedir. Taş ocağı ve madencilik faaliyetleri gibi antropojenik uygulamalar bitki topluluğunun yapısını ve işleyişini değiştirebilir. Bu çalışmada, aktif ve pasif taş ocağı istasyonlarının otsu ve odunsu bitki türlerinin ağır metal içerikleri üzerine etkisi araştırılmıştır. Taş ocağı madenciliğinin çevresel etkilerini ortaya çıkarmak için otsu (Juncus effusus subsp. effusus) ve odunsu (Alnus glutinosa subsp. barbata) bitki örneklerinde krom (Cr), demir (Fe), nikel (Ni), bakır (Cu), çinko (Zn), arsenik (As), kurşun (Pb) ve mangan (Mn) içerikleri indüktif eşleşmiş plazma-kütle spektrometresi (ICP-MS) ile analiz edildi. Juncus effusus subsp. effusus ve Alnus glutinosa subsp. barbata’nın Cr, Fe, Cu, As, Pb ve Mn içeriklerinde P < 0.01, Ni içeriklerinde ise P <0.05 seviyesinde anlamlı farklılıklar tespit edildi ve Mn elementi hariç en yüksek ağır metal içerikleri Alnus glutinosa subsp. barbata ’da bulundu. En düşük ve en yüksek ağır metal konsantrasyonları sırasıyla yıkanmış ve yıkanmamış örneklerde belirlendi. Aktif taş ocağı istasyonundan alınan bitki örneklerinde yüksek seviyede ağır metal konsantrasyonları bulunurken, en düşük konsantrasyonların ise temiz alanlardan alınan örneklerde olduğu tespit edildi. Cu, Mn, Fe ve Zn konsantrasyonlarının literatürde belirtilen maksimum izin verilebilir limitin üzerinde olduğu, bitkilerin aktif olarak işleyişte olan taş ocaklarından etkilendiği ve zamanla bitki yüzeylerinde ağır metal birikiminin olduğu sonucuna varıldı.

Kaynakça

  • Abdullah, M., Ali, S.F., & Khan, S.U. (2024). The overview of the problem of heavy metals contamination in the environment. In: Heavy Metal Contamination in the Environment (pp. 1-18). CRC Press. https://doi.org/10.1201/9781032685793-1
  • Akkemik, Ü. (Ed.). (2014). Türkiye'nin doğal-egzotik ağaç ve çalıları: Gymnospermler, Angiospermler (AG). TC Orman ve Su İşleri Bakanlığı Orman Genel Müdürlüğü.
  • Aktop, Y., & Çağatay, İ.T. (2020). Ağır metallerin balıklarda birikimi ve etkileri. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 6(1), 37-44.
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 6730305. https://doi.org/10.1155/2019/6730305
  • Alloway, B.J. (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Springer.
  • Angulo-Bejarano, P.I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: an overview on molecular aspects. Plants, 10, 635. https://doi.org/10.3390/plants10040635
  • Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview, International Journal of Application or Innovation in Engineering & Management, 5(3), 56-66.
  • Bargah, R.K. (2024). Heavy metals: environmental pollution and impact on human health, Futuristic Trends in Chemical Material Sciences & Nano Technology, Vol. 3 Book 18,IIP Series, Page no.461-482, e-ISBN: 978-93-5747-640-9. https://www.doi.org/10.58532/V3BDCS18CH37
  • Binici, A., Pulatsü, S., & Bursa, N. (2021). Evaluation of sediment dredging on heavy metal concentrations in Mogan Lake’s sediment (Ankara, Turkey). COMU Journal of Marine Sciences and Fisheries, 4(2), 159-167. https://doi.org/10.46384/jmsf.987343
  • Boukaka, K., & Mayache, B. (2020). Phytoremediation of soil contaminated by heavy metals within a Technical Landfill Center Vicinity: Algerian case study. Pollution, 6(4), 811-826. https://doi.org/10.22059/poll.2020.301691.792
  • Bradl, H. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1-18. https://doi.org/10.1016/j.jcis.2004.04.005
  • Chen, H.Y., Teng, Y.G., Lu, S.J., Wang, Y.Y., & Wang, J.S. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025
  • Chowdhary, P., Yadav, A., Singh, R., Chandra, R., Singh, D.P., Raj, A., & Bharagava, R.N. (2018). Stress response of Triticum aestivum L. and Brassica juncea L. against heavy metals growing at distillery and tannery wastewater contaminated site. Chemosphere, 206, 122-131. https://doi.org/10.1016/j.chemosphere.2018.04.156
  • Clemens, S., Aarts, M. G., Thomine, S., & Verbruggen, N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92-99. https://doi.org/10.1016/j.tplants.2012.08.003
  • Dabanovic, V., Soskic, M., Durovic, D., & Mugosa, B. (2016). Investigation of heavy metals content in selected tea brands marketed in Podgorica, Montenegro, Journal of Pharmaceutical Sciences and Research, 7(12), 4798-4704. http://dx.doi.org/10.13040/IJPSR.0975-8232.7(12).4798-04
  • Dai, L., Wang, L., Li, L., Liang, T., Zhang, Y., Ma, C., & Xing, B. (2018). Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Science of the Total Environment, 621, 1433-1444. https://doi.org/10.1016/j.scitotenv.2017.10.085
  • Ediagbonya, T.F., Ogunjobi, J.A., & Olutayo, O.O. (2021). Effect of quarry activities on selected biological resources around quarry site within Onigambari forest plantation, Oyo State, Nigeria. Environmental Geochemistry and Health, 43(6), 2271-2283. https://doi.org/10.1007/s10653-020-00555-w
  • Ekim, T. (2012). Türkiye Bitkileri Listesi; Damarlı Bitkiler.
  • Ekpo, F.E., Nzegblue, E.C., & Asuquo, M. (2012). A comparative study of the influence of heavy metals on soil and crops growing within quarry environment at Akamkpa, Cross River State, Nigeria. Global Journal of Agricultural Sciences, 11(1), 1–4. https://doi.org/10.4314/GJASS.V11I1.1
  • Fashola, M.O., Ngole-Jeme, V.M., & Babalola, O.O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International journal of environmental research and public health, 13(11), 1047. https://doi.org/10.3390/ijerph13111047
  • Fulke, A.B., Ratanpal, S., & Sonker, S. (2024). Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin, 206, 116707. https://doi.org/10.1016/j.marpolbul.2024.116707
  • Greksa, A., Žunić, V., Mihajlović, I., Blagojević, B., Vijuk, M., Podunavac-Kuzmanović, S., Kovačević, S., & Štrbac, M. (2023). Analysis of urban runoff remediation potential of zinc with Juncus effusus L. and Iris pseudacorus L. plants. PREPRINT. https://doi.org/10.21203/rs.3.rs-3612181/v1
  • Grygar, T. M., Hošek, M., Elznicová, J., Machová, I., Kubát, K., Adamec, S., Tůmová, Š., Rohovec, J., & Navrátil, T. (2023). Mobilisation of Cd, Mn, and Zn in floodplains by action of plants and its consequences for spreading historical contamination and fluvial geochemistry. Environmental Science and Pollution Research, 30(14), 40461-40477. https://doi.org/10.1007/s11356-022-25113-y
  • Guney, D., Koc, I., Isinkaralar, K., & Erdem, R. (2023). Variation in Pb and Zn concentrations in different species of trees and shrubs and their organs depending on traffic density. Baltic Forestry, 29(2), id661-id661. https://doi.org/10.46490/BF661
  • Hamza, S.M. (2022). Comparative study of physiological and phenotype characteristics of Juncus rigidus L. rhizome in two regions in Basrah government. British Journal of Global Ecology and Sustainable Development, 11, 236-245.
  • Hançerlioğulları, A., Turhan, Ş., Baştuğ, A., & Madee, Y.G.A. (2023). Türkiye’deki ocaklardan alınan doğal kil mineral örneklerinde ağır metal konsantrasyonlarının belirlenmesi. Politeknik Dergisi, 26(4), 1691-1696. https://doi.org/10.2339/politeknik.1356125
  • Haq, Z.U., Khan, S.M., Abdullah, Z.A., Iqbal, M., Khan, R., Rasheed, S., & Abbas, Z. (2022). Macro-and micro-anatomical diversity in the Alnus nitida (SPACH) endl. growing in varying climatic conditions of Sino japanese region of Pakistan. Pakistan Journal of Botany, 54(3), 1055-1064. http://dx.doi.org/10.30848/PJB2022-3(36)
  • He, Z. L., Yang, X.E., & Stoffella, P.J. (2015). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2-3), 125-140. https://doi.org/10.1016/j.jtemb.2005.02.010
  • Horasan, B., Ozturk, A., & Tugay, O. (2021). Nb–Sr–Pb isotope analysis in soils of abandoned mercury quarry in northwest Black Sea (Turkey), soil and plant geochemistry, evaluation of ecological risk and its ımpact on human health. Environmental Earth Sciences, 80(15), 1-19. https://doi.org/10.1007/S12665-021-09775-4
  • Hrdlička, P., & Kula, E. (2004). Changes in the chemical content of birch (Betula pendula Roth) leaves in the air polluted Krusne Hory mountains. Trees, 18(2), 237–244. https://doi.org/10.1007/s00468-003-0301-z
  • Hrdlička, P., & Kula, E. (2024). Element contents and their seasonal dynamics in leaves of alder Alnus glutinosa (L.) Gaertn. Environmental Monitoring and Assessment, 196(2), 224. https://doi.org/10.1007/s10661-024-12367-x
  • Hu, H., Jin, Q., & Kavan, P. (2014). A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustainability, 6(9), 5820–5838. https://doi.org/10.3390/SU6095820
  • Ifeoma, E.L., Awotoye Olusegun, O., & Ogbonna Princewill, C. (2014). Spatial distribution of heavy metals in soil and plant in a quarry site in Southwestern Nigeria. Research Journal of Chemical Sciences, 4(8), 1-6.
  • Itam, Y.B., Ogar, V.O., Ekpenyong, E.E., & Ebong, E.E. (2024). Assessment of heavy metal contamination and risk associated with quarrying activities in Marksino Concession Area, Akamkpa. International Journal of Environment and Pollution Research, 12(2), 12–39. https://doi.org/10.37745/ijepr.13/vol12n21239
  • Jiang, H.H., Cai, L.M., Hu, G.C., Wen, H.H., Luo, J., Xu, H.Q., & Chen, L.G. (2021). An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicology and Environmental Safety, 208, 111489. https://doi.org/10.1016/j.ecoenv.2020.111489
  • Kabata-Pendias, A., & Pendias, H. (2011). Trace elements in soils and plants. Boca Raton: CRC.
  • Khan, A., Khan, S., Alam, M., Amjad Khan, M., Aamir, M., Qamar, Z., Rehman, Z., & Perveen, S. (2016). Toxic metal interactions affect the bioaccumulation and dietary intake of macroand micro-nutrients, Chemosphere, 146, 121-128. https://doi.org/10.1016/j.chemosphere.2015.12.014
  • Khan, A.H.A., Velasco-Arroyo, B., Rad, C., Curiel-Alegre, S., Rumbo, C., De Wilde, H., Pérez-de-Mora, A., Martel-Martín, S., & Barros, R. (2024). Metal (loid) tolerance, accumulation, and phytoremediation potential of wetland macrophytes for multi-metal (loid)s polluted water. Environmental Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-024-35519-5
  • Lameed, G.A., & Ayodele, A.E. (2010). Effect of quarrying activity on biodiversity: Case study of Ogbere site, Ogun State Nigeria. African Journal of Environmental Science and Technology, 4(11), 740-750. https://doi.org/10.5897/AJEST10.166
  • Leventeli, Y., Yalcin, F., & Kilic, M. (2019). An investigation about heavy metal pollution of Duden and Goksu Streams (Antalya,Turkey). Applied Ecology and Environmental Research, 17(2), 2423-2436.http://dx.doi.org/10.15666/aeer/1702_24232436
  • Li, X.Y., Liu, L.J., Wang, Y.G., Luo, G.P., Chen, X., Yang, X.L., Myrna Hall, H.P., Guo, R.C., Wang, H.J., Cui, J.H., & He, X.Y. (2013) Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50–58. https://doi.org/10.1016/j.geoderma.2012.08.011
  • Madhaven, P., & Sanjay, R. (2005). Budhpura ‘Ground Zero’Sandstone quarrying in India, India Committee of the Netherlands, Netherlands, 32.
  • Mahmood, A., & Malik, R.N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), 91-99. https://doi.org/10.1016/j.arabjc.2013.07.002
  • Maňkovská, B., Godzik, B., Badea, O., Shparyk, Y., & Moravčı́k, P. (2004). Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environmental Pollution, 130(1), 41-54. https://doi.org/10.1016/j.envpol.2003.10.020
  • Matys Grygar, T., Faměra, M., Hošek, M., Elznicová, J., Rohovec, J., Matoušková, Š., & Navrátil, T. (2021). Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. Environmental Science and Pollution Research, 28(37), 51183-51198. https://doi.org/10.1007/s11356-021-14331-5
  • Monzón, A., & Azcón, R. (2001). Growth responses and N and P use efficiency of three Alnus species as affected by arbuscular-mycorrhizal colonisation. Plant Growth Regulation, 35, 97–104. https://doi.org/10.1023/A:1013875501259
  • Mou, F., Yang, J., Li, B., Chen, J., & Wang, J. (2021). Characteristics of heavy metal accumulation in five wild plants in Huize Lead-Zinc mining area. In E3S Web of Conferences (Vol. 261, p. 04015). EDP Sciences. https://doi.org/10.1051/e3sconf/202126104015
  • Müller, A., Österlund, H., Marsalek, J., & Viklander, M. (2020). The pollution conveyed by urban runoff: A review of sources. Science of the Total Environment, 709, 136125. https://doi.org/10.1016/j.scitotenv.2019.136125
  • Nodefarahani, M., Aradpouri S., Noori, R., Tang, Q., Partani, S., & Klöve, B. (2020). Metal pollution assessment in surface sediments of Namak Lake, Iran. Environmental Science and Pollution Research, 27, 45639-45649. https://doi.org/10.1007/s11356-020-10298-x
  • Odeyemi, F.A., Soyinka, O.O., Amballi, A.A., & Adenusi, H.A. (2021). Heavy Metals Exposure Through Quarry Operation in Ago Iwoye, Ogun State, Nigeria. FUW Trends in Science & Technology Journal, 6(1), 270-27.
  • Ogbonna, C.E., Nwafor, F.I., & Ogbonnaya, O.O. (2020). Dust accumulation, heavy metal content and stomata morphology of some medicinal plants at Rock Quarrying locations at Lokpaukwu, Nigeria. International Journal of Environment and Climate Change, 10(12), 540-549. https://doi.org/10.9734/IJECC/2020/V10I1230331
  • Ogbonna, P.C., Emea, R., & Teixeira da Silva, J.A. (2011). Heavy metal concentration in soil and woody plants in a quarry. Toxicological & Environmental Chemistry, 93(5), 895-903. https://doi.org/10.1080/02772248.2011.564361
  • Okafor, F.C. (2006). Rural Development and the Environmental Degradation versus Protection: In Sada, P.O. & Odemerho, T. (eds.). Environmental Issues and Management in Nigerian Development, 150-163, Unical Press.
  • Oliveira, R.S., Castro, P.M.L., Dodd, J.C., & Vosátka, M. (2005). Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere, 60, 1462–1470. https://doi.org/10.1016/j.chemosphere.2005.01.038
  • Padmapriya, S., Murugan, N., Ragavendran, C., Thangabalu, R., & Natarajan, D. (2016). Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. International Journal of Phytoremediation, 18(3), 288-294. https://doi.org/10.1080/15226514.2015.1085832
  • Pant, M., & Singh, J. (2024). Distribution of heavy metals contamination in the environment and their toxicological impacts. 95-113. CRC Press. https://doi.org/10.1201/9781032685793-7
  • Park, J.H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N.S., & Chung, J.W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2-3), 549-574. https://doi.org/10.1016/j.jhazmat.2010.09.082
  • Paustenbach, D.J. (2000). The practice of exposure assessment: a state-of-the-art review. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3(3), 179-291. https://doi.org/10.1080/10937400050045264
  • Pecina, V., Juřička, D., Kynický, J., Baltazár, T., Komendová, R., & Brtnický, M. (2020). The need to improve riparian forests management in uranium mining areas based on assessment of heavy metal and uranium contamination. Forests, 11(9), 952. https://doi.org/10.3390/f11090952
  • Samara, T., Spanos, I., Papachristou, T.G., & Platis, P. (2022). Assessment of heavy metal pollution using forest species plantations of post-mining landscapes, Ptolemais, N. Greece. Mining, 2(3), 578-588. https://doi.org/10.3390/mining2030031
  • Sasmaz, M., Topal, E.I.A., Obek, E., & Sasmaz, A. (2015). The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. Journal of Environmental Management, 163, 246-253. https://doi.org/10.1016/j.jenvman.2015.08.029
  • Sayara, T., Hamdan, Y., & Basheer-Salimia, R. (2016). Impact of air pollution from quarrying and stone cutting industries on agriculture and plant biodiversity. Resources and Environment, 6(6), 122–126. https://doi.org/10.5923/j.re.20160606.04
  • Sengupta, M. (1992). Environmental Impacts of Mining, Lewis Publishers. Monitoring, restoration and control. Boca Raton, FL: Lewis Publishers. United Nation, 9781003164012, Boca Raton. https://doi.org/10.1201/9781003164012
  • Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir, M., & Suleman Khan, M. (2013). Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry, 2013: 621265. https://doi.org/10.1155/2013/621265
  • Singh, A., Singh, B. P., Raghav, Y., & Mishra, V. (2024). Regulatory frameworks and guidelines aimed at controlling and minimizing heavy metals exposure. 171–179. CRC Press. https://doi.org/10.1201/9781032685793-11
  • Smedley, P.L., & Kinniburgh, D.G. (2002). A review of the source, behaviour, and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  • Sood, A., Uniyal, P.L., Prasanna, R., & Ahluwalia, A.S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 41(2), 122-137. https://doi.org/10.1007/s13280-011-0159-z
  • Srinivas J., Purushotham A.V., Singh, P.K. (2023). Heavy metal contamination in industrial areas - suggestions, recommendations and future perspectives: a review. International Journal of Science and Research, 12(2), 1085-1091. https://doi.org/10.21275/sr23218195916
  • Świątek, B., Woś, B., Chodak, M., Maiti, S. K., Józefowska, A., & Pietrzykowski, M. (2019). Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma, 337,1021–1027. https://doi.org/10.1016/j.geoderma.2018.11.025
  • Şavran, G., & Küçük, F. (2022). Sucul Canlılarda Ağır Metal Birikimi ve Etkileri. Akademia Doğa ve İnsan Bilimleri Dergisi, 8(1), 65-78.
  • Tatar, S., Obek, E., Arslan Topal, E.I., & Topal, M. (2019). Uptake of some elements with aquatic plants exposed to the effluent of wastewater treatment plant. Pollution, 5(2), 377-386. https://doi.org/10.22059/poll.2019.269722.542
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., & Sutton, D.J. (2012). Heavy metal toxicity and the environment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Tiimub, B.M., Sarkodie, P.A., Monney, I., & Maxwell, O. (2015). Heavy metal contamination of soil by quarry dust at Asonomaso in the Ashanti Region of Ghana. Chemistry and Materials Research, 7, 42-50.
  • Ugulu, I., Sahin, I., & Akcicek, E. (2024). Source identification and assessment of heavy metal contamination in different plant species in the alpine ecosystems of Mt. Madra. Physics and Chemistry of the Earth, Parts A/B/C, 103656. https://doi.org/10.1016/j.pce.2024.103656
  • Vincent, K.N., Joseph, N.N., & Raphael, K.K. (2012). Effects of quarry activities on some selected communities in the lower Manya Krobo District of the Eastern Region of Ghana. Atmospheric and Climate Sciences, 2(3), 1-11. https://doi.org/10.4236/acs.2012.23032
  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268-292. http://dx.doi.org/10.4067/S0718-95162010000100005
  • Wildová, E., Elznicová, J., & Kula, E. (2021). Seasonal Dynamics of manganese accumulation in European larch (Larix decidua Mill.), silver birch (Betula pendula Roth), and bilberry (Vaccinium myrtillus L.) over ten years of monitoring. Environmental Monitoring and Assessment, 193(9),612. https://doi.org/10.1007/s10661-021-09415-1
  • Wisłocka, M., Krawczyk, J., Klink, A., & Morrison, L. (2006). Bioaccumulation of heavy metals by selected plant species from uranium mining dumps in the Sudety Mts., Poland. Polish Journal of Environmental Studies, 15(5), 811-818.
  • Wolfe, E.R., Singleton, S., Stewart, N.U., Balkan, M.A., Ballhorn, D.J. (2022). Frankia diversity in sympatrically occurring red alder (Alnus rubra) and Sitka alder (Alnus viridis) trees in an early successional environment. Trees, 36(5), 1665-1675. https://doi.org/10.1007/s00468-022-02317-w
  • Yaacob, W.Z.W., Pauzi, N.S.M., & Mutalib, H.A. (2009). Acid mine drainage and heavy metals contamination at abandoned and active mine sites in Pahang. Bulletin of the Geological Society of Malaysia, 55, 15-20. https://doi.org/10.7186/bgsm55200903
  • Yalcin, M.G., Coskun, B., Nyamsari, D.G., & Yalcin, F. (2019). Geomedical, ecological risk, and statistical assessment of hazardous elements in shore sediments of the Iskenderun Gulf, Eastern Mediterranean, Turkey. Environmental Earth Sciences, 78(15), 438. https://doi.org/10.1007/s12665-019-8435-5
  • Yalçın, F. (2021). Data Analysis of Heavy metals in Akkaya Lake reservoir soils using multivariate statistical analysis. Turkish Journal of Agriculture-Food Science and Technology, 9(1), 249-257. https://doi.org/10.24925/turjaf.v9i1.249-257.4040
  • Yan, T., Lü, X., Yang, K., & Zhu, J. (2016). Leaf nutrient dynamics and nutrient resorption: A comparison between larch plantations and adjacent secondary forests in Northeast China. Journal of Plant Ecology, 9(2), 165-173. https://doi.org/10.1093/jpe/rtv034
  • Yaşar, Ü. (2009). Cercis siliquastrum l. subsp. siliquastrum (fabaceae)'un ağır metal kirliliğinde biomonitor olarak kullanımı [Doktora Tezi, Marmara Üniversitesi]
  • Yerli, C., Çakmakcı, T., Sahin, U., & Tüfenkçi, Ş. (2020). Ağır metallerin toprak, bitki, su ve insan sağlığına etkileri. Türk Doğa ve Fen Dergisi, 9(Özel Sayı), 103-114. https://doi.org/10.46810/tdfd.718449
  • Yin, S., Shen, Z., Zhou, P., Zou, X., Che, S., & Wang, W. (2011). Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environmental pollution, 159(8-9), 2155-2163. https://doi.org/10.1016/j.envpol.2011.03.009
  • Zare, K., Sheykhi, V., & Zare, M. (2020). Investigating the heavy metals’ removal capacity of some native plant species from the wetland groundwater of Maharlu Lake in Fars province, Iran. International Journal of Phytoremediation, 22(7), 781-788. https://doi.org/10.1080/15226514.2019.1710815
  • Zayed, A., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant Soil, 249, 139-156. https://doi.org/10.1023/A:1022504826342

Evaluation of the effect of quarries on heavy metal contents of different plant species

Yıl 2025, Cilt: 15 Sayı: 2, 432 - 450, 15.06.2025
https://doi.org/10.17714/gumusfenbil.1607018

Öz

Environmental pollution is the greatest threat facing humanity and is recognised as the leading cause of disease and death. Anthropogenic practices such as quarrying and mining activities can alter the structure and functioning of the plant community. In this study, the effects of active and passive quarry stations on heavy metal contents of herbaceous and woody plant species were investigated. Chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), and manganese (Mn) contents in herbaceous (Juncus effusus subsp. effusus) and woody (Alnus glutinosa subsp. barbata) plant samples were analysed by inductively coupled plasma-mass spectrometry (ICP-MS) to reveal the environmental impacts of quarry mining. Significant differences were detected at the P < 0.01 level in Cr, Fe, Cu, As, Pb and Mn contents and at the P < 0.05 level in Ni contents of Juncus effusus subsp. effusus and Alnus glutinosa subsp. barbata and the highest heavy metal contents, except for Mn were found in Alnus glutinosa subsp. barbata. The lowest and highest heavy metal concentrations were determined in washed and unwashed samples, respectively. While high concentrations of heavy metals were found in plant samples taken from the active quarry station, the lowest concentrations were found in samples taken from clean areas. It was concluded that Cu, Mn, Fe and Zn concentrations were above the maximum permissible limits stated in the literature, plants were affected by actively operating quarries and heavy metal accumulation occurred on plant surfaces over time.

Kaynakça

  • Abdullah, M., Ali, S.F., & Khan, S.U. (2024). The overview of the problem of heavy metals contamination in the environment. In: Heavy Metal Contamination in the Environment (pp. 1-18). CRC Press. https://doi.org/10.1201/9781032685793-1
  • Akkemik, Ü. (Ed.). (2014). Türkiye'nin doğal-egzotik ağaç ve çalıları: Gymnospermler, Angiospermler (AG). TC Orman ve Su İşleri Bakanlığı Orman Genel Müdürlüğü.
  • Aktop, Y., & Çağatay, İ.T. (2020). Ağır metallerin balıklarda birikimi ve etkileri. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 6(1), 37-44.
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 6730305. https://doi.org/10.1155/2019/6730305
  • Alloway, B.J. (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Springer.
  • Angulo-Bejarano, P.I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: an overview on molecular aspects. Plants, 10, 635. https://doi.org/10.3390/plants10040635
  • Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview, International Journal of Application or Innovation in Engineering & Management, 5(3), 56-66.
  • Bargah, R.K. (2024). Heavy metals: environmental pollution and impact on human health, Futuristic Trends in Chemical Material Sciences & Nano Technology, Vol. 3 Book 18,IIP Series, Page no.461-482, e-ISBN: 978-93-5747-640-9. https://www.doi.org/10.58532/V3BDCS18CH37
  • Binici, A., Pulatsü, S., & Bursa, N. (2021). Evaluation of sediment dredging on heavy metal concentrations in Mogan Lake’s sediment (Ankara, Turkey). COMU Journal of Marine Sciences and Fisheries, 4(2), 159-167. https://doi.org/10.46384/jmsf.987343
  • Boukaka, K., & Mayache, B. (2020). Phytoremediation of soil contaminated by heavy metals within a Technical Landfill Center Vicinity: Algerian case study. Pollution, 6(4), 811-826. https://doi.org/10.22059/poll.2020.301691.792
  • Bradl, H. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1-18. https://doi.org/10.1016/j.jcis.2004.04.005
  • Chen, H.Y., Teng, Y.G., Lu, S.J., Wang, Y.Y., & Wang, J.S. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025
  • Chowdhary, P., Yadav, A., Singh, R., Chandra, R., Singh, D.P., Raj, A., & Bharagava, R.N. (2018). Stress response of Triticum aestivum L. and Brassica juncea L. against heavy metals growing at distillery and tannery wastewater contaminated site. Chemosphere, 206, 122-131. https://doi.org/10.1016/j.chemosphere.2018.04.156
  • Clemens, S., Aarts, M. G., Thomine, S., & Verbruggen, N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92-99. https://doi.org/10.1016/j.tplants.2012.08.003
  • Dabanovic, V., Soskic, M., Durovic, D., & Mugosa, B. (2016). Investigation of heavy metals content in selected tea brands marketed in Podgorica, Montenegro, Journal of Pharmaceutical Sciences and Research, 7(12), 4798-4704. http://dx.doi.org/10.13040/IJPSR.0975-8232.7(12).4798-04
  • Dai, L., Wang, L., Li, L., Liang, T., Zhang, Y., Ma, C., & Xing, B. (2018). Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Science of the Total Environment, 621, 1433-1444. https://doi.org/10.1016/j.scitotenv.2017.10.085
  • Ediagbonya, T.F., Ogunjobi, J.A., & Olutayo, O.O. (2021). Effect of quarry activities on selected biological resources around quarry site within Onigambari forest plantation, Oyo State, Nigeria. Environmental Geochemistry and Health, 43(6), 2271-2283. https://doi.org/10.1007/s10653-020-00555-w
  • Ekim, T. (2012). Türkiye Bitkileri Listesi; Damarlı Bitkiler.
  • Ekpo, F.E., Nzegblue, E.C., & Asuquo, M. (2012). A comparative study of the influence of heavy metals on soil and crops growing within quarry environment at Akamkpa, Cross River State, Nigeria. Global Journal of Agricultural Sciences, 11(1), 1–4. https://doi.org/10.4314/GJASS.V11I1.1
  • Fashola, M.O., Ngole-Jeme, V.M., & Babalola, O.O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International journal of environmental research and public health, 13(11), 1047. https://doi.org/10.3390/ijerph13111047
  • Fulke, A.B., Ratanpal, S., & Sonker, S. (2024). Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin, 206, 116707. https://doi.org/10.1016/j.marpolbul.2024.116707
  • Greksa, A., Žunić, V., Mihajlović, I., Blagojević, B., Vijuk, M., Podunavac-Kuzmanović, S., Kovačević, S., & Štrbac, M. (2023). Analysis of urban runoff remediation potential of zinc with Juncus effusus L. and Iris pseudacorus L. plants. PREPRINT. https://doi.org/10.21203/rs.3.rs-3612181/v1
  • Grygar, T. M., Hošek, M., Elznicová, J., Machová, I., Kubát, K., Adamec, S., Tůmová, Š., Rohovec, J., & Navrátil, T. (2023). Mobilisation of Cd, Mn, and Zn in floodplains by action of plants and its consequences for spreading historical contamination and fluvial geochemistry. Environmental Science and Pollution Research, 30(14), 40461-40477. https://doi.org/10.1007/s11356-022-25113-y
  • Guney, D., Koc, I., Isinkaralar, K., & Erdem, R. (2023). Variation in Pb and Zn concentrations in different species of trees and shrubs and their organs depending on traffic density. Baltic Forestry, 29(2), id661-id661. https://doi.org/10.46490/BF661
  • Hamza, S.M. (2022). Comparative study of physiological and phenotype characteristics of Juncus rigidus L. rhizome in two regions in Basrah government. British Journal of Global Ecology and Sustainable Development, 11, 236-245.
  • Hançerlioğulları, A., Turhan, Ş., Baştuğ, A., & Madee, Y.G.A. (2023). Türkiye’deki ocaklardan alınan doğal kil mineral örneklerinde ağır metal konsantrasyonlarının belirlenmesi. Politeknik Dergisi, 26(4), 1691-1696. https://doi.org/10.2339/politeknik.1356125
  • Haq, Z.U., Khan, S.M., Abdullah, Z.A., Iqbal, M., Khan, R., Rasheed, S., & Abbas, Z. (2022). Macro-and micro-anatomical diversity in the Alnus nitida (SPACH) endl. growing in varying climatic conditions of Sino japanese region of Pakistan. Pakistan Journal of Botany, 54(3), 1055-1064. http://dx.doi.org/10.30848/PJB2022-3(36)
  • He, Z. L., Yang, X.E., & Stoffella, P.J. (2015). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2-3), 125-140. https://doi.org/10.1016/j.jtemb.2005.02.010
  • Horasan, B., Ozturk, A., & Tugay, O. (2021). Nb–Sr–Pb isotope analysis in soils of abandoned mercury quarry in northwest Black Sea (Turkey), soil and plant geochemistry, evaluation of ecological risk and its ımpact on human health. Environmental Earth Sciences, 80(15), 1-19. https://doi.org/10.1007/S12665-021-09775-4
  • Hrdlička, P., & Kula, E. (2004). Changes in the chemical content of birch (Betula pendula Roth) leaves in the air polluted Krusne Hory mountains. Trees, 18(2), 237–244. https://doi.org/10.1007/s00468-003-0301-z
  • Hrdlička, P., & Kula, E. (2024). Element contents and their seasonal dynamics in leaves of alder Alnus glutinosa (L.) Gaertn. Environmental Monitoring and Assessment, 196(2), 224. https://doi.org/10.1007/s10661-024-12367-x
  • Hu, H., Jin, Q., & Kavan, P. (2014). A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustainability, 6(9), 5820–5838. https://doi.org/10.3390/SU6095820
  • Ifeoma, E.L., Awotoye Olusegun, O., & Ogbonna Princewill, C. (2014). Spatial distribution of heavy metals in soil and plant in a quarry site in Southwestern Nigeria. Research Journal of Chemical Sciences, 4(8), 1-6.
  • Itam, Y.B., Ogar, V.O., Ekpenyong, E.E., & Ebong, E.E. (2024). Assessment of heavy metal contamination and risk associated with quarrying activities in Marksino Concession Area, Akamkpa. International Journal of Environment and Pollution Research, 12(2), 12–39. https://doi.org/10.37745/ijepr.13/vol12n21239
  • Jiang, H.H., Cai, L.M., Hu, G.C., Wen, H.H., Luo, J., Xu, H.Q., & Chen, L.G. (2021). An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicology and Environmental Safety, 208, 111489. https://doi.org/10.1016/j.ecoenv.2020.111489
  • Kabata-Pendias, A., & Pendias, H. (2011). Trace elements in soils and plants. Boca Raton: CRC.
  • Khan, A., Khan, S., Alam, M., Amjad Khan, M., Aamir, M., Qamar, Z., Rehman, Z., & Perveen, S. (2016). Toxic metal interactions affect the bioaccumulation and dietary intake of macroand micro-nutrients, Chemosphere, 146, 121-128. https://doi.org/10.1016/j.chemosphere.2015.12.014
  • Khan, A.H.A., Velasco-Arroyo, B., Rad, C., Curiel-Alegre, S., Rumbo, C., De Wilde, H., Pérez-de-Mora, A., Martel-Martín, S., & Barros, R. (2024). Metal (loid) tolerance, accumulation, and phytoremediation potential of wetland macrophytes for multi-metal (loid)s polluted water. Environmental Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-024-35519-5
  • Lameed, G.A., & Ayodele, A.E. (2010). Effect of quarrying activity on biodiversity: Case study of Ogbere site, Ogun State Nigeria. African Journal of Environmental Science and Technology, 4(11), 740-750. https://doi.org/10.5897/AJEST10.166
  • Leventeli, Y., Yalcin, F., & Kilic, M. (2019). An investigation about heavy metal pollution of Duden and Goksu Streams (Antalya,Turkey). Applied Ecology and Environmental Research, 17(2), 2423-2436.http://dx.doi.org/10.15666/aeer/1702_24232436
  • Li, X.Y., Liu, L.J., Wang, Y.G., Luo, G.P., Chen, X., Yang, X.L., Myrna Hall, H.P., Guo, R.C., Wang, H.J., Cui, J.H., & He, X.Y. (2013) Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50–58. https://doi.org/10.1016/j.geoderma.2012.08.011
  • Madhaven, P., & Sanjay, R. (2005). Budhpura ‘Ground Zero’Sandstone quarrying in India, India Committee of the Netherlands, Netherlands, 32.
  • Mahmood, A., & Malik, R.N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), 91-99. https://doi.org/10.1016/j.arabjc.2013.07.002
  • Maňkovská, B., Godzik, B., Badea, O., Shparyk, Y., & Moravčı́k, P. (2004). Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environmental Pollution, 130(1), 41-54. https://doi.org/10.1016/j.envpol.2003.10.020
  • Matys Grygar, T., Faměra, M., Hošek, M., Elznicová, J., Rohovec, J., Matoušková, Š., & Navrátil, T. (2021). Uptake of Cd, Pb, U, and Zn by plants in floodplain pollution hotspots contributes to secondary contamination. Environmental Science and Pollution Research, 28(37), 51183-51198. https://doi.org/10.1007/s11356-021-14331-5
  • Monzón, A., & Azcón, R. (2001). Growth responses and N and P use efficiency of three Alnus species as affected by arbuscular-mycorrhizal colonisation. Plant Growth Regulation, 35, 97–104. https://doi.org/10.1023/A:1013875501259
  • Mou, F., Yang, J., Li, B., Chen, J., & Wang, J. (2021). Characteristics of heavy metal accumulation in five wild plants in Huize Lead-Zinc mining area. In E3S Web of Conferences (Vol. 261, p. 04015). EDP Sciences. https://doi.org/10.1051/e3sconf/202126104015
  • Müller, A., Österlund, H., Marsalek, J., & Viklander, M. (2020). The pollution conveyed by urban runoff: A review of sources. Science of the Total Environment, 709, 136125. https://doi.org/10.1016/j.scitotenv.2019.136125
  • Nodefarahani, M., Aradpouri S., Noori, R., Tang, Q., Partani, S., & Klöve, B. (2020). Metal pollution assessment in surface sediments of Namak Lake, Iran. Environmental Science and Pollution Research, 27, 45639-45649. https://doi.org/10.1007/s11356-020-10298-x
  • Odeyemi, F.A., Soyinka, O.O., Amballi, A.A., & Adenusi, H.A. (2021). Heavy Metals Exposure Through Quarry Operation in Ago Iwoye, Ogun State, Nigeria. FUW Trends in Science & Technology Journal, 6(1), 270-27.
  • Ogbonna, C.E., Nwafor, F.I., & Ogbonnaya, O.O. (2020). Dust accumulation, heavy metal content and stomata morphology of some medicinal plants at Rock Quarrying locations at Lokpaukwu, Nigeria. International Journal of Environment and Climate Change, 10(12), 540-549. https://doi.org/10.9734/IJECC/2020/V10I1230331
  • Ogbonna, P.C., Emea, R., & Teixeira da Silva, J.A. (2011). Heavy metal concentration in soil and woody plants in a quarry. Toxicological & Environmental Chemistry, 93(5), 895-903. https://doi.org/10.1080/02772248.2011.564361
  • Okafor, F.C. (2006). Rural Development and the Environmental Degradation versus Protection: In Sada, P.O. & Odemerho, T. (eds.). Environmental Issues and Management in Nigerian Development, 150-163, Unical Press.
  • Oliveira, R.S., Castro, P.M.L., Dodd, J.C., & Vosátka, M. (2005). Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere, 60, 1462–1470. https://doi.org/10.1016/j.chemosphere.2005.01.038
  • Padmapriya, S., Murugan, N., Ragavendran, C., Thangabalu, R., & Natarajan, D. (2016). Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. International Journal of Phytoremediation, 18(3), 288-294. https://doi.org/10.1080/15226514.2015.1085832
  • Pant, M., & Singh, J. (2024). Distribution of heavy metals contamination in the environment and their toxicological impacts. 95-113. CRC Press. https://doi.org/10.1201/9781032685793-7
  • Park, J.H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N.S., & Chung, J.W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2-3), 549-574. https://doi.org/10.1016/j.jhazmat.2010.09.082
  • Paustenbach, D.J. (2000). The practice of exposure assessment: a state-of-the-art review. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3(3), 179-291. https://doi.org/10.1080/10937400050045264
  • Pecina, V., Juřička, D., Kynický, J., Baltazár, T., Komendová, R., & Brtnický, M. (2020). The need to improve riparian forests management in uranium mining areas based on assessment of heavy metal and uranium contamination. Forests, 11(9), 952. https://doi.org/10.3390/f11090952
  • Samara, T., Spanos, I., Papachristou, T.G., & Platis, P. (2022). Assessment of heavy metal pollution using forest species plantations of post-mining landscapes, Ptolemais, N. Greece. Mining, 2(3), 578-588. https://doi.org/10.3390/mining2030031
  • Sasmaz, M., Topal, E.I.A., Obek, E., & Sasmaz, A. (2015). The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. Journal of Environmental Management, 163, 246-253. https://doi.org/10.1016/j.jenvman.2015.08.029
  • Sayara, T., Hamdan, Y., & Basheer-Salimia, R. (2016). Impact of air pollution from quarrying and stone cutting industries on agriculture and plant biodiversity. Resources and Environment, 6(6), 122–126. https://doi.org/10.5923/j.re.20160606.04
  • Sengupta, M. (1992). Environmental Impacts of Mining, Lewis Publishers. Monitoring, restoration and control. Boca Raton, FL: Lewis Publishers. United Nation, 9781003164012, Boca Raton. https://doi.org/10.1201/9781003164012
  • Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir, M., & Suleman Khan, M. (2013). Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry, 2013: 621265. https://doi.org/10.1155/2013/621265
  • Singh, A., Singh, B. P., Raghav, Y., & Mishra, V. (2024). Regulatory frameworks and guidelines aimed at controlling and minimizing heavy metals exposure. 171–179. CRC Press. https://doi.org/10.1201/9781032685793-11
  • Smedley, P.L., & Kinniburgh, D.G. (2002). A review of the source, behaviour, and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  • Sood, A., Uniyal, P.L., Prasanna, R., & Ahluwalia, A.S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 41(2), 122-137. https://doi.org/10.1007/s13280-011-0159-z
  • Srinivas J., Purushotham A.V., Singh, P.K. (2023). Heavy metal contamination in industrial areas - suggestions, recommendations and future perspectives: a review. International Journal of Science and Research, 12(2), 1085-1091. https://doi.org/10.21275/sr23218195916
  • Świątek, B., Woś, B., Chodak, M., Maiti, S. K., Józefowska, A., & Pietrzykowski, M. (2019). Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma, 337,1021–1027. https://doi.org/10.1016/j.geoderma.2018.11.025
  • Şavran, G., & Küçük, F. (2022). Sucul Canlılarda Ağır Metal Birikimi ve Etkileri. Akademia Doğa ve İnsan Bilimleri Dergisi, 8(1), 65-78.
  • Tatar, S., Obek, E., Arslan Topal, E.I., & Topal, M. (2019). Uptake of some elements with aquatic plants exposed to the effluent of wastewater treatment plant. Pollution, 5(2), 377-386. https://doi.org/10.22059/poll.2019.269722.542
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., & Sutton, D.J. (2012). Heavy metal toxicity and the environment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Tiimub, B.M., Sarkodie, P.A., Monney, I., & Maxwell, O. (2015). Heavy metal contamination of soil by quarry dust at Asonomaso in the Ashanti Region of Ghana. Chemistry and Materials Research, 7, 42-50.
  • Ugulu, I., Sahin, I., & Akcicek, E. (2024). Source identification and assessment of heavy metal contamination in different plant species in the alpine ecosystems of Mt. Madra. Physics and Chemistry of the Earth, Parts A/B/C, 103656. https://doi.org/10.1016/j.pce.2024.103656
  • Vincent, K.N., Joseph, N.N., & Raphael, K.K. (2012). Effects of quarry activities on some selected communities in the lower Manya Krobo District of the Eastern Region of Ghana. Atmospheric and Climate Sciences, 2(3), 1-11. https://doi.org/10.4236/acs.2012.23032
  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268-292. http://dx.doi.org/10.4067/S0718-95162010000100005
  • Wildová, E., Elznicová, J., & Kula, E. (2021). Seasonal Dynamics of manganese accumulation in European larch (Larix decidua Mill.), silver birch (Betula pendula Roth), and bilberry (Vaccinium myrtillus L.) over ten years of monitoring. Environmental Monitoring and Assessment, 193(9),612. https://doi.org/10.1007/s10661-021-09415-1
  • Wisłocka, M., Krawczyk, J., Klink, A., & Morrison, L. (2006). Bioaccumulation of heavy metals by selected plant species from uranium mining dumps in the Sudety Mts., Poland. Polish Journal of Environmental Studies, 15(5), 811-818.
  • Wolfe, E.R., Singleton, S., Stewart, N.U., Balkan, M.A., Ballhorn, D.J. (2022). Frankia diversity in sympatrically occurring red alder (Alnus rubra) and Sitka alder (Alnus viridis) trees in an early successional environment. Trees, 36(5), 1665-1675. https://doi.org/10.1007/s00468-022-02317-w
  • Yaacob, W.Z.W., Pauzi, N.S.M., & Mutalib, H.A. (2009). Acid mine drainage and heavy metals contamination at abandoned and active mine sites in Pahang. Bulletin of the Geological Society of Malaysia, 55, 15-20. https://doi.org/10.7186/bgsm55200903
  • Yalcin, M.G., Coskun, B., Nyamsari, D.G., & Yalcin, F. (2019). Geomedical, ecological risk, and statistical assessment of hazardous elements in shore sediments of the Iskenderun Gulf, Eastern Mediterranean, Turkey. Environmental Earth Sciences, 78(15), 438. https://doi.org/10.1007/s12665-019-8435-5
  • Yalçın, F. (2021). Data Analysis of Heavy metals in Akkaya Lake reservoir soils using multivariate statistical analysis. Turkish Journal of Agriculture-Food Science and Technology, 9(1), 249-257. https://doi.org/10.24925/turjaf.v9i1.249-257.4040
  • Yan, T., Lü, X., Yang, K., & Zhu, J. (2016). Leaf nutrient dynamics and nutrient resorption: A comparison between larch plantations and adjacent secondary forests in Northeast China. Journal of Plant Ecology, 9(2), 165-173. https://doi.org/10.1093/jpe/rtv034
  • Yaşar, Ü. (2009). Cercis siliquastrum l. subsp. siliquastrum (fabaceae)'un ağır metal kirliliğinde biomonitor olarak kullanımı [Doktora Tezi, Marmara Üniversitesi]
  • Yerli, C., Çakmakcı, T., Sahin, U., & Tüfenkçi, Ş. (2020). Ağır metallerin toprak, bitki, su ve insan sağlığına etkileri. Türk Doğa ve Fen Dergisi, 9(Özel Sayı), 103-114. https://doi.org/10.46810/tdfd.718449
  • Yin, S., Shen, Z., Zhou, P., Zou, X., Che, S., & Wang, W. (2011). Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environmental pollution, 159(8-9), 2155-2163. https://doi.org/10.1016/j.envpol.2011.03.009
  • Zare, K., Sheykhi, V., & Zare, M. (2020). Investigating the heavy metals’ removal capacity of some native plant species from the wetland groundwater of Maharlu Lake in Fars province, Iran. International Journal of Phytoremediation, 22(7), 781-788. https://doi.org/10.1080/15226514.2019.1710815
  • Zayed, A., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant Soil, 249, 139-156. https://doi.org/10.1023/A:1022504826342
Toplam 88 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekotoksikoloji, Ekoloji (Diğer)
Bölüm Makaleler
Yazarlar

Şule Güzel İzmirli 0000-0003-3822-8062

Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 25 Aralık 2024
Kabul Tarihi 12 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Güzel İzmirli, Ş. (2025). Farklı bitki türlerinin ağır metal içerikleri üzerine taş ocaklarının etkisinin değerlendirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(2), 432-450. https://doi.org/10.17714/gumusfenbil.1607018