Comparison of advanced metaheuristic algorithms for harmonic detection in power systems
Yıl 2025,
Cilt: 15 Sayı: 2, 620 - 638, 15.06.2025
Şule Nilhan Oğuzalp
,
Sıtkı Akkaya
,
Ulaş Eminoğlu
Öz
The increasing competition in the energy sector and the growing demand of users for higher quality energy have made power quality a priority issue in electrical networks. One of the parameters affecting power quality is harmonics. In power systems, harmonics can lead to various undesirable situations such as distortion of voltage and current waveforms, excessive current and voltage rise due to resonance phenomena, inaccurate measurements in meters, insulation failures, malfunctions in electronic devices, additional energy losses, and overheating. Therefore, harmonics have become a frequently studied research area in recent years. In this study, hybrid methods combining recently developed algorithms such as African Vulture Optimization Algorithm (AVOA), Artificial Rabbit Optimization (ARO), Spider Wasp Optimization (SWO), Mountain Gazelle Optimization (MGO), and Aquila Optimization (AO) with the Least Squares (LS) method were employed for harmonic detection, and their results were analyzed. In the analyses, a commonly used test signal from the literature was examined. The harmonic amplitudes of this signal were determined using the Least Squares (LS) method, while the phase angles were estimated using hybrid methods (e.g., MGO-LS) incorporating the relevant metaheuristic algorithms. The results obtained showed that among the five examined methods, the proposed MGO-LS provided more accurate and reliable estimations even under noiseless and Gaussian noisy conditions. This indicates that the MGO-LS algorithm is an effective method for harmonic detection for the problem under investigation.
Kaynakça
-
Abbassi, R., Saidi, S., Urooj, S., Alhasnawi, B. N., Alawad, M. A., & Premkumar, M. (2023). An accurate metaheuristic mountain gazelle optimizer for parameter estimation of single-and double-diode photovoltaic cell models. Mathematics, 11(22), 4565.
-
Abdel-Basset, M., Mohamed, R., Jameel, M., & Abouhawwash, M. (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artificial Intelligence Review, 56(10), 11675-11738.
-
Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
-
Abdollahzadeh, B., Gharehchopogh, F. S., Khodadadi, N., & Mirjalili, S. (2022). Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Advances in Engineering Software, 174, 103282.
-
Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-Qaness, M. A., & Gandomi, A. H. (2021). Aquila optimizer: a novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250.
-
Akyol, S. (2021). Global optimizasyon için yeni bir hibrit yöntem: kaya kartalı optimizasyonu-tanjant arama algoritması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(2), 721-733.
-
Ali, A., Ahmed, M., Apon, H. J., Rahman, M. S., Ahsan, A., Prapti, S. T., & Ahmed, A. (2023, October). Power System Harmonics Estimation: A new optimization technique-based implementation with African Vulture Optimization Algorithm based Least Square Method. (2023) .First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI) (pp. 1-7). IEEE.
-
Alomoush, W., Houssein, E. H., Alrosan, A., Abd-Alrazaq, A., Alweshah, M., & Alshinwan, M. (2024). Joint opposite selection enhanced Mountain Gazelle Optimizer for brain stroke classification. Evolutionary Intelligence, 1-19.
-
Apon, H. J., Abid, M. S., Morshed, K. A., Nishat, M. M., & Faisal, F. (2021, October). Power system harmonics estimation using hybrid Archimedes optimization algorithm-based least square method. In 2021 13th international conference on information & communication technology and system (ICTS) (pp. 312-317). IEEE.
-
Aydemir, S. B. (2022). Küresel optimizasyon için gauss kaotik haritası ile kartal optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 85-104.
-
Bakır, H. (2024). Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem. Expert Systems with Applications, 240, 122460.
-
Bettayeb, M., & Qidwai, U. (2003). A hybrid least squares- GA-based algorithm for harmonic estimation. IEEE Transactions on Power Delivery. 18(2), 377-382.
-
Biswas, S., Chatterjee, A., & Goswami, S. K. (2013). An artificial bee colony-least square algorithm for solving harmonic estimation problems. Applied Soft Computing, 13(5), 2343-2355.
-
Bollen, M. H. J., & Hassan, F. (2011). Integration of Distributed Generation in the Power System. Wiley-IEEE Press.
-
Costa, F. F., Cardoso, A. J. M., & Fernandes, D. A. (2007, April). Harmonic analysis based on Kalman filtering and Prony's method. In 2007 International Conference on Power Engineering, Energy and Electrical Drives (pp. 696-701). IEEE.
-
Ekinci, S., & Izci, D. (2023). Enhancing IIR system identification: Harnessing the synergy of gazelle optimization and simulated annealing algorithms. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 5, 100225.
-
Fan, J., Li, Y., & Wang, T. (2021). An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism. Plos one, 16(11), e0260725.
-
Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert systems with applications, 152, 113377.
-
Gaing, ZL (2004). AVR sisteminde PID kontrolörünün optimum tasarımı için bir parçacık sürüsü optimizasyon yaklaşımı. IEEE enerji dönüşümü işlemleri, 19 (2), 384-391.
-
Gülmez, B. (2023). Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications, 227, 120346.
-
Haseeb, A., Waleed, U., Ashraf, M. M., Siddiq, F., Rafiq, M., & Shafique, M. (2023). Hybrid weighted least square multi- verse optimizer (WLS–MVO) framework for real-time estimation of harmonics in non-linear loads. Energies, 16(2), 609.
-
Kabalci, Y., Kockanat, S., & Kabalci, E. (2018). A modified ABC algorithm approach for power system harmonic estimation problems. Electric power systems research, 154, 160-173.
-
Khodadadi, N., El-Kenawy, E. S. M., De Caso, F., Alharbi, A. H., Khafaga, D. S., & Nanni, A. (2023). The Mountain Gazelle Optimizer for truss structures optimization. Applied Computing and Intelligence, 3(2), 116-144.
-
Li, Y. F., & Fu, K. (2008). Eliminating the picket fence effect of the fast Fourier transform. Computer Physics Communications, 178(7), 486–491. https://doi.org/10.1016/j.cpc.2007.11.001
-
Lu,Z., Ji, T. Y., Tang, W.H., & Wu, Q. H. (2008). Optimal harmonic estimation using a particle swarm optimizer. IEEE Transactions on Power Delivery, 23(2), 1166-1174.
-
Ray,P.K., & Subudhi, B. (2012). BFO optimized RLS algorithm for power system harmonic estimation. Applied Soft Computing, 12(8), 1965-1977.
-
Sarangi, P., & Mohapatra, P. (2023). Evolved opposition-based mountain gazelle optimizer to solve optimization problems. Journal of King Saud University-Computer and Information Sciences, 35(10), 101812.
-
Sasmal, B., Hussien, A. G., Das, A., & Dhal, K. G. (2023). A comprehensive survey on aquila optimizer. Archives of Computational Methods in Engineering, 30(7), 4449-4476.
-
Sasmal, B., Das, A., Dhal, K. G., & Saha, R. (2024). A Comprehensive Survey on African Vulture Optimization Algorithm. Archives of Computational Methods in Engineering, 31(3), 1659-1700.
-
Subjak, Joseph S., & Jhon S. Mcquilkin. Harmonics causes, effects,measurements, and analysis : an update. IEEE transactions on industry applications. 26.6 (1990); 1034-1042.
-
Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Evolutionary Programming VII: 7th International Conference, EP98 San Diego, California, USA, March 25–27, 1998 Proceedings 7 (pp. 591-600). Springer Berlin Heidelberg
-
Turgut, O. E., & Turgut, M. S. (2023). Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems. Mathematics and Computers in Simulation, 206, 302-374.
-
Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114, 105082.
Yang, X. S. (2010). Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley.
-
Zhang, J., Khayatnezhad, M., & Ghadimi, N. (2022). Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified African Vulture Optimization Algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 287-305.
-
Zhang, Y. J., Yan, Y. X., Zhao, J., & Gao, Z. M. (2022). AOAAO: The hybrid algorithm of arithmetic optimization algorithm with aquila optimizer. IEEE Access, 10, 10907-10933.
-
Zhao, B., Guo, C. X., & Cao, Y. J. (2014). "A multiagent-based particle swarm optimization approach for optimal reactive power dispatch." IEEE Transactions on Power Systems, 20(2), 1070–1078.
Güç sistemlerinde harmonik tespiti için gelişmiş meta sezgisel algoritmaların karşılaştırılması
Yıl 2025,
Cilt: 15 Sayı: 2, 620 - 638, 15.06.2025
Şule Nilhan Oğuzalp
,
Sıtkı Akkaya
,
Ulaş Eminoğlu
Öz
Enerji sektöründe rekabetin artması ve kullanıcıların daha kaliteli enerji talep etmesi, elektrik şebekelerinde güç kalitesini öncelikli bir konu haline getirmiştir. Güç kalitesini etkileyen parametrelerden biri de harmoniklerdir. Harmonikler güç sistemlerinde; gerilim-akım dalga şekillerinin bozulması, rezonans olayları sonucunda aşırı akım ve gerilim yükselmesi, sayaçlarda yanlış ölçmeler, yalıtım hataları ve elektronik cihazların arızalanmasına, ek enerji kayıpları ve ısınmalar gibi birçok istenmeyen durumlara neden olabilir. Bu nedenle harmonikler son yıllarda üzerinde sıkça çalışılan bir araştırma alanı olmuştur. Bu çalışmada, son yıllarda geliştirilen AVOA (African Vulture Optimization Algorithm), ARO (Artificial Rabbit Optimization), SWO (Spider Wasp Optimization), MGO (Mountain Gazelle Optimization) ve AO (Aquila Optimization) algoritmaları ve En Küçük Kareler (Least Squares) yönteminin bir arada kullanıldığı hibrit yöntemler, harmoniklerin tespitinde kullanılarak sonuçları incelenmiştir. Analizlerde, literatürde sıkça kullanılan bir test sinyali üzerinde çalışılmıştır. Bu sinyalin harmonik genlikleri, En Küçük Kareler (Least Squares) yöntemiyle belirlenmiş, faz açıları ise ilgili meta sezgisel algoritmalar kullanılarak hibritleştirilmiş yöntemlerle (MGO-LS gibi) tahmin edilmiştir. Elde edilen sonuçlar, incelenen beş yöntem arasında önerilen MGO-LS’nın tahminleri gürültüsüz ve Gaussian gürültülü koşullarda bile daha doğru ve güvenilir olduğunu göstermiştir. Bu durum, incelenen problem için MGO-LS algoritmasının harmonik tespiti için etkili bir yöntem olduğunu ortaya koymaktadır.
Etik Beyan
Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özel izin gerektirmediğini beyan etmektedir.
Teşekkür
Yazarlar, meta sezgisel optimizasyon yöntemleri konusunda değerli bilgilerini paylaşan Sivas Cumhuriyet Üniversitesi Teknoloji Fakültesi Öğretim Üyesi Doç. Dr. Sibel ARSLAN’a ve makalenin inceleme ve değerlendirme aşamasında yapmış oldukları katkılarından dolayı editör ve hakem/hakemlere teşekkür eder.
Kaynakça
-
Abbassi, R., Saidi, S., Urooj, S., Alhasnawi, B. N., Alawad, M. A., & Premkumar, M. (2023). An accurate metaheuristic mountain gazelle optimizer for parameter estimation of single-and double-diode photovoltaic cell models. Mathematics, 11(22), 4565.
-
Abdel-Basset, M., Mohamed, R., Jameel, M., & Abouhawwash, M. (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artificial Intelligence Review, 56(10), 11675-11738.
-
Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
-
Abdollahzadeh, B., Gharehchopogh, F. S., Khodadadi, N., & Mirjalili, S. (2022). Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Advances in Engineering Software, 174, 103282.
-
Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-Qaness, M. A., & Gandomi, A. H. (2021). Aquila optimizer: a novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250.
-
Akyol, S. (2021). Global optimizasyon için yeni bir hibrit yöntem: kaya kartalı optimizasyonu-tanjant arama algoritması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(2), 721-733.
-
Ali, A., Ahmed, M., Apon, H. J., Rahman, M. S., Ahsan, A., Prapti, S. T., & Ahmed, A. (2023, October). Power System Harmonics Estimation: A new optimization technique-based implementation with African Vulture Optimization Algorithm based Least Square Method. (2023) .First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI) (pp. 1-7). IEEE.
-
Alomoush, W., Houssein, E. H., Alrosan, A., Abd-Alrazaq, A., Alweshah, M., & Alshinwan, M. (2024). Joint opposite selection enhanced Mountain Gazelle Optimizer for brain stroke classification. Evolutionary Intelligence, 1-19.
-
Apon, H. J., Abid, M. S., Morshed, K. A., Nishat, M. M., & Faisal, F. (2021, October). Power system harmonics estimation using hybrid Archimedes optimization algorithm-based least square method. In 2021 13th international conference on information & communication technology and system (ICTS) (pp. 312-317). IEEE.
-
Aydemir, S. B. (2022). Küresel optimizasyon için gauss kaotik haritası ile kartal optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 85-104.
-
Bakır, H. (2024). Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem. Expert Systems with Applications, 240, 122460.
-
Bettayeb, M., & Qidwai, U. (2003). A hybrid least squares- GA-based algorithm for harmonic estimation. IEEE Transactions on Power Delivery. 18(2), 377-382.
-
Biswas, S., Chatterjee, A., & Goswami, S. K. (2013). An artificial bee colony-least square algorithm for solving harmonic estimation problems. Applied Soft Computing, 13(5), 2343-2355.
-
Bollen, M. H. J., & Hassan, F. (2011). Integration of Distributed Generation in the Power System. Wiley-IEEE Press.
-
Costa, F. F., Cardoso, A. J. M., & Fernandes, D. A. (2007, April). Harmonic analysis based on Kalman filtering and Prony's method. In 2007 International Conference on Power Engineering, Energy and Electrical Drives (pp. 696-701). IEEE.
-
Ekinci, S., & Izci, D. (2023). Enhancing IIR system identification: Harnessing the synergy of gazelle optimization and simulated annealing algorithms. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 5, 100225.
-
Fan, J., Li, Y., & Wang, T. (2021). An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism. Plos one, 16(11), e0260725.
-
Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert systems with applications, 152, 113377.
-
Gaing, ZL (2004). AVR sisteminde PID kontrolörünün optimum tasarımı için bir parçacık sürüsü optimizasyon yaklaşımı. IEEE enerji dönüşümü işlemleri, 19 (2), 384-391.
-
Gülmez, B. (2023). Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications, 227, 120346.
-
Haseeb, A., Waleed, U., Ashraf, M. M., Siddiq, F., Rafiq, M., & Shafique, M. (2023). Hybrid weighted least square multi- verse optimizer (WLS–MVO) framework for real-time estimation of harmonics in non-linear loads. Energies, 16(2), 609.
-
Kabalci, Y., Kockanat, S., & Kabalci, E. (2018). A modified ABC algorithm approach for power system harmonic estimation problems. Electric power systems research, 154, 160-173.
-
Khodadadi, N., El-Kenawy, E. S. M., De Caso, F., Alharbi, A. H., Khafaga, D. S., & Nanni, A. (2023). The Mountain Gazelle Optimizer for truss structures optimization. Applied Computing and Intelligence, 3(2), 116-144.
-
Li, Y. F., & Fu, K. (2008). Eliminating the picket fence effect of the fast Fourier transform. Computer Physics Communications, 178(7), 486–491. https://doi.org/10.1016/j.cpc.2007.11.001
-
Lu,Z., Ji, T. Y., Tang, W.H., & Wu, Q. H. (2008). Optimal harmonic estimation using a particle swarm optimizer. IEEE Transactions on Power Delivery, 23(2), 1166-1174.
-
Ray,P.K., & Subudhi, B. (2012). BFO optimized RLS algorithm for power system harmonic estimation. Applied Soft Computing, 12(8), 1965-1977.
-
Sarangi, P., & Mohapatra, P. (2023). Evolved opposition-based mountain gazelle optimizer to solve optimization problems. Journal of King Saud University-Computer and Information Sciences, 35(10), 101812.
-
Sasmal, B., Hussien, A. G., Das, A., & Dhal, K. G. (2023). A comprehensive survey on aquila optimizer. Archives of Computational Methods in Engineering, 30(7), 4449-4476.
-
Sasmal, B., Das, A., Dhal, K. G., & Saha, R. (2024). A Comprehensive Survey on African Vulture Optimization Algorithm. Archives of Computational Methods in Engineering, 31(3), 1659-1700.
-
Subjak, Joseph S., & Jhon S. Mcquilkin. Harmonics causes, effects,measurements, and analysis : an update. IEEE transactions on industry applications. 26.6 (1990); 1034-1042.
-
Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Evolutionary Programming VII: 7th International Conference, EP98 San Diego, California, USA, March 25–27, 1998 Proceedings 7 (pp. 591-600). Springer Berlin Heidelberg
-
Turgut, O. E., & Turgut, M. S. (2023). Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems. Mathematics and Computers in Simulation, 206, 302-374.
-
Wang, L., Cao, Q., Zhang, Z., Mirjalili, S., & Zhao, W. (2022). Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 114, 105082.
Yang, X. S. (2010). Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley.
-
Zhang, J., Khayatnezhad, M., & Ghadimi, N. (2022). Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified African Vulture Optimization Algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 287-305.
-
Zhang, Y. J., Yan, Y. X., Zhao, J., & Gao, Z. M. (2022). AOAAO: The hybrid algorithm of arithmetic optimization algorithm with aquila optimizer. IEEE Access, 10, 10907-10933.
-
Zhao, B., Guo, C. X., & Cao, Y. J. (2014). "A multiagent-based particle swarm optimization approach for optimal reactive power dispatch." IEEE Transactions on Power Systems, 20(2), 1070–1078.